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In this note we solve, except for extremely pathological cases, a question posed by Puglisi
and Seoane-Sepúlveda on the lineability of the set of bounded linear non-absolutely
summing operators. We also show how the idea of the proof can be adapted to several
related situations.
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1. Introduction and notation

Henceforth E , F and G will stand for infinite-dimensional (real or complex) Banach spaces. The topological dual of F is
represented by F ∗ .

According to [2,7,10] and others, a subset A of an infinite-dimensional vector space X is said to be lineable if A ∪ {0}
contains an infinite-dimensional subspace of X .

The space of absolutely (r, s)-summing linear operators from E to F will be denoted by Πr,s(E; F ) (Πr(E; F ) if r = s) and
the space of bounded linear operators from E to F will be represented by L(E; F ). For details on the theory of absolutely
summing operators we refer to [6].

Recently, D. Puglisi and J. Seoane-Sepúlveda [15] proved, among other interesting results, that if E has the two series
property and G = F ∗ for some F , then the set

L(E; G)�Π1(E; G)

is lineable. In the same paper the authors pose the following question:

Problem 1.1. If E is superreflexive and p � 1, is it true that

L(E; F )�Πp(E; F )

is lineable for every Banach space F ?
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M.A. Sofi, in a private communication to the authors, kindly pointed out that the following situation should be settled
first: given operator ideals I1 and I2 and Banach spaces E and F , is it always true that I1(E; F )�I2(E; F ) is either empty
of lineable? Quite surprisingly, we have:

Example 1.2. Let SS denote the ideal of strictly singular linear operators and E be a hereditarily indecomposable complex
Banach space. Let us show that the set L(E; E)�SS(E; E), which is not empty because of the identity operator, does not
contain a two-dimensional subspace. Let u1, u2 be arbitrary linearly independent operators in L(E; E)�SS(E; E). By [13,
Theorem 6] there are scalars λ1, λ2 and strictly singular operators v1, v2 ∈ SS(E; E) such that u1 = λ1 idE + v1 and u2 =
λ2 idE + v2. It is clear that λ1 �= 0 �= λ2 because u1 and u2 are not strictly singular. Letting u = λ2u1 − λ1u2 we have that
u �= 0 because u1 and u2 are linearly independent; from u = λ2 v1 − λ1 v2 we conclude that u is strictly singular. Hence u
belongs to the subspace generated by u1 and u2 but u /∈ (L(E; E)�SS(E; E)) ∪ {0}, proving that (L(E; E)�SS(E; E)) ∪ {0}
does not contain a two-dimensional subspace.

In the absence of a general result, particular situations must be investigated by ad hoc arguments. The aim of this short
note is to answer Problem 1.1 in the positive, except for very particular quite pathological cases, and to extend the idea of
the proof to related situations.

2. Superreflexive spaces

By K we denote the ideal of compact operators.

Theorem 2.1. Let p � 1 and E be superreflexive. If either E contains a complemented infinite-dimensional subspace with unconditional
basis or F contains an infinite unconditional basic sequence, then K(E; F )�Πp(E; F ) (hence L(E; F )�Πp(E; F )) is lineable.

Proof. Assume that E contains a complemented infinite-dimensional subspace E0 with unconditional basis (en)∞n=1. First
consider

N = A1 ∪ A2 ∪ · · · (2.1)

a decomposition of N into infinitely many infinite pairwise disjoint subsets (A j)
∞
j=1. Since {en;n ∈ N} is an unconditional

basis, it is well known (e.g., combine [12, Proposition 1.c.6] and [1, Proposition 1.1.9]) that {en;n ∈ A j} is an unconditional
basic sequence for every j ∈ N. Let us denote by E j the closed span of {en;n ∈ A j}. As a subspace of a superreflexive space,
E j is superreflexive as well, so from [5, Theorem] it follows that for each j there is an operator

u j : E j −→ F

belonging to K(E j; F )�Πp(E j; F ).
Denoting by � the unconditional basis constant of (en)∞n=1 we know that∥∥∥∥∥

∞∑
j=1

ε ja je j

∥∥∥∥∥ � �

∥∥∥∥∥
∞∑
j=1

a je j

∥∥∥∥∥
for every ε j = ±1 and scalars a j . For each i we denote by Pi : E0 −→ Ei the canonical projection onto Ei . For

y =
∞∑
j=1

a je j ∈ E0 and x = Pi(y) ∈ Ei

we have

2x =
∑
j∈Ai

2a je j =
∞∑
j=1

ε ja je j +
∞∑
j=1

ε′
ja je j

for a convenient choice of signs ε j and ε′
j . Thus

2
∥∥Pi(y)

∥∥ = ‖2x‖ �
∥∥∥∥∥

∞∑
j=1

ε ja je j

∥∥∥∥∥ +
∥∥∥∥∥

∞∑
j=1

ε′
ja je j

∥∥∥∥∥ � 2�‖y‖.

So each projection Pi : E0 −→ Ei is continuous and has norm � �. This also implies that each Ei is a complemented
subspace of E0.

If π0 : E −→ E0 denotes the projection onto E0, for each j ∈ N we can define the operator

ũ j : E −→ F , ũ j := u j ◦ P j ◦ π0.
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Since (P j ◦ π0)(x) = x for every x ∈ E j , it is plain that ũ j belongs to K(E; F )�Πp(E; F ). Given n ∈ N and scalars a1, . . . ,an ,
with at least one ak �= 0, 1 � k � n, since ũk fails to be absolutely p-summing, there is a weakly p-summable sequence (x j)

in Ek such that
∑

j ‖uk(x j)‖p = +∞. It is clear that (x j) is weakly p-summable in E and ũk(x j) = uk(x j) for every j. But
Ak ∩ Ai = ∅ for i = 1, . . . ,n, i �= k, so it follows that ũi(x j) = 0 for every i = 1, . . . ,n, i �= k and j ∈ N. So,∑

j

∥∥a1ũ1(x j) + · · · + anũn(x j)
∥∥p =

∑
j

∥∥akuk(x j)
∥∥p = +∞,

proving that a1ũ1 + · · · + anũn is not absolutely p-summing. This proves that the span of {ũ j; j ∈ N} is contained in
K(E; F )�Πp(E; F ).

Let us see now that the set {ũ j; j ∈ N} is linearly independent. Let n ∈ N and a1, . . . ,an be scalars such that

a1ũ1 + · · · + anũn = 0.

For every k ∈ {1, . . . ,n} we can choose xk ∈ Ek such that ũk(xk) �= 0 because ũk �= 0. But (P j ◦ π0)(xk) = P j(xk) = 0 for every
j = 1, . . . ,n, j �= k. So,

akũk(xk) = 0 + · · · + 0 + akũk(xk) + 0 + · · · + 0 = a1ũ1(xk) + · · · + anũn(xk) = 0.

It follows that ak = 0. Hence the span of {ũ j; j ∈ N} is an infinite-dimensional subspace contained in K(E; F )�Πp(E; F ).
Now, suppose that F contains a subspace G with unconditional basis {en;n ∈ N} with unconditional basis constant �.

Still considering the subsets (An) of N as above, define F j as the closed span of {en;n ∈ A j} and let P j : G −→ F j be the
corresponding projections. Proceeding as above we conclude that ‖P j‖ � �. From [5, Theorem] we know that for each j
there is an operator

u j : E −→ F j

belonging to K(E; F j)�Πp(E; F j).
Recall that Fi ∩ F j = {0} if i �= j. So, if yi ∈ Fi and y j ∈ F j (with i �= j), we have

‖yi‖ = ∥∥Pi(yi + y j)
∥∥ � �‖yi + y j‖. (2.2)

Now by ũ j we mean the composition of u j with the inclusion from F j to F . It is clear that ũ j is compact and fails to be
absolutely p-summing. From (2.2) it follows that∥∥ũi(x) + ũ j(x)

∥∥ � �−1
∥∥ũi(x)

∥∥
for every x ∈ E . Hence

ũi + ũ j ∈ K(E; F )�Πp(E; F ) for all i, j,

and so we can easily deduce that the span of {ũ j; j ∈ N} is contained in (K(E; F )�Πp(E; F )) ∪ {0}. A reasoning similar to
the first case shows that the vectors ũ j , j ∈ N, are linearly independent, therefore K(E; F )�Πp(E; F ) is lineable. �
Remark 2.2. Note that Theorem 2.1 solves the problem posed by Puglisi and Seoane-Sepúlveda except when E is a su-
perreflexive Banach space not containing an infinite-dimensional complemented subspace with unconditional basis (such a
space was constructed by V. Ferenczi [8,9]) and F does not contain an infinite-dimensional subspace with unconditional
basis (for example, hereditarily indecomposable spaces). It is in this sense we claim that Theorem 2.1 solves the problem
modulo extremely pathological cases.

We proved that L(E; F )�Πp(E; F ) is ℵ0-lineable under the assumptions of Theorem 2.1, where ℵ0 is the cardinality
of N. The anonymous referee kindly pointed out the following interesting question:

Problem 2.3. Under what circumstances is L(E; F )�Πp(E; F ) μ-lineable for μ > ℵ0?

3. Non-necessarily superreflexive spaces

Examining the proof of Theorem 2.1 it becomes clear that the result holds if: (i) E contains a sequence (En)∞n=1 of
complemented infinite-dimensional subspaces such that En ∩ Em = {0} if m �= n; (ii) L(En; F )�Πp(En; F ) �= ∅ for every
n ∈ N. Having this in mind, the argument of the proof can be adapted to many other circumstances, even for spaces of
operators on non-superreflexive spaces.

We start by adapting the proof of Theorem 2.1 to spaces of operators on spaces containing complemented copies of �1
or c0 (observe that in these cases the domain spaces are not even reflexive):
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Proposition 3.1.

(a) If E contains a complemented copy of �1 and F is not isomorphic to a Hilbert space, then L(E; F )�Π1(E; F ) is lineable.
(b) If E contains a complemented copy of c0 and 1 � p < 2, then L(E; F )�Πp(E; F ) is lineable for every Banach space F .

Proof. Up to the composition with the corresponding projections, it suffices to work with E = �1 in (a) and E = c0 in (b).
(a) Decomposing N as in (2.1) we have that the closed span of each {en;n ∈ A j}, denoted by E j , is a complemented copy

of �1 which is isometrically isomorphic to �1. From [11] we know that L(�1; F )�Π1(�1; F ) �= ∅, so L(En; F )�Π1(En; F ) �= ∅
for every n. Now proceed as in the proof of Theorem 2.1 to complete the proof.

(b) Using that c0 enjoys the same property of �1 we used above and that L(c0; F )�Πp(c0; F ) is nonvoid for every F
(see [3,14]), the proof of (a) can be repeated line by line. �

An adaptation of the proof of Theorem 2.1 combined with [4, Corollary 2.2] yields:

Proposition 3.2. If p � 1, then L(E; F )�Πp(E; F ) is lineable for every Banach space E and every Banach space F containing a copy
of c0 .

4. Non-absolutely (q,1)-summing linear operators

In this section we turn our attention to the lineability of the set of non-absolutely (q,1)-summing operators, which is,
a priori, a more delicate matter. Absolutely (q,1)-summing operators are closely connected to the cotypes of the underlying
spaces; for this reason, given a Banach space F , we define cot F = inf{q � 2: F has cotype q}.

If E has unconditional basis (xn)∞n=1, define

μE,(xn) = inf

{
t: (a j)

∞
j=1 ∈ �t whenever x =

∞∑
j=1

a j x j ∈ E

}
.

By adapting the arguments we used so far with [3, Corollary 2.1] as starting point, it is not difficult to prove that:

Proposition 4.1. If 1 � q < cot F and p > q, then L(�p; F )�Πq,1(�p; F ) is lineable.

We shall improve substantially both Proposition 4.1 (in the sense that �p can be replaced by spaces E with unconditional
basis (xn) such that μE,(xn) > q) and [3, Corollary 2.1] (in the sense that L(E; F )�Πq,1(E; F ) is actually lineable). We will
need the following result:

Lemma 4.2. (See [15, Lemma 1.1].) Let (an)∞n=1 be a sequence of positive real numbers. If
∑∞

j=1 an = ∞, then there is a sequence of
sets of positive integers (A j)

∞
j=1 so that:

(i) N = A1 ∪ A2 ∪ · · · .
(ii) Each A j has the same cardinality of N.

(iii) The sets A j are pairwise disjoint.
(iv)

∑
j∈Ak

a j = ∞ for each k.

Theorem 4.3. If 1 � q < cot F , E has an unconditional normalized basis (xn)∞n=1 and μE,(xn) > q, then L(E; F )�Πq,1(E; F ) is
lineable.

Proof. Since μE,(xn) > q, we can find (a j)
∞
j=1 and ε > 0 so that

x =
∞∑
j=1

a j x j ∈ E and
∞∑
j=1

|a j|q+ε = ∞. (4.1)

Let (A j)
∞
j=1 be the sets of Lemma 4.2 associated to the divergent series

∑∞
j=1 |a j |q+ε . For each positive integer k, define

Ek = span{x j; j ∈ Ak}. From the proof of Theorem 2.1 we know that each {xn;n ∈ Ak} is an unconditional basic sequence
and Ek is a complemented subspace of E . From the choice of Ak we have that μEk,(xn) > q, so [3, Corollary 2.1] gives
that L(Ek; F )�Πq,1(Ek; F ) �= ∅ for every k. The result follows by repeating once more the procedure of the proof of Theo-
rem 2.1. �
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