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Abstract The effect of kinetin, spermine and their combination on growth vigor, photosynthetic

pigments, some metabolites, some enzymes, polyamines and productivity of salt-stressed Vigna

sinensis plants was investigated. Salt stress reduced all evaluated growth criteria and yield compo-

nents of used plants. Chlorophyll (CHL (a, b, carotenoids, carbohydrates, protein, spermidine and

spermine level as well as and amylase activity were also decreased in response to salinity. On the

other hand, proline, K+, Na+ and putrescine concentration, and peroxidase activity were increased

in the salt-stressed plants. Exogenous application of kinetin and spermine mitigated the deleterious

effects of salinity stress on growth and yield of the used plants. Conversely, the combined treatment

of kinetin and spermine induced additional reduction in growth and yield of the stressed plants, and

the effect appeared to be constitutive. The protective effect of kinetin and spermine on V. sinensis

plants appeared mainly due to the enhancement effect of these growth regulators on chlorophylls

and protein content and polyamines titer.
ª 2010 King Saud University. All rights reserved.
1. Introduction

Salinity has a considerable effect on world agriculture with as
much as half of irrigated areas of land are affected by high
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salinity, accounting about 7% of total world’s land surface
(Munns et al., 2002). High concentrations of salts cause ionic,
osmotic and oxidative stresses to plants (Simon-Sarkadi et al.,

2002; Harinasut et al., 2003; Carlos et al., 2009). Plant
responses to these stresses are complex but can be grouped into
three general categories: homeostasis, detoxification of free

radicals and growth control (Zhu, 2000). Growth control re-
fers to the coordination of stress adaptation and the rate of cell
division and expansion. Cytokinins and polyamines are in-

volved in the growth control of the cells subjected to salt stress
(Naqvi, 1994; Ali and Abbas, 2003; Tester and Davenport,
2003).

Salinity stress, in many plants, reduces cytokinin export
from the root to shoot (Naqvi, 1994; Ali and Abbas, 2003).
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An adequate cytokinin supply is essential for normal plant

development and stimulation of a great number of physiolog-
ical processes which delay leaf senescence, and this can explain
why exogenous applications of cytokinin can overcome the ef-
fect of salt stress on the growth of many plants (Ambler et al.,

1992; Leite et al., 2003). Kinetin is a synthetic cytokinin and
there have been studies on the use of kinetin to mitigate the
adverse effects of salt stress on plant growth (Aldesuquy and

Gaber, 1993; Gadallah, 1999). Aldesuquy and Gaber (1993)
found that seeds pre-soaked kinetin (100 mM) nullified the
deleterious effects imposed by irrigation with 25% seawater

on leaf area, photosynthetic pigments and 14CO2 fixation of
Vicia faba plants at different stages of plant development.

In plants, the diamine putrescine, triamine spermidine and

tetramine spermine affect a range of developmental processes
such as flowering and senescence (Pandey et al., 2000; Kasina-
than and Wingler, 2004). These polyamines have been sug-
gested to afford protection against a large variety of

environmental stresses including salinity and potassium defi-
ciency (Chattopadhayay et al., 2002; Simon-Sarkadi et al.,
2002). The protective function of polyamines is mainly due

to their cationic nature at cellular pH. Polyamines can stabilize
cellular structures such as thylakoid membranes by binding to
proteins and lipids (Tiburcio et al., 1994). Polyamines have

also been proposed to act as radical scavengers and as regula-
tors of K+ channels in stomata (Kramer and Wang, 1989; Liu
et al., 2000; Duan et al., 2008). In this respect, Tipirdamaz
et al. (1995) found that treatments of barley seeds with sperm-

ine, spermidine and putrescine increase both amylase activity
and germination percentage (from 23% to 50% and 45%,
respectively) in salt-treated seedlings. Furthermore, they con-

cluded that the adverse effect of salt stress on germination
can be partially rectified by polyamines.

Cytokinins application is known to increase polyamines

biosynthesis and increase the level of spermine bound to the
chromatin, so it is suggested that polyamines could be involved
in cytokinin mode of action (Legocka and _Zarnowska, 2002;
Sergiev et al., 1995). However, there are no reports in the liter-
ature showing the combined effect of kinetin and spermine on
salt-stressed plants. Therefore, the present study was under-
taken to evaluate the possible role of kinetin, spermine and

their combination on growth vigor, some metabolites and pro-
ductivity of salt-stressed Vigna sinensis plants.

2. Materials and methods

2.1. Plant materials and growing conditions

Healthy and equalized seeds of V. sinensis L. (var. cult. Cream

7) were surface sterilized with bleach solution (10%) for 10 min
and washed thoroughly with distilled water. Then the seeds
were divided into four sets according to the soaking solution.

The 1st set was soaked in distilled water, whereas the 2nd,
3rd, and the 4th sets were soaked in 0.1 mM kinetin, 0.3 mM
spermine and (0.1 mM kinetin + 0.3 mM spermine), respec-
tively, for 24 h. The choice of these concentrations was based

on preliminary experiments. After soaking, the thoroughly
washed seeds were sown (eight seeds/pot) in plastic pots
(30 cm diameter) filled with 3 kg soil (clay: sand; 2/1 v/v).

The pots were kept in a greenhouse where the plants were sub-
jected to natural day/night conditions (minimum/maximum air
temperature was about 15/25 �C at mid-day during the winter

season). After 2 weeks, the plants were thinned to four uni-
forms per pot and each set was allocated to control and salinity
treatments with 12 replicates in each one. Salinity stress was
applied by irrigation with 50% seawater from Red sea with a

periodical soil washing (each 2 weeks) with tap water. After
2 months of salinity treatments, samples for growth and bio-
chemical analysis were taken. Then all the remaining pots were

irrigated with tap water and left for yield analysis. The third
upper leaf was employed for different biochemical analyses
with three replicates in case of polyamines and eight replicates

for other different analyses.
After thinning, the plants received 25 kg N ha�1 urea and

25 kg P ha�1 potassium dihydrogen phosphate as fertilizers.

2.2. Measurements of leaf area

Leaf area was measured by a Digital Planimeter KP-90 N

(PLAKOM).

2.3. Determination of photosynthetic pigments

Photosynthetic pigments (chlorophyll a, chlorophyll b and
carotenoids) were determined using the spectrophotometric

method of Lichtenthaler (1987).

2.4. Determination of carbohydrates concentration

Total soluble sugars were extracted and determined by the
anthrone method of Riazi et al. (1985). Polysaccharides in a
known dry weight were hydrolyzed into simple sugars by acid

hydrolysis as described by Sadasivam and Manickam (1996).
The sugars content of 0.1 mL of this solution was obtained
by the anthrone method Andreani and Gray (1956). The total

soluble sugars was subtracted from the total carbohydrates
give the value of polysaccharides in each sample.

2.5. Assay of peroxidase activity

A known leaf fresh weight (1 g) was macerated in 3 mL of
0.1 M phosphate buffer pH 7 with a pre-cooled mortar and

pestle. The homogenate was centrifuged at 4 �C for 15 min.
The supernatant was used as source for peroxidase enzyme
within 2–4 h. Peroxidase (EC 1.11.1.7) activity was determined

by the guaiacol oxidation method as described by Sadasivam
and Manickam (1996).

2.6. Determination of protein concentration

Total soluble protein content of the enzyme extracts was deter-
mined with coomassie brilliant blue G250 dye according to

Bradford (1976) using bovine serum albumin as standard.
Samples were read at 595 nm.

2.7. Assay of a-amylase activity

Extracts for a-amylase activity (EC 3.2.1.1) were obtained with

ice cold 0.2 M acetate buffer (pH 4.5), and centrifugation at
20,000 rpm for 30 min at 4 �C. Amylase activity was assayed
according to the method adopted by Monroe and Preiss

(1990).
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2.8. Determination of K+ and Na+ concentrations

A known dry weight of the plant leaves was digested in boiling
concentrated HNO3 and made up to known volume with

deionized water. K+ and Na+ concentrations were measured
by flame emission photometry (Gadallah, 1999).

2.9. Determination of proline concentration

Proline was determined using the method of Bates et al. (1973).

2.10. Determination of polyamines concentration

Extraction and dansylation techniques of Smith and Best
(1977) as described by Aldesuquy et al. (2000) were used. Then

10 lL of samples and standards were spotted on thin layer
chromatography plates using a Hamilton microsyringe. The
plate was developed in a two-solvent system (benzene: triethyl-

amine; 5:1) for 17 cm height. The plate was dried at room tem-
perature and the resulting zones were examined and marked
under long ultraviolet wave length (365 nm). The marked areas

were determined at 254 nm using a CS-900 Dual Wave Length
Scanning Densitometer.

2.11. Statistical analysis

The experiment was a completely random design. The main ef-
fect of factors (salinity and growth regulators), and their inter-

action (salinity · growth regulators) were evaluated by general
linear model (two-way ANOVA) using SPSS program. Tests
for significant differences between means at P = 0.05 were gi-

ven by LSD test.

3. Results

3.1. Changes in growth criteria

The applied salt stress significantly reduced shoot and root
masses, total leaf area in V. sinensis plants. Seeds pre-soaking

in kinetin or spermine significantly improved these criteria.
The interaction (regulators · salinity) was significant, where
the combination of kinetin and spermine had a negative effect
on growth vigor of the used plants. The effect of spermine,

kinetin and their combination appeared to be constitutive
(Table 1).
Table 1 Effect of seeds pre-soaking in kinetin and spermine on gro

Treatments Growth criteria

Shoot f.wt.

(g/plant)

Shoot

(g/pla

Control 39.44 6.50

Kinetin control 45.55 8.07

Spermine control 42.30 7.11

Kinetin + spermine control 34.31 5.53

Seawater (50%) 13.05 3.55

Kinetin + 50% seawater 16.92 4.40

Spermine + 50% seawater 15.75 4.37

Kinetin + spermine + 50% seawater 10.04 2.95

LSD (P< 0.05) 2.5 0.60
3.2. Changes in photosynthetic pigments

In comparison with the control, chlorophylls a and b, as well
as carotenoids level were markedly reduced in Vigna plants

in response to salt stress. Application of kinetin and spermine
partially mitigated the adverse effect of salt stress on these pig-
ments. The interaction (regulators · salinity) was significantly

increased, and this reflected the non-significant effect of the
dual pre-treatment with kinetin and spermine on chlorophyll
a, chlorophyll b and carotenoids concentration of the stressed
plants (Fig 1).

3.3. Changes in carbohydrates

Salt stress induced drastic decrease in total soluble sugars con-
centration of V. siuensis plants. Kinetin and spermine allevi-
ated the adverse effect of salt stress on soluble sugars and

the effect was more pronounced with kinetin pre-treatment.
On the other hand, a non-significant effect was manifested in
response to the dual treatment of kinetin and spermine.

Total carbohydrates and polysaccharides concentration
was significantly decreased in Vigna plants in response to salin-
ity stress. Concerning to total carbohydrates, the effect of
growth regulators was insignificant, but the interaction (regu-

lators · salinity) was significant. Kinetin alone enhanced the
total carbohydrates concentration of salt-treated plants. The
magnitude of increase appeared to be close to the control level.

Furthermore, Kinetin mitigated to some extent the adverse ef-
fect of salinity on polysaccharides level of used plants. Con-
versely, spermine either alone or in combination with kinetin

induced more reduction in polysaccharides level of salt-treated
plants (Fig. 1).

3.4. Changes in Na+ and K+ concentrations

Seawater-treated plants had a higher K+ concentration than
control plants. The applied growth regulators induced addi-

tional increase in K+ level of V. siuensis plants. Na+ was
greatly increased in salt-stressed plants (>2-fold) in relation
with controls. Spermine either alone or in combination with

kinetin increased to some extent Na+ level of the stressed
plants. On the other hand, kinetin appeared to reduce Na+

content.

Regarding K+/Na+ ratio, there was a greater reduction in
the values of salt-treated plants as compared with control
wth criteria Vigna sinensis plants grown under seawater stress.

d.wt

nt)

Root f.wt.

(g/plant)

Root d.wt

(g/plant)

Total leaf area

(cm2)

9.24 2.20 780

8.90 1.98 1100

10.12 2.01 950

7.02 1.65 600

3.43 0.82 350

4.40 1.07 492

4.90 1.15 480

3.40 0.80 230

0.65 0.20 61.04
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Figure 1 Effect of seeds pre-soaking inkinetin and spermine on photosynthetic pigments and carbohydrates concentration of Vigna

sinensis plants grown under seawater stress. The vertical bars represent LSD values at P < 0.05.
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plants. Kinetin and spermine pre-treatments significantly im-
proved this ratio in the stressed plants. However, the dual
treatment of kinetin and spermine attenuated this ratio

(Fig. 2).

3.5. Changes in proline and protein concentrations

Proline was markedly increased in salt-stressed plants. Used
growth regulators did not affect the proline level of these

plants. The interaction (regulators · salinity) was significant.
Kinetin alone or in combination with spermine, in control con-
ditions, significantly increased proline concentration in Vigna
plants as compared with corresponding untreated plants.
Protein level was significantly reduced in the salt-treated
plants. Seeds pre-soaking in kinetin and spermine enhanced
the protein content of these plants. The interaction (regula-

tors · salinity) was significant. The dual pre-treatment with
kinetin and spermine lowered the protein level of the used
plants (Fig. 2).

3.6. Changes in a-amylase and peroxidase activities

Salinity stress induced massive decrease in a-amylase activity
of Vigna plants. The used growth regulators enhanced the
amylase activity of these plants and the effect was more pro-
nounced with kinetin pre-treatment.
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Figure 2 Effect of seeds pre-soaking in kinetin and spermine on K+, Na+, proline and protein concentrations of Vigna sinensis plants

grown under seawater stress. The vertical bars represent LSD values at P < 0.05.
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Concerning the peroxidase activity, the salt-stressed plants
had a higher enzyme activity (>6-fold) than the corresponding
control plants. Used growth regulators reduced this increase
and the effect was more elicited with spermine pre-treatment

(Table 2).

3.7. Changes in polyamines level

Salt-stressed plants had a higher putrescine and lower spermi-
dine and spermine concentration as compared with corre-

sponding controls. The results clearly showed that total
polyamines were increased in the salt-stressed plants. Pre-treat-
ment with kinetin and spermine induced additional increase in
putrescine level of salt-stressed plants. Furthermore, these
growth regulators enhanced the production of spermidine
and spermine of the stressed plants. The interaction (regula-
tors · salinity) was significant. This reflected the different trend

of changes in case of the dual pre-treatment with kinetin and
spermine. This treatment greatly reduced putrescine and in-
creased spermine concentration of V. siuensis plants as com-

pared with non-treated plants (Table 2).

3.8. Changes in yield components

The applied salt stress reduced all yield components of Vigna
plants, i.e., shoot dry mass, straw mass, economic yield, fresh



Table 2 Effect of seeds pre-soaking in kinetin and spermine on a-amylase and peroxidase activities, and

polyamines titer of Vigna sinensis plants grown under seawater stress.

Treatments a-Amylase activity

(lmol/min)

Peroxidase activity

(U g�1 f.wt.)

Polyamines (nmol g�1 f.wt.)

Putrescine Spermidine Spermine

Control 1.01 2.61 36.76 13.24 6.62

Kinetin control 0.82 1.71 50.35 16.80 8.38

Spermine control 1.03 3.56 37.55 13.60 11.74

Kinetin + spermine control 0.64 1.30 26.14 2.40 16.50

Seawater (50%) 0.30 20.0 162.0 0.68 0.70

Kinetin + 50% seawater 0.88 11.54 230.0 4.66 0.98

Spermine + 50% seawater 0.72 6.50 200.0 0.86 1.46

Kinetin + spermine + 50% seawater 0.79 7.13 104.03 0.76 3.20

LSD (P < 0.05) 0.04 1.00 9.00 0.40 0.50

Table 3 Effect of seeds pre-soaking in kinetin and spermine on yield and yield components of Vigna sinensis

plants grown under seawater stress.

Treatments Yield and yield components

Shoot d.wt.

(g/plant)

Straw weight

(g/plant)

Total seeds f.wt.

(g/plant)

Total seeds

number/plant

Ten seeds

d.wt. (g)

Harvest

index

Control 10.20 6.6 5.57 7.0 8.25 48.59

Kinetin control 12.28 6.62 6.64 8.0 8.92 45.56

Spermine control 13.95 6.45 8.04 8.0 9.70 50.52

Kinetin + spermine control 9.50 4.87 5.06 6.0 7.80 45.52

Seawater (50%) 2.70 2.57 0.16 1.33 1.07 6.21

Kinetin + 50% seawater 3.80 3.50 0.52 1.67 2.40 12.50

Spermine + 50% seawater 3.56 3.03 0.42 1.67 2.00 10.79

Kinetin + spermine + 50% seawater 1.70 1.75 0.00 0.00 0.00 0.00

LSD (P < 0.05) 0.50 0.34 0.20 1.2 0.52 4.78

42 S.S. Alsokari
and dry seed masses, seeds number and harvest index. The
straw weight appeared to be the lowest affected one. Seeds
pre-soaking in kinetin and spermine markedly enhanced the
yield of salt-stressed plants. On many occasions, the interac-

tion (regulators · salinity) was significant. This reflected the
adverse effect of the dual treatment of kinetin and spermine
on yield of salt-stressed plants (Table 3).
4. Discussion

Seawater salinity markedly reduced shoot and root masses as
well as total leaf area of V. sinensis plants. The underlying
causes are complex and range from physiological drought, de-

crease in the photosynthetic surface, the cost of osmotic
adjustment, and nutrient deficiencies to the accumulation of
free radicals (Simon-Sarkadi et al., 2002; Harinasut et al.,
2003). Application of kinetin and spermine mitigated adverse

effect of salinity on growth vigor of the used plants. This is
in agreement with previous findings of many authors (Gadal-
lah, 1999; Chattopadhayay et al., 2002; Ali and Abbas,

2003). Salt stress is known to reduce cytokinins and spermine
level in plant shoot, and this can explain the protective effect of
exogenous application of these growth regulators on growth of

many plants grown under salt stress conditions (Ali and Ab-
bas, 2003; Leite et al., 2003; Duan et al., 2008).
The observed reduction in chlorophylls and carotenoids
concentration in response to salt stress appeared to run in close
parallelism with the results of Aldesuquy and Gaber (1993)
who found that high seawater (25%) level reduced the photo-

synthetic pigments level of broad bean plants. Seeds pre-soak-
ing in kinetin and spermine partially mitigated the deleterious
effect of salt stress on these pigments. This ameliorative effect

of kinetin application was also reported by Aldesuquy and Ga-
ber (1993). In connection with these results, Chattopadhayay
et al. (2002) found that the exogenous application of spermine

enhanced the total chlorophyll level of salt-stressed rice plants.
This enhancement effect of kinetin and spermine may be
attributed to increased stability of thylakoids membranes
(Gadallah, 1999; Pandey et al., 2000; Chattopadhayay et al.,

2002) and plastids biogenesis (Aldesuquy and Baka, 1998).
The reduction of chlorophyll content and the inhibition of

carbon metabolism and photosynthetic activity (Aldesuquy

and Gaber, 1993; Chattopadhayay et al., 2002) led to the ob-
served reduction of total carbohydrates, polysaccharides and
total soluble sugars concentration in salt-stressed plants. Kine-

tin and spermine pre-treatments alleviated the adverse effects
of salt stress on total soluble sugars concentration and this is
at least partially due to enhanced amylase activity (Table 2)

and chlorophyll content. In this respect, Gadallah (1999)
found that kinetin application increased soluble sugars accu-
mulation in salt-stressed wheat plants growing under aerobic
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and anaerobic conditions. Kinetin pre-treatment greatly en-

hanced total carbohydrates and polysaccharides concentration
of the stressed plants and this is mainly due to enhanced chlo-
rophyll content.

It is accepted that competition exists between Na+ and K+

leading to a reduced level of internal K+ at a high external
NaCl level (Gorham and Bristol, 1990; Gadallah, 1999). Data
presented here indicated that the internal K+ level was not re-

duced but increased and Na+ accumulated, in salt-stressed
plants. In this result, salinity was induced by seawater, which
contains K+ and Ca2+ in addition to the major cation Na+.

Sodium–calcium interaction under salinity has been reviewed
recently (Munns et al., 2002; Tester and Davenport, 2003; Eas-
ton and Kleindorfer, 2009) and it can be concluded that Ca2+

is important for the maintenance of K+ transport in the pres-
ence of Na+ via some regulation of non-selective cation chan-
nels. However, K+/Na+ ratio reduced in the stressed plants.
This low K+/Na+ ratio can disturb various enzymatic pro-

cesses in the cytoplasm and protein synthesis (Tester and Dav-
enport, 2003). Kinetin and spermine pre-treatments enhanced
the K+/Na+ ratio of salt-stressed plants and this is in accor-

dance with the findings of Gadallah (1999) and Chattopadha-
yay et al. (2002). These results may indicate that the provided
growth regulators exert some effects at the membrane level for

increasing K+ selectivity which is considered to be important
in salt tolerance.

The data presented showed that proline concentration was
greatly increased in the salt-stressed plants and this is compat-

ible with the fact that many higher plants accumulate free pro-
line in response to salt stress (Roosens et al., 1999). Several
possible roles have been attributed to this supra-optimal level

of proline: osmoregulation, detoxification of free radicals, con-
servation of nitrogen and energy for the post-stress period and
regulating the stress protective proteins (Lutts et al., 1999;

Roosens et al., 1999; Khedr et al., 2003). Conversely, protein
concentration was reduced in salt-stressed plants. This reduc-
tion could result from impairment protein synthesis and/or in-

creased protein degradation by salinity stress (Duby, 1994).
Kinetin and spermine pre-treatments did not affect proline le-
vel but enhanced the protein concentration of salt-stressed
plants. This is compatible with the general reputation that

spermine and kinetin are anti-senescence agents and retard
protein and chlorophyll loss in detached leaves (Gadallah,
1999; Huang et al., 1990; Pandey et al., 2000).

It can be seen from this result that a-amylase activity was
reduced in salt-stressed plants and the used growth regulators
enhanced this activity. These results could explain the observed

reduction of total soluble sugars in salt-stressed plants and the
beneficial effect of spermine and kinetin pre-treatments. The
beneficial effect of spermine on a-amylase activity under salt

stress was also observed by Tipirdamaz et al. (1995) in barley.
On the other hand, peroxidase activity was markedly increased
in broad bean plants by salt treatment. This anti-oxidant en-
zyme increased the ability of higher plants to scavenge the

toxic active oxygen which accumulate under stress conditions
(Ali and Abbas, 2003; Harinasut et al., 2003). This result also
pointed out clearly that kinetin and spermine pre-treatments

reduced the increase in peroxidase activity and this reflected
the protective effect of these regulators on the used plants.
In this respect Kwon and Kim (1995) found that peroxidase

activity increased with leaf senescence, and kinetin and sperm-
ine treatments reduced this increase.
The observed increase in putrescine and reduction of sper-

midine and spermine level of the salt-stressed plants were also
reported in maize plants. These changes could result from in-
creased arginine decarboxylase (ADC) activity and impair-
ment of higher polyamines biosynthesis from putrescine

(Willadino et al., 1996). Others, observed the decrease (Bena-
vides et al., 1997) or increase (Kasinathan and Wingler,
2004; Duan et al., 2008) of all these biogenic amines in salt-

stressed plants. Kinetin and spermine pre-treatments, over all
conditions, markedly increased putrescine, spermidine and
spermine concentrations of the used plants. This is consistent

with the findings of Liu et al. (2000) that enhanced callus
growth of soybean hypcotyl by kinetin treatment was accom-
panied by the accumulation of endogenous putresine, spermi-

dine and spermine. Furthermore, Kinetin and spermine were
found to promote ADC and ODC activities which induce
polyamines biosynthesis (Huang et al., 1990; Mo and Pua,
2002).

The dual treatment with kinetin and spermine increased
spermine concentration of and reduced putrescine and sper-
midine level of the used plants and this could explain the

observed reduction of plant growth. This is possibly because
this treatment elevated the internal spermine concentration
to a level that inhibits putrescine and spermidine biosynthe-

sis. However, the lack of data about the combined effect of
kinetin and spermine on ADC and ODC activities makes the
explanation elusive and it needs further works. In this con-
text, Theiss et al. (2002) found that elevated intracellular

spermine in response to exogenous spermine application re-
duced ODC activity and consequently reduced putrescine
and spermidine concentrations which are important for the

normal growth of Chalamydomonas reinhardtii cells.
The adverse effect of salt stress on V. sinensis plants

growth and metabolism was reflected on plant yield. The en-

hanced effect of kinetin and spermine on the yield of salt-
stressed plants was basically due to enhanced seed biomass
which result from enhanced growth vigor, chlorophylls con-

tent, K+/Na+ ratio and polyamine titer during the vegeta-
tive growth stage. This is compatible with the finding of
Gadallah (1999) that exogenous application of 10 ppm kine-
tin improved growth and grain yield of salt-stressed wheat

plants. The negative effect of the dual treatment of Kinetin
and spermine on growth vigor, protein content and poly-
amines titer could explain the adverse effect of this pre-treat-

ment on the obtained yield.
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