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Abstract

In this paper we completely characterize lattice ideals that are complete intersections or equiva-
lently complete intersections finitely generated semigrougg”ad T with no invertible elements,
whereT is a finite abelian group. We also characterize kattice ideals thatra set-theoretic com-
plete intersections on binomials.

0 2004 Elsevier Inc. All rights reserved.

Keywords:Lattice ideals; Semigroups; Complete intersections; Semigroup gluing

1. Introduction

Let S be a finitely generated, cancellative, abelian semigroup with no invertible ele-
ments.S can be considered as a subsemigroup of a finitely generated abeliarZjreup
such thatS N (—S8) = {0}, whereT is a torsion group. In the case that the torsion group is
trivial the semigrougs is calledaffine semigroupLet A ={a; | i € {1, ..., m}} be a set of
generators for the semigrouf) thusS = NA, whereN is the set of nonnegative integers.
Let L denote the kernel of the group homomorphism friéthto Z" @& T which sends;
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to a;, where{e |i € {1,...,m}} is the canonical basis @&™. L is a sublattice oZ™, the
lattice idealassociated td. is the binomial ideal

[L:({Xa+—Xa_ |a:o{+—o{_EL})CK[Xl,--~,xm]7

where K is a field of any characteristic. The semigrofips a complete intersection if
and only if Iy, C Q[x1, ..., x,] is a complete intersection, which means that the minimal
number of generators df is equal to the height of; .

The problem of determining complete intersection semigroups or equivalently complete
intersection lattice ideals has a long histdtyvas solved for affine semigroups gradually
in a series of papers by J. Herzog [12], Ch. Delorme [5], R.P. Stanley [19], M.N. Ishida
[13], K. Watanabe [21], H. Nakajima [14], U. Safer [17], J.C. Rosales, and P.A. Garcia-
Sanchez [16]. Finally, in 1997 K.G. Fischer, W. Morris, and J. Shapiro [11] characterized
all complete intersections affine semigroupZ6fusing mixed dominating matrices and
the notion of semigroup gluing introducéxy J.C. Rosales [15]. Recently D. Dais and
M. Henk [4] used Nakajima’s classification to describe the precise form of the binomial
equations which determine toric Idgacomplete intersection singularities.

Another related problem that drew the attention of a number of authors over the last
years was the generatiofi @ lattice ideal by binomials up to radical [1-3,6-9]. In 2002
K. Eto [8] characterized complete intersection finitely generated, abelian semigroups with
no invertible elements or equivalently complete intersection lattice ideals as those that are
set-theoretic complete intersection on binomials in characteristic zero. A generalization
of the corresponding result for affine semigroups or equivalently toric varieties, which
was provided by M. Barile, M. Morales, and A. Thoma [2]. Note that a binomial ideal
is set-theoretic complete intersection on binomials if there existheight/) binomials
F1,..., F, such that radl) =rad(F1, ..., F,). Recently M. Barile and G. Lyubeznik [1]
usedp-gluing of affine semigroups and étale cohomology to give a class of toric varieties
which are set-theoretic complete intersections only over fields of one positive characteris-
tic p.

The aim of this article is twofold. On the one hand, we give a complete characteriza-
tion of all finitely generated, cancellative, abelian semigroups with no invertible elements
or equivalently lattice ideals that are comgléntersections by introducing the notion of
gluing lattices and extending the notion of semigroup gluing. On the other hand we char-
acterize all lattice ideals that are set-theoretic complete intersection on binomials in any
characteristic by extending the notion pfgluing. The characterization depends on the
characteristic.

2. Semigroup and lattice gluing

A latticeis a finitely generated free abelian grouppartial character(L, p) onZ™ is
a homomorphismp from a sublattice. of Z™ to the multiplicative grougk™* = K — {0}.
Given a partial charactér., p) onZ™, we define the ideal

I p:= ({XO‘+ — p()x® | a=at —a" € L}) C Klx1,...,xm]
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calledlattice ideal Herea™ € N anda™ € N denote the positive and negative partof
respectively, and? = x'{l .. ~x,’i,’" for B = (b1, ..., by) € N™. We will denote byF(«) the
binomialx®” —x¥" and byF, («) the binomiak® " — p(a)x* . Lattice ideals are binomial
ideals. The theory of binomial ideals was developed by Eisenbud and Sturmfels in [6].
A prime lattice ideal is called toric ideal, while the set of zeroes iK™ is anaffine toric
varietyin the sense of [20], since we do not require normality.

LetA={a; |1<i<m}CZ"® T be such that the semigrolipA has no invertible
element. That means that although the gr@ipd T has torsion elements, no nonzero
element in the semigroupA is a torsion element. This remark will be very useful in the
sequel.

Lety : Z™ — Z" & T be a group homomorphismsuch thiate;) = a; € Z" & T, where
e, ..., e, is the canonical basis &™. We will denote byL the lattice ke¢y). The fact
that the semigrouplA has no invertible element is equivalent with the fact that the lattice
L is positive that isL N N = {0}. This means that the lattice ide&l , is homogeneous
with respect to some positive grading. In this case by the graded Nakayama’s lemma all
minimal systems of generators of the idéal, have the same cardinality.

For a latticeL and a prime numbep, let (L : p°) be the lattice

{uez™| pfue L for somek e N}.
For a semigrous, (S : p*) denotes the semigroup
[bez'"®T|p'bes for somek e N}.
LetE c{1,...,m}, forasetP C Z we denote by
PE:={(p1,....pm)€Z" | picP for icE, p;=0 fori ¢ E}.

L denotes the latticé N ZF andNAZ the semigroup generated B = {a; | i € E}.
For a single element € Z™ we denote

uf ={(u) ez |u;=u; for i eE, u;=0 for i ¢ E}.
Lemma2.1. LetU c L C Z™ be two lattices. Thep* L c U for somek € N if and only if
(L:p>®)=(U:p™).
Proof. Suppose thap*L c U for somek € N. From U c L we have(U : p>®) C
(L : p=™). Letu € (L : p*™). Then there exista € N such thatp"u € L, and the hy-
pothesis implies that"**u € U. Thereforeu € (U : p™). For the converse, suppose that

L=)"7_,Zu;. Then, sinca; € L, we have

ui € (L: p>)=(U:p>).
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Which means that there existse N such thatp®iu; € U, 1< i < r. By choosingk the
maximum of allk;, we havep* L c U. O

We give the definitions of semigroup gluing (respectivetgluing) for subsemigroups
of Z" & T and gluing (respectively-gluing) of lattices.

Definition 2.2. Let E1, E2 be two nonempty subsets ¢f, ..., m} such thatE; U E; =
{1,...,m} and E1 N E2 = . The semigrouNA is called the gluing (respectively the
p-gluing) of the semigroup®IA£t and NA%2 if there is a nonzer@a e NAf1 N NAF2
(respectivelya e (NAF1 NNAZE2) : p>)) such thaZa=ZAF1 N ZAE2.

Definition 2.3. Let E1, E2 be two nonempty subsets ¢f, ..., m} such thatE; U E; =
{1,...,m} andE1 N E2 = @. The latticeL is called the gluing (respectively-gluing) of
the latticesL g, and L, if there is a nonzera € L with ut = uft andu™ = —u®2, such
thatL = Lg, + Lg, + (u) (respectively

(L: poo) =((Ley,+Le,+(W): poo))‘

A set of elementsy, ..., a; of Z" @ T is called linearly independent if the space of re-
lations is {0}, that means the relatiop ;_,n;a; =0 in Z" & T, with n; € Z, implies
ni=---=ng=0.

Definition 2.4. We call a semigroup completely glued (respectivelglued) if it belongs

to C (respectivelyP), which is the smallest class of finitely generated, cancellative, abelian
semigroups with no invertible elements that includes all semigroups generated by linearly
independent elements and is closed under gluing (respectivelying).

In the sequel we prove some general results that relate the gluing of semigroups with the
gluing of lattices. We remind the reader tHatlenotes the kernel of the group homomor-
phism fromZ™ to Z" & T which send%; to a;, where{e; | i € {1, ..., m}} is the canonical
basis ofZ™. Thus with every semigrouplA C Z" & T we associate a latticé c Z™.

Also with every latticel. C Z™ we associate the semigroup generateé;by L in Z" /L,
wherei € {1, ..., m}. We define a lattice to beompletely gluedrespectivelyp-glued) if
and only if the associated semigrosgompletely glued (respectiveprglued).

Theorem 2.5. The semigrouNA is the p-gluing (respectively gluingof the semigroups
NAE1 and NA%2 if and only if the latticeL is the p-gluing (respectively gluinyjof the
latticesLg, andLg,.

Proof. Suppose thaW4 is the p-gluing of NAZ1 andNA%2, Let

ae ((NAF NNAF2): p*)
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such thaZa=ZA*1NZAE2, Thenp*a= Y icr, Uidi =Yg, (—uid;), for somek € N.
Thenu = (x;) € L with ut = uft andu~ = —uf2. Letl = (};) € (L : p>®). Thenp*l e L
for somes € N, which implies}_; ., ,, p*liai = 0. Consider the element

b=> plha=) (-p'lia)ezAF nzA*? =7a

icE1 ieEr

There exists & € Z such thab = pa, which means

Yo ha=p ) wa and > (—phay=p ) (-wa).

ieEy ieEy ieEy ieEy

Thereforely = (p***1; — pu)®1 € Ly, andly = (pF1; — pu)f2 € Li,, and pk+sl =
l1 +l2 4+ pu. Therefore

(L:p™) C((Lg,+ Le, + (W) : p™).

The other inclusion is obvious.
Suppose that

(L : poo) = ((LEl +LEg, + (U)) : Poo)

with ut = uft andu™ = —uf2. By virtue of Lemma 2.1, there exists are N such that
P'LC (Lg,+ L, +(u). Setc=Y"; .y uid =) ;cp, —wid. Thence NAEL N NAEz2,
Letb € ZAEr N Z A2, thenb = > ick, lidi =Y ;cp, —lia. Thisimplies that = (1)) € L,
thereforep®l =11 + 12+ pu for somely € Lg,, I2 € Lg, andu € Z. But then

po=>"p'la=Y (l1+uut)a = puc.

ieEq ieEq

Among the elements dZA1 N ZA2 choosea such thatu is positive and the smallest
possible, seft = ua. Then it follows thatZa = ZAf1 N ZAF2. Nowc e ZAF1 N ZAE2,
therefore there exists a natural numbesuch that = Aa. Then frompSa = usc we have
p*a= uara. Which implies that. = p* for somek € N, since the order dh is not finite,
as for every nonzero elementid. Therefore

ae ((NAF1NNAF2): p™).

The proof of the gluing part of the theorem follows from the proof of phgluing part by
settingp = 1. Actually the second part of the proof is much simplen

The next theorem shows how the gluing (respectiyelgluing) of lattices reflects on
the (respectively radical of the) lattice ideal. The first part of the theorem is a generalization
of the corresponding result by J.C. Rosales [15] for toric ideals.
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Theorem 2.6. Let E1, E2 be two nonempty subsets {df ..., m} such thatE1 U E> =
{1,...,m}andE1 N E> = . The latticeL is the gluing of the lattice g, and L, if and
only if

Ip =1, + 1., +(FW),

whereu is a nonzero element ih such thatut = uft andu— = —uf2. The latticeL is
the p-gluing of the latticed. g, and L, if and only if

rad/r) =rad(Ir,, + I, +(F(W)),

in characteristicp > 0, whereu is a nonzero element ih such thatu™ = uft andu™ =
E
—uf2,

Proof. We prove only the second claim, since the proof of the first is simpler and follows
from the proof of the second by putting= 1, even in positive characteristic, and taking
out the radicals. Suppose that the lattices the p-gluing of the latticesLg, and Lg,.
Then

(L:p™®)=((Lg, + Lg, + (W) : p™°).

By Theorem 2.5, the semigrodypA is the p-gluing of the semigroupblA£1 andNA%z2,
Then we know thaZa = ZA%1 N ZAE2, wherepFa = Dier Widi =Y o, (—uid). Let
F(v)elr.Thenve L andsoy ;. v;a; =0. Then

doviat+ Y via=) va+ Y v a.

icE1 icEy ieEq ieEy

Therefore

yi=) via-) va=) va-y vyaeczAtnza®=7a

ieEq ieEq ieEr ieEr

Thatmeansthat =t ZieEl Ui =1 ZieEZ(—uia,-), for somer € Z, which without loss
of generality we can suppose to be positive. Then, since the characterjstic@swe have

(F)"" = F(phv) =x?" —xpV" = (xp" D™ ottt w2
— (ka(vi)Ez — XPk(V+)E2+ru‘52)ka(v*)‘51
+ PFW) L pkh)F2 (xTuE1 _ XruEZ)
From which it is easy to see that

(F(v)) € rad(ILEl + 1y, + (FWw)).
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The reverse inclusion is obvious.

Suppose that rad,) = rad(ILE1 + iy, + (F(u))). Let U be the latticeLg, +
Lg, + (u); thenU C L and thus alsdy C I . Also note thatILE1 Cly, Iy, Cly
and(F(u)) c Iy. ThereforeILE1 + I, +(F(W) C Iy, which implies

rad(ILE1 1y, + (F(w)) crady).

Then from the hypothesis we have (&g) = rad(1,). It follows from [6, Corollary 2.2],
that in characteristic zerh, = I;, and soU = L, and in characteristip > 0 that/y. ;) =
I(1:pey @and so(U : p>°) = (L : p*°). Note thatin [6](L : p*) is denoted by Sg(L). O

3. Completeintersections

In this section we will give a series of results that will characterize complete intersection
lattice ideals and complete imsction semigroups. We also characterize lattice ideals that
are set-theoretic complete intersections on binomials.

Let L be a nonzero positive sublattice®f of rankr, and(L, p) be a partial character
on Z™. The height of the lattice ided}, , is equal tor, the rank of the lattice, see [6,
Corollary 2.2].

Remark 3.1. Any variablex; is a nonzero divisor fof; ,.

We gradeK[x1, ..., x,] by setting de@m/m(x,-) =a;, fori € {1,...,m}. Then the
7™/ L-degree of the monomial" is

dqum/L) (xu) =ujag+---+umdy € NA,

whereNA is the semigroup generated by The lattice ideall; , C K[x1, ..., xu] IS
7™/ L-homogeneous, since all generators &fe/ L-homogeneous. In particular, lete
7", A, B € K*, andG(v) = AXY" — Bx", thenG(v) € I, , impliesv € L. Since, if
v ¢ L, thenG(v) is notZ" /L-homogeneous. Then the monomi&lt must be in/; ,
sincel; , is Z™ /L-homogeneous. This is impossible since any variaplis a nonzero
divisor for I .

Lemma 3.2. Let1, J, K C R be three ideals in a noetherian ring such that/ c I and
rad(/) =radJ), then

radl + K) =radJ + K).
Proof. The inclusion rad/ + K) C rad/ + K) is clear. Now letg € rad/ + K). Then

g? e I + K and we can writg? = h1 + ho, with h1 € I, ho € K. Hence there existssuch
thath! € J, sog? = h! + h), with k), € K, which proves the assertionJ
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Lemma 3.3. Considerr vectorsu, ..., u, € Z", let L = Y";_; Zu; be the lattice gener-
ated by them. The following are equivalent

(1) Ip = (F(up),..., F(u,)) and F(uy),..., F(u,) is a regular sequence
(2) I.p = (Fy(ua), ..., Fp(u,)) and F,(uy), ..., F,(u,) is a regular sequence for any
partial character(L, p) onZ™.

Proof. First we remark that any variable is a nonzero divisor of;, this implies that

the sequencé’(uy), ..., F(u,),x1...x,, iS a regular sequence. Lék, p) be a partial
character orZ™. Then p(u) is a unit for everyu € L. Thus by [18, Theorem 2.7] the
sequence, (Uy), ..., Fy(U,), x1...x,, iS regular. Letu e L any nonzero vector, we can

write u =n1uUy + - - - + n,u,. From the identity

ut r ui+ n; r +y\ 7
£ - ()
i=1

i=1 i p(U;)

by clearing denominators we get an identitykiix1, . .., x,,] which shows that there ex-
ists a monomialP such thatP F, (u) belongs to(F,(uy), ..., Fy(u,)). But F,(uy), ...,
Fy(Uu,), x1...x5, is a regular sequence which implies tiigiu) e (F,(uy), ..., Fy(u,)),
thereforel; , = (F,(uy), ..., Fy(u,)).

The proof of the other implication follows from applyirig) to the trivial character. O

Corollary 3.4. For any lattice ideall, , the fact thatl; , is a complete intersection is
independent from the character

Definition 3.5 [10]. A matrix M with coefficients inZ is called mixed if every row has
a positive and a negative entiM is called dominating if it does not contain any square
mixed submatrix.

We also define the empty matrix (0d) to be mixed dominating.

We denote byM (uy, ..., u,) ther x m matrix whose rows are the vectaus, ..., u,
of 7.

Theorem 3.6. Let L be a nonzero positive sublattice Bf* of rankr, and (L, p) be a
partial character onZ™. Consider vectorsus, ..., u, € L. The following are equivalent

(1) radly ,) =radF,(uy),..., Fy(U,));

(2) o the matrixM(ug, ..., u,) is mixed dominating,
e in characteristicO we have thal. = ) ";_, Zu; and in characteristip > 0,

(L:p°°)=<§Zui:p°°).
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Proof. (1) = (2) SinceL C Z™ is a positive sublattice, the matri¥ is mixed. Now we
prove thatM is dominating, i.e., no square submatrixMfis mixed. Assume thaV is a
mixeds x s submatrix ofM, with s > 1 and suppose thatis maximal with respect to this
property. Then up to permutations of the rows and of the variables we may assur¥e that
consists of the first lines and the first columns, so that we can write

N B
w2 )
From Lemma 3.2 we have
rad(/, + (x1,...,x0)) =rad(F(u1), ..., F(Us), X1, ..., Xs).
SinceN is mixed,
(F(Ul), RN F(US)) C (-xlv RN xS)
so in fact we have
rad(I + (x1,...,x5)) =radF (Us41), ..., F(Uy), X1, ..., Xx).

On the other hand;; is not a zero divisor of . , therefore heighitad( 7, + (x1, ..., x5))) >
r + 1, but the height of ra@d (Us+1), ..., F(U,), x1, ..., Xs) iS at mostr. This is a contra-
diction, thereforeM is mixed dominating.

SinceM (uy, ..., u,) is mixed dominating, by Fischer—Shapiro [10, Theorem 2.9], we
getthat the idealF (uy), ..., F(u,)) is equal to the lattice idedl;, whereU = Y";_; Zu;.

By Lemma 3.3, this implie$F,(u1), ..., F,(u,)) = Iy, ,. Now by hypothesis there exists
k such that

F,(0” € (F ), ..., Fyu,))

for anyv e L. (L, p) is a partial character o” thereforep(pfv) = (p(v))l’k. If the
characteristic oK is equal top, this implies

Fo()” = F,(pV) € (Fo(ua), ..., Fp(U,) = Iy,

and thenp*v e U, sincely,, is Z™ /U-homogeneous. Therefo( : p>°) = (U : p™). If
the characteristic oK is zero,ly , is a radical ideal, see Eisenbud—-Sturmfels [6, Corol-
lary 2.2], then

F,0)?" € (Fy(up), ..., Fo(u) = Iy,

implies F,(v) € Iy, thereforev e U andL = U.
(2) = (1) SinceM (us, ..., u,) is mixed dominating, by Fischer—Shapiro [10, Theo-
rem 2.9], we ge({F(Uy), ..., F(u,)) = Iy and by Lemma 3.3 this implie&, (uy), ...,
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F,(u,)) = Iy ,. If the characteristic oK is zero we havel =L, sol., =1y, =
(Fy(u), ..., Fy(u,)). If the characteristic oK is p positive, for any € L, we have

k
Fy(W = F,(p"V) €Iy, = (FU1)p, ..., F(U,)))
and then/y, , C radIy,,) =rad(F,(uy), ..., Fy(u,)). This completes the proof.0

Remark 3.7. By Fischer—Shapiro [10, Corollary 2.8], if the matik(uy, . . ., u,) is mixed
dominating, then the vectots, ..., u, are linearly independent.

Corollary 3.8. For any lattice ideall; , the fact thatl; , is a set-theoretical complete
intersection on binomials is independent from the charagteMoreover, ifrad(/;) =
rad F(uy),..., F(u,)), then for any charactep,

rad. ) =rad(F,(ua), ..., F,(U,)).
The proof follows from Theorem 3.6, since condition (2) is independent of the character.

Theorem 3.9. Let L be a nonzero positive sublattice Bf* of rankr, and (L, p) be a
partial character onZ™. Consider vectorsuy, ..., U, € L, the following are equivalent

(1) IL.p = (Fp(up), ..., Fp(uy)).
(2) o The matrixM (us, ..., u,) is mixed dominating,
o L= Z;:l Zu; .

The proof follows from the proof of Theorem 3.6 by taking out the radicals and putting
p =1 even in positive characteristic. Theorem 3m@@acterizes compte intersection lat-
tice ideals: a lattice idedl; , is a complete intersection if and only if the lattitehas a
basisus, ..., u, such that the matri®Z (us, ..., u,) is mixed dominating.

Corollary 3.10. Let L be a nonzero positive sublattice @f* of rank », and (L, p)
be a partial character orZ™. If the characteristic ofK is zero, we haveadI, ,) =
rad F,(uy), ..., Fy(uy)) ifand only if I , = (F,(uy), ..., Fy(U,)).

The proof of the corollary follows from the proof of Theorem 3.6. Corollary 3.10 states
thatin zero characteristic a lattice ideal is a set-theoretic complete intersection on binomials
if and only if it is a complete intersection, see also [8, Theorem 2.1].

The aim of the next theorems is to prove Theorems 3.15 and 3.16, which give an exact
characterization of complete intersection lattice ideals and complete intersection semi-
groups. Lattices that correspond to lattice ideladd tire set-theoretic omplete intersection
on binomials are also characterized.

We recall the following decomposition theorem of K. Fischer, W. Morris, and J. Shapiro,
for mixed dominating matrices (see [11, Theorem 2.2]) whose claim we adjust to our no-
tation.



M. Morales, A. Thoma / Journal of Algebra 284 (2005) 755-770 765

Theorem 3.11. Let M (uy, ..., u,) be a mixed dominating x m matrix withm > r > 0.
Then there exisky, E> disjoint nonempty subsets{df, ..., m}with E{UE> = {1, ..., m},
and disjoint subsetS;, S> of {1,...,r} with S US> ={1,...,r} — {q} for someg, such
that the matrices ({u; | i € S1}), M({u; | i € S»}) are mixed dominating, whe@,)fi =
u; for everyi € S;, j € {1,2} and (u,) "t = uf, (uy)*2 = —u .

Lemma 3.12. The notation being that of Theore3nl1we have forj € {1, 2},

j iESj
and the latticelU = Y ";_; Zu; is the gluing of the lattice&/g,, U, .

Proof. Without loss of generality we takg = 1. Recall thatLg, = L N Z*1, and
since (u;)f1 = u; for everyi € S1, we conclude thaEieS1 Zu; C (Yi_1Zu;)E,. Let
ue (Xl_1Zu)g, C Y i_y Zu;. Thenu = uft and

u= Z)\,’U,’ + ZX,‘U,‘ + AgUq.

ieSy €Sy

From which we have that

uft =3 "t + > gl

€Sy €Sy

But then

u= Zkiui +aquy

ieSy

The last equality implies that the vectmyuj]r belongs to the positive latticg";_, Zu;,
which is impossible except K, = 0. Sou= Ziesl Aiu;. We conclude that) ;_; Zu;) g,

=Y ics, Zu;. Thereforel/ = Ug, + Ur, + (uq), where(uy)®t = uf, (up)®2=—-u_ . O
Theorem 3.13. Let K be a field of positive characteristip. The lattice ideall; , C
Klx1,...,xp] is set-theoretic complete intersection on binomials if and only if the lat-
tice L is the p-gluing of the two latticed. p, and L g, and both lattice ideals, ; ., I1;,.p

are set-theoretic complete intersections on binomials.

Proof. Suppose that rad; ,) =rad F(uy), ..., F(u,)). Then Theorem 3.6 gives us that
the matrixM(us, ..., u,) is mixed dominating. Therefore there exist, E2, S1, S» as
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provided in Theorem 3.11. By virtue of Lemma 3.12 the lattice= ) ._; Zu; is the
gluing of the latticed/g,, Ug,. Now U C L and from Theorem 3.6 we have

therefore by Lemma 2.1 there exists a positive intédgsuch thatp*L c U = Ug, +
Uk, + (u). ButUg, C Lg, andUg, C Lg, so thatp*L  Lg, + Lg, + (u,). Note also
thatLg, + Lg, + (uy) C L. Therefore, by Lemma 2.1, we have that

(L:p™)=(Lg, +Lg, + (Ug) : p™°).

Which means thak is the p-gluing of Lg, andLg,.
Note also that

(Le;:p™)=(L:p®) g, =(U:p%)p, =(Ug, : p%),

for j € {1, 2}. By Remark 3.7, the vectots, . . ., u, are linearly independent and by Theo-
rem 3.11 the matrice® ({u; | i € S;}) are mixed dominating, fof € {1, 2}. Therefore, by
Theorem 3.6 again, we concludethat(raq/) =rad(F(u;) | i € §;),forj e {1,2}. Recall
that heighULEj,p) = rank(ziesj Zu;) = 1S;]|, for j € {1, 2}, therefore botHLEl,p, Iig,.p
are set-theoretic complete intersections on binomials.

The proof of the converse implication follows from Theorem 2.6 and the remark
that for the lattice p-) gluing for positive lattices we have raflk) = rankLg,) +
rankLg,) +1. O

Notice that by Corollary 3.10, in the zero characteristic case, lattice ideals that are bi-
nomial set theoretic complete intersection are complete intersections. Therefore they are
characterized also by the next theorem.

Theorem 3.14. The lattice ideall; , C K[x1, ..., x,] iS @ complete intersection if and
only if the latticeL is the gluing of the two latticed g, and Lg, and both lattice ideals
Irg 00 ILg,.p @re complete intersections.

Proof. The proof follows the lines of the proof of Theorem 3.13 by taking out the radicals
and puttingp = 1 even in positive characteristic.o

The next theorem is the main result of the article and characterizes all lattice ideals
that are complete intersections and also all lattice ideals that are set-theoretic complete
intersections on binomials, in all characteristics.

Theorem 3.15. Let K be a field of any characteristic. The lattice iddal , C K[x1, ...,
xm]is a complete intersection if and only if the lattitas completely glued.
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In the characteristic zero cageespectively positive characteristic p casthe lattice
ideal I , is a set-theoretic complete intersection on binomials if and only if the laitice
is completely gluedrespectively completely-glued).

Proof. The proof follows by induction on the rank and is based on Theorems 3.13,
3.14. Note that if a lattice has rank zero then the elements of the associated semigroup are
linearly independent and therefore the lattice is completely (respectivglylued and of
course a complete intersectiono

The property for a lattice ideal to be a complete intersection does not depend on the
field, but only on the latticd c Z™. Therefore, translating Theorem 3.15 for semigroups,
we have:

Theorem 3.16. A finitely generated, cancellative, abelian semigroup with no invertible
elements is a complete intersectiéand only if it is completely glued.

Theorem 3.16 restricted to affine semigroups gives an exact characterization of com-
plete intersection affine semigroust affine semigroup is a complete intersection if and
only if it is completely gluedAn affine semigroup isompletely gluedf it belongs to the
smallest class of affine semigroups that includes all free affine semigroups and is closed
under gluing.

Example 3.17. The results of this section help us to provide examples of lattice ideals
that are complete intersections or set-theoretic complete intersections on binomials. Any
mixed dominating integer matrid (ug, ..., u,) gives a completely glued lattice, the
L=)"7_,Zu;, and a complete intersection lattice ideal, e, in K[x1, ..., x,,], where
K is any field and(L, p) a partial character of™. Also the semigrouge; + L | i €
{1,...,m}y C Z™/L is completely glued. Considering a lattiéé such that(L’ : p™) =
(L : p*) for some prime numbey, the lattice ideal;: , in K[x1, ..., x,] is set-theoretic
complete intersection on binomials, whekds a field of characteristip.

Mixed dominating matrices can be constructed easily.Metand M2 be mixed domi-
nating matrices of sizeg1 x ny andmy x np with mq > 0 andm» > 0. Letu™ e N"* and
u~ € N"2 be any two vectors. Then the matrix

M1 0
( 0 Mo >
ut  —u~

is mixed dominating. To start with, we can consider both matrides M> to be empty.
Subsequently we use already constructed mixed dominating matrices to construct new
ones. Actually the decomposition theorem, see Theorem 3.11 or [11, Theorem 2.2], of
mixed dominating matrices says that all mikdominating matrices can be taken in this
way.
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For example, take a#f; the 1x 3 mixed dominating matrix1 3 —4), M> the
empty Ox 1 matrix,u™ = (3, 1, 0) andu~ = (4). Then the matrix

1 3 -4 0
(3 1 0 —4)
is mixed dominating. Therefore the lattide= Z(1, 3, —4,0) + Z(3, 1,0, —4) is com-
pletely glued and the lattice ideal , is a complete intersection for any charagteMhe
associated semigroup of the lattiees isomorphic to the semigroup generated4y0, 0),
(0,4, 0), (1,3,0) and(3,1, 1) in Z2 & Z4. Which is completely glued.

Let L’ =7(1,3,—4,0) + Z(0, 2, —3,1). L' is the associated lattice of the affine semi-
group generated b4, 0), (0, 4), (1, 3) and(3, 1) in Z2. Which is not a complete inter-
section affine semigroup. Therefore there is no basgjsi of L’ such that the matrix
M (u1, Uu2) is mixed dominating. Notice thatl’ : 2°°) = (L : 2*°), since 4.’ c L C L'.

This implies that in characteristic 2 the two idedjs ,, I, have the same radical. There-
fore I, , is set-theoretic complete intersection on binomials in characteristic 2.

4. Extremeraysof a completeinter section semigroup cone

Let ¢ be the projection homomorphism froft @ T to Z" and denotep(b) = b for
beZ'®T.LetA={5|1<i<m}). We associate with the semigroBjpA (or with
the lattice ideall; ,) the rational polyhedral cone = posQ(Z) ={ha1+ -+ Lpam |
[; € Q@ and [; > 0}. A coneo is strongly convexf o N —o = {0}. The condition that the
lattice L is positive is equivalent with the condition that the cenis strongly convex.

Aray R in the cone ofA is anextreme rayof the cone ofA, if given any vectou € R,
positive integerg, c1, . .., ¢; and elements/q, ..., w; of NA such that

HU=ciW1 + -- -+ c;Wy,

thenw; e R forall j =1,...,¢. In[11] it was shown that for an-dimensional complete
intersection affine semigroup with> 2, its cone contains no more than 2 2 extreme

rays. The corresponding statement is true for semigroug§ ef T or equivalently lattice
ideals which are complete intersections. But also for lattice ideals that are set theoretic
complete intersections on binomials.

Theorem 4.1. LetNA be an n-dimensional semigroup®f & T which is completely glued
or completelyp-glued,n > 2. Then the cone ol contains no more tha@n — 2 extreme
rays.

Proof. The proof almost follows the lines of the proof of [11, Corollary 2.4]. Dt be

a semigroup oZ" & T which is completely glued or completeprglued. Lety : Z" —
7" @ T be the group homomorphism such thate;) = a; € Z" & T, whereey, ..., e,

is the canonical basis &™. Let L be the lattice keary) of rankr = m — n. We will use
induction onr. If r = 0, thenm = n. Hence the vectors iA are linearly independent and
the cone has exactly extreme rays. Since > 2, we haver < 2n — 2.
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If » > 1, we can writeA as the disjoint union ofAf1, A%2 such thatZa = ZAf1 N
Z.AF2 and there is a multiple of in NA®1 N NAf2, for some disjoint subsets;, E» of
{1,...,m}. Then we havée ZA"* NZA"2. Letb e ZA™* N ZA™. Thengb € ZAF1 N
7Z.AF2 = 7, whereg is the order of the finite group. Thereforegb = Aa and sogh = Aa.
ThusZA"* N 74" is one-dimensional and ifis any generator, thea= C. We conclude

that a multiple ofc belongs taNA"* N NA™2.

Letny, np be the dimensions ™A1, NAE2, respectively. Theny +np =n+1. Letr;
be the rank of the latticBg,, i € {1, 2}. Itfollows fromny+no =n+1thatri+r=r—1.
Therefore each; is less thanr. Each extreme ray of the cone afis an extreme ray for

either the cone ofi °* or 272, Therefore, the number of extreme rays of the cona &

bounded by the sum of the number of extreme rays in the conéS'adindA’™2. Hence as
long asn; > 2, the inductive hypothesis gives that the number of extreme rays of the cone
of Aisbounded by 21 — 2+ 2ny — 2 =2n — 2. Butif 11y = 1 say, then since the two cones

of Al andZE2 intersect in a semiline, it follows that the coneZ)?1 is contained in the

cone ofA“2. Therefore the cone df is the same with the cone @2. But r, is smaller
thanr, therefore the inductive hypothesis gives the resuitt.
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