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Abstract

In this paper we completely characterize lattice ideals that are complete intersections or
lently complete intersections finitely generated semigroups ofZn ⊕ T with no invertible elements
whereT is a finite abelian group. We also characterize the lattice ideals that are set-theoretic com
plete intersections on binomials.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let S be a finitely generated, cancellative, abelian semigroup with no invertible
ments.S can be considered as a subsemigroup of a finitely generated abelian groupZn ⊕T

such thatS ∩ (−S) = {0}, whereT is a torsion group. In the case that the torsion grou
trivial the semigroupS is calledaffine semigroup. Let A = {ai | i ∈ {1, . . . ,m}} be a set of
generators for the semigroupS, thusS = NA, whereN is the set of nonnegative intege
Let L denote the kernel of the group homomorphism fromZm to Zn ⊕ T which sendsei
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to ai , where{ei | i ∈ {1, . . . ,m}} is the canonical basis ofZm. L is a sublattice ofZm, the
lattice idealassociated toL is the binomial ideal

IL = ({
xα+ − xα− ∣∣ α = α+ − α− ∈ L

}) ⊂ K[x1, . . . , xm],

whereK is a field of any characteristic. The semigroupS is a complete intersection
and only if IL ⊂ Q[x1, . . . , xm] is a complete intersection, which means that the mini
number of generators ofIL is equal to the height ofIL.

The problem of determining complete intersection semigroups or equivalently com
intersection lattice ideals has a long history.It was solved for affine semigroups gradua
in a series of papers by J. Herzog [12], Ch. Delorme [5], R.P. Stanley [19], M.N. Is
[13], K. Watanabe [21], H. Nakajima [14], U. Schäfer [17], J.C. Rosales, and P.A. Garc
Sanchez [16]. Finally, in 1997 K.G. Fischer, W. Morris, and J. Shapiro [11] characte
all complete intersections affine semigroups ofZn using mixed dominating matrices an
the notion of semigroup gluing introducedby J.C. Rosales [15]. Recently D. Dais a
M. Henk [4] used Nakajima’s classification to describe the precise form of the bino
equations which determine toric locally complete intersection singularities.

Another related problem that drew the attention of a number of authors over th
years was the generation of a lattice ideal by binomials up to radical [1–3,6–9]. In 20
K. Eto [8] characterized complete intersection finitely generated, abelian semigroup
no invertible elements or equivalently complete intersection lattice ideals as those t
set-theoretic complete intersection on binomials in characteristic zero. A generali
of the corresponding result for affine semigroups or equivalently toric varieties, w
was provided by M. Barile, M. Morales, and A. Thoma [2]. Note that a binomial ideI

is set-theoretic complete intersection on binomials if there existr = height(I) binomials
F1, . . . ,Fr such that rad(I) = rad(F1, . . . ,Fr ). Recently M. Barile and G. Lyubeznik [1
usedp-gluing of affine semigroups and étale cohomology to give a class of toric var
which are set-theoretic complete intersections only over fields of one positive chara
tic p.

The aim of this article is twofold. On the one hand, we give a complete charact
tion of all finitely generated, cancellative, abelian semigroups with no invertible elem
or equivalently lattice ideals that are complete intersections by introducing the notion
gluing lattices and extending the notion of semigroup gluing. On the other hand we
acterize all lattice ideals that are set-theoretic complete intersection on binomials
characteristic by extending the notion ofp-gluing. The characterization depends on
characteristic.

2. Semigroup and lattice gluing

A lattice is a finitely generated free abelian group. Apartial character(L,ρ) on Zm is
a homomorphismρ from a sublatticeL of Zm to the multiplicative groupK∗ = K − {0}.
Given a partial character(L,ρ) onZm, we define the ideal

IL,ρ := ({
xα+ − ρ(α)xα− ∣∣ α = α+ − α− ∈ L

}) ⊂ K[x1, . . . , xm]
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calledlattice ideal. Hereα+ ∈ Nm andα− ∈ Nm denote the positive and negative part ofα,
respectively, andxβ = x

b1
1 · · ·xbm

m for β = (b1, . . . , bm) ∈ Nm. We will denote byF(α) the

binomialxα+ −xα−
and byFρ(α) the binomialxα+ −ρ(α)xα−

. Lattice ideals are binomia
ideals. The theory of binomial ideals was developed by Eisenbud and Sturmfels
A prime lattice ideal is called atoric ideal, while the set of zeroes inKm is anaffine toric
variety in the sense of [20], since we do not require normality.

Let A = {ai | 1 � i � m} ⊂ Zn ⊕ T be such that the semigroupNA has no invertible
element. That means that although the groupZn ⊕ T has torsion elements, no nonze
element in the semigroupNA is a torsion element. This remark will be very useful in
sequel.

Letψ : Zm → Zn ⊕T be a group homomorphism such thatψ(ei ) = ai ∈ Zn ⊕T , where
e1, . . . , em is the canonical basis ofZm. We will denote byL the lattice ker(ψ). The fact
that the semigroupNA has no invertible element is equivalent with the fact that the la
L is positive, that isL ∩ Nm = {0}. This means that the lattice idealIL,ρ is homogeneou
with respect to some positive grading. In this case by the graded Nakayama’s lem
minimal systems of generators of the idealIL,ρ have the same cardinality.

For a latticeL and a prime numberp, let (L : p∞) be the lattice

{
u ∈ Zm

∣∣ pku ∈ L for some k ∈ N
}
.

For a semigroupS, (S : p∞) denotes the semigroup

{
b ∈ Zn ⊕ T

∣∣ pkb ∈ S for some k ∈ N
}
.

Let E ⊂ {1, . . . ,m}, for a setP ⊂ Z we denote by

PE := {
(p1, . . . , pm) ∈ Zm

∣∣ pi ∈ P for i ∈ E, pi = 0 for i /∈ E
}
.

LE denotes the latticeL ∩ ZE andNAE the semigroup generated byAE = {ai | i ∈ E}.
For a single elementu ∈ Zm we denote

uE = {(
u′

i

) ∈ Zm
∣∣ u′

i = ui for i ∈ E, u′
i = 0 for i /∈ E

}
.

Lemma 2.1. LetU ⊂ L ⊂ Zm be two lattices. ThenpkL ⊂ U for somek ∈ N if and only if

(
L : p∞) =(

U : p∞)
.

Proof. Suppose thatpkL ⊂ U for somek ∈ N. From U ⊂ L we have(U : p∞) ⊂
(L : p∞). Let u ∈ (L : p∞). Then there existsn ∈ N such thatpnu ∈ L, and the hy-
pothesis implies thatpn+ku ∈ U . Thereforeu ∈ (U : p∞). For the converse, suppose th
L = ∑r

i=1 Zui . Then, sinceui ∈ L, we have

ui ∈ (
L : p∞) = (

U : p∞)
.
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Which means that there existski ∈ N such thatpki ui ∈ U , 1� i � r. By choosingk the
maximum of allki , we havepkL ⊂ U . �

We give the definitions of semigroup gluing (respectivelyp-gluing) for subsemigroup
of Zn ⊕ T and gluing (respectivelyp-gluing) of lattices.

Definition 2.2. Let E1, E2 be two nonempty subsets of{1, . . . ,m} such thatE1 ∪ E2 =
{1, . . . ,m} and E1 ∩ E2 = ∅. The semigroupNA is called the gluing (respectively th
p-gluing) of the semigroupsNAE1 and NAE2 if there is a nonzeroa ∈ NAE1 ∩ NAE2

(respectivelya ∈ ((NAE1 ∩ NAE2) : p∞)) such thatZa = ZAE1 ∩ ZAE2.

Definition 2.3. Let E1, E2 be two nonempty subsets of{1, . . . ,m} such thatE1 ∪ E2 =
{1, . . . ,m} andE1 ∩ E2 = ∅. The latticeL is called the gluing (respectivelyp-gluing) of
the latticesLE1 andLE2 if there is a nonzerou ∈ L with u+ = uE1 andu− = −uE2, such
thatL = LE1 + LE2 + 〈u〉 (respectively

(
L : p∞) = ((

LE1 + LE2 + 〈u〉) : p∞))
.

A set of elementsa1, . . . ,as of Zn ⊕ T is called linearly independent if the space of
lations is {0}, that means the relation

∑s
i=1 niai = 0 in Zn ⊕ T , with ni ∈ Z, implies

n1 = · · · = ns = 0.

Definition 2.4. We call a semigroup completely glued (respectivelyp-glued) if it belongs
to C (respectivelyP ), which is the smallest class of finitely generated, cancellative, ab
semigroups with no invertible elements that includes all semigroups generated by li
independent elements and is closed under gluing (respectivelyp-gluing).

In the sequel we prove some general results that relate the gluing of semigroups w
gluing of lattices. We remind the reader thatL denotes the kernel of the group homom
phism fromZm to Zn ⊕T which sendsei to ai , where{ei | i ∈ {1, . . . ,m}} is the canonica
basis ofZm. Thus with every semigroupNA ⊂ Zn ⊕ T we associate a latticeL ⊂ Zm.
Also with every latticeL ⊂ Zm we associate the semigroup generated byei + L in Zm/L,
wherei ∈ {1, . . . ,m}. We define a lattice to becompletely glued(respectivelyp-glued) if
and only if the associated semigroupis completely glued (respectivelyp-glued).

Theorem 2.5. The semigroupNA is thep-gluing (respectively gluing) of the semigroups
NAE1 and NAE2 if and only if the latticeL is thep-gluing (respectively gluing) of the
latticesLE1 andLE2 .

Proof. Suppose thatNA is thep-gluing ofNAE1 andNAE2. Let

a ∈ ((
NAE1 ∩ NAE2

) : p∞)
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such thatZa = ZAE1 ∩ ZAE2. Thenpka = ∑
i∈E1

uiai = ∑
i∈E2

(−uiai ), for somek ∈ N.
Thenu = (ui) ∈ L with u+ = uE1 andu− = −uE2. Let l = (li) ∈ (L : p∞). Thenps l ∈ L

for somes ∈ N, which implies
∑

i∈{1,...,m} psliai = 0. Consider the element

b =
∑
i∈E1

ps liai =
∑
i∈E2

(−psliai

) ∈ ZAE1 ∩ ZAE2 = Za.

There exists aµ ∈ Z such thatb = µa, which means

∑
i∈E1

pk+s liai = µ
∑
i∈E1

uiai and
∑
i∈E2

(−pk+s liai ) = µ
∑
i∈E2

(−uiai

)
.

Thereforel1 = (pk+s li − µui)
E1 ∈ LE1 and l2 = (pk+s li − µui)

E2 ∈ LE2, andpk+s l =
l1 + l2 + µu. Therefore

(
L : p∞) ⊂ ((

LE1 + LE2 + 〈u〉) : p∞)
.

The other inclusion is obvious.
Suppose that

(
L : p∞) = ((

LE1 + LE2 + 〈u〉) : p∞)
with u+ = uE1 andu− = −uE2. By virtue of Lemma 2.1, there exists ans ∈ N such that
psL ⊂ (LE1 + LE2 + 〈u〉). Setc = ∑

i∈E1
uiai = ∑

i∈E2
−uiai . Thenc ∈ NAE1 ∩ NAE2.

Let b ∈ ZAE1 ∩ ZAE2, thenb = ∑
i∈E1

liai = ∑
i∈E2

−liai . This implies thatl = (li) ∈ L,
thereforeps l = l1 + l2 + µu for somel1 ∈ LE1, l2 ∈ LE2 andµ ∈ Z. But then

psb =
∑
i∈E1

psliai =
∑
i∈E1

(
l1 + µu+)

i
ai = µc.

Among the elements ofZAE1 ∩ ZAE2 choosea such thatµ is positive and the smalles
possible, setµ = µa. Then it follows thatZa = ZAE1 ∩ ZAE2. Now c ∈ ZAE1 ∩ ZAE2,
therefore there exists a natural numberλ such thatc = λa. Then frompsa = µac we have
psa = µaλa. Which implies thatλ = pk for somek ∈ N, since the order ofa is not finite,
as for every nonzero element inNA. Therefore

a ∈ ((
NAE1 ∩ NAE2

)
:p∞)

.

The proof of the gluing part of the theorem follows from the proof of thep-gluing part by
settingp = 1. Actually the second part of the proof is much simpler.�

The next theorem shows how the gluing (respectivelyp-gluing) of lattices reflects on
the (respectively radical of the) lattice ideal. The first part of the theorem is a generali
of the corresponding result by J.C. Rosales [15] for toric ideals.
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Theorem 2.6. Let E1, E2 be two nonempty subsets of{1, . . . ,m} such thatE1 ∪ E2 =
{1, . . . ,m} andE1 ∩ E2 = ∅. The latticeL is the gluing of the latticesLE1 andLE2 if and
only if

IL = ILE1
+ ILE2

+ 〈
F(u)

〉
,

whereu is a nonzero element inL such thatu+ = uE1 andu− = −uE2. The latticeL is
thep-gluing of the latticesLE1 andLE2 if and only if

rad(IL) = rad
(
ILE1

+ ILE2
+ 〈

F(u)
〉)

,

in characteristicp > 0, whereu is a nonzero element inL such thatu+ = uE1 andu− =
−uE2.

Proof. We prove only the second claim, since the proof of the first is simpler and fo
from the proof of the second by puttingp = 1, even in positive characteristic, and taki
out the radicals. Suppose that the latticeL is thep-gluing of the latticesLE1 andLE2.
Then

(
L : p∞) = ((

LE1 + LE2 + 〈u〉) : p∞)
.

By Theorem 2.5, the semigroupNA is thep-gluing of the semigroupsNAE1 andNAE2.
Then we know thatZa = ZAE1 ∩ ZAE2, wherepka = ∑

i∈E1
uiai = ∑

i∈E2
(−uiai ). Let

F(v) ∈ IL. Thenv ∈ L and so
∑m

i=1 viai = 0. Then

∑
i∈E1

v+
i ai +

∑
i∈E2

v+
i ai =

∑
i∈E1

v−
i ai +

∑
i∈E2

v−
i ai .

Therefore

γ :=
∑
i∈E1

v+
i ai −

∑
i∈E1

v−
i ai =

∑
i∈E2

v−
i ai −

∑
i∈E2

v+
i ai ∈ ZAE1 ∩ ZAE2 = Za.

That means thatγ = τ
∑

i∈E1
uiai = τ

∑
i∈E2

(−uiai ), for someτ ∈ Z, which without loss
of generality we can suppose to be positive. Then, since the characteristic isp > 0, we have

(
F(v)

)pk = F
(
pkv

) = xpkv+ − xpkv− = (
xpk(v+)

E1 − xpk(v−)
E1+τuE1 )xpk(v+)

E2

− (
xpk(v−)

E2 − xpk(v+)
E2+τuE2 )xpk(v−)

E1

+ xpk(v−)
E1+pk(v+)

E2 (
xτuE1 − xτuE2)

.

From which it is easy to see that

(
F(v)

) ∈ rad
(
ILE + ILE + 〈

F(u)
〉)
.

1 2



M. Morales, A. Thoma / Journal of Algebra 284 (2005) 755–770 761

ction
that

r

The reverse inclusion is obvious.
Suppose that rad(IL) = rad(ILE1

+ ILE2
+ 〈F(u)〉). Let U be the latticeLE1 +

LE2 + 〈u〉; then U ⊂ L and thus alsoIU ⊂ IL . Also note thatILE1
⊂ IU , ILE2

⊂ IU

and〈F(u)〉 ⊂ IU . ThereforeILE1
+ ILE2

+ 〈F(u)〉 ⊂ IU , which implies

rad
(
ILE1

+ ILE2
+ 〈

F(u)
〉) ⊂ rad(IU ).

Then from the hypothesis we have rad(IU ) = rad(IL). It follows from [6, Corollary 2.2],
that in characteristic zeroIU = IL and soU = L, and in characteristicp > 0 thatI(U :p∞) =
I(L:p∞) and so(U : p∞) = (L : p∞). Note that in [6](L : p∞) is denoted by Satp(L). �

3. Complete intersections

In this section we will give a series of results that will characterize complete interse
lattice ideals and complete intersection semigroups. We also characterize lattice ideals
are set-theoretic complete intersections on binomials.

Let L be a nonzero positive sublattice ofZm of rankr, and(L,ρ) be a partial characte
on Zm. The height of the lattice idealIL,ρ is equal tor, the rank of the latticeL, see [6,
Corollary 2.2].

Remark 3.1. Any variablexi is a nonzero divisor forIL,ρ .

We gradeK[x1, . . . , xm] by setting deg(Zm/L)(xi) = ai , for i ∈ {1, . . . ,m}. Then the
Zm/L-degree of the monomialxu is

deg(Zm/L)

(
xu) = u1a1 + · · · + umam ∈ NA,

whereNA is the semigroup generated byA. The lattice idealIL,ρ ⊂ K[x1, . . . , xm] is
Zm/L-homogeneous, since all generators areZm/L-homogeneous. In particular, letv ∈
Zm, A,B ∈ K∗, andG(v) = Axv+ − Bxv−

, thenG(v) ∈ IL,ρ implies v ∈ L. Since, if
v /∈ L, thenG(v) is not Zm/L-homogeneous. Then the monomialxv+ must be inIL,ρ

sinceIL,ρ is Zm/L-homogeneous. This is impossible since any variablexi is a nonzero
divisor for IL,ρ .

Lemma 3.2. Let I, J,K ⊂ R be three ideals in a noetherian ringR such thatJ ⊂ I and
rad(I) = rad(J ), then

rad(I + K) = rad(J + K).

Proof. The inclusion rad(J + K) ⊂ rad(I + K) is clear. Now letg ∈ rad(I + K). Then
gq ∈ I + K and we can writegq = h1 + h2, with h1 ∈ I,h2 ∈ K. Hence there existsl such
thathl

1 ∈ J , sogql = hl
1 + h′

2 with h′
2 ∈ K, which proves the assertion.�
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Lemma 3.3. Considerr vectorsu1, . . . ,ur ∈ Zm, let L = ∑r
i=1 Zui be the lattice gener

ated by them. The following are equivalent:

(1) IL = (F (u1), . . . ,F (ur )) andF(u1), . . . ,F (ur ) is a regular sequence;
(2) IL,ρ = (Fρ(u1), . . . ,Fρ(ur )) and Fρ(u1), . . . ,Fρ(ur ) is a regular sequence for an

partial character(L,ρ) on Zm.

Proof. First we remark that any variablexi is a nonzero divisor ofIL, this implies that
the sequenceF(u1), . . . ,F (ur ), x1 . . . xm, is a regular sequence. Let(L,ρ) be a partial
character onZm. Thenρ(u) is a unit for everyu ∈ L. Thus by [18, Theorem 2.7] th
sequenceFρ(u1), . . . ,Fρ(ur ), x1 . . . xm, is regular. Letu ∈ L any nonzero vector, we ca
write u = n1u1 + · · · + nrur . From the identity

xu+

xu− − ρ(u) =
r∏

i=1

(
xu+

i

xu−
i

)ni

−
r∏

i=1

(
ρ(u+

i )

ρ(u−
i )

)ni

by clearing denominators we get an identity inK[x1, . . . , xm] which shows that there ex
ists a monomialP such thatPFρ(u) belongs to(Fρ(u1), . . . ,Fρ(ur )). But Fρ(u1), . . . ,

Fρ(ur ), x1 . . . xm, is a regular sequence which implies thatFρ(u) ∈ (Fρ(u1), . . . ,Fρ(ur )),
thereforeIL,ρ = (Fρ(u1), . . . ,Fρ(ur )).

The proof of the other implication follows from applying(2) to the trivial character. �
Corollary 3.4. For any lattice idealIL,ρ the fact thatIL,ρ is a complete intersection i
independent from the characterρ.

Definition 3.5 [10]. A matrix M with coefficients inZ is called mixed if every row ha
a positive and a negative entry.M is called dominating if it does not contain any squ
mixed submatrix.

We also define the empty matrix (0× d) to be mixed dominating.

We denote byM(u1, . . . ,ur ) the r × m matrix whose rows are the vectorsu1, . . . ,ur

of Zm.

Theorem 3.6. Let L be a nonzero positive sublattice ofZm of rank r, and (L,ρ) be a
partial character onZm. Considerr vectorsu1, . . . ,ur ∈ L. The following are equivalen:

(1) rad(IL,ρ) = rad(Fρ(u1), . . . ,Fρ(ur ));
(2) • the matrixM(u1, . . . ,ur ) is mixed dominating,

• in characteristic0 we have thatL = ∑r
i=1 Zui and in characteristicp > 0,

(
L : p∞) =

(
r∑

i=1

Zui : p∞
)

.
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Proof. (1) ⇒ (2) SinceL ⊂ Zm is a positive sublattice, the matrixM is mixed. Now we
prove thatM is dominating, i.e., no square submatrix ofM is mixed. Assume thatN is a
mixeds × s submatrix ofM, with s � 1 and suppose thats is maximal with respect to thi
property. Then up to permutations of the rows and of the variables we may assumeN

consists of the firsts lines and the firsts columns, so that we can write

M =
(

N B

C D

)
.

From Lemma 3.2 we have

rad
(
IL + (x1, . . . , xs)

) = rad
(
F(u1), . . . ,F (ur ), x1, . . . , xs

)
.

SinceN is mixed,

(
F(u1), . . . ,F (us)

) ⊂ (x1, . . . , xs)

so in fact we have

rad
(
IL + (x1, . . . , xs)

) = rad
(
F(us+1), . . . ,F (ur ), x1, . . . , xs

)
.

On the other hand,x1 is not a zero divisor ofIL, therefore height(rad(IL + (x1, . . . , xs))) �
r + 1, but the height of rad(F (us+1), . . . ,F (ur ), x1, . . . , xs) is at mostr. This is a contra-
diction, thereforeM is mixed dominating.

SinceM(u1, . . . ,ur ) is mixed dominating, by Fischer–Shapiro [10, Theorem 2.9],
get that the ideal(F (u1), . . . ,F (ur )) is equal to the lattice idealIU , whereU = ∑r

i=1 Zui .
By Lemma 3.3, this implies(Fρ(u1), . . . ,Fρ(ur )) = IU,ρ . Now by hypothesis there exis
k such that

Fρ(v)p
k ∈ (

Fρ(u1), . . . ,Fρ(ur )
)

for any v ∈ L. (L,ρ) is a partial character onZm thereforeρ(pkv) = (ρ(v))p
k
. If the

characteristic ofK is equal top, this implies

Fρ(v)p
k = Fρ

(
pkv

) ∈ (
Fρ(u1), . . . ,Fρ(ur )

) = IU,ρ

and thenpkv ∈ U , sinceIU,ρ is Zm/U -homogeneous. Therefore(L : p∞) = (U : p∞). If
the characteristic ofK is zero,IU,ρ is a radical ideal, see Eisenbud–Sturmfels [6, Co
lary 2.2], then

Fρ(v)p
k ∈ (

Fρ(u1), . . . ,Fρ(ur )
) = IU,ρ

impliesFρ(v) ∈ IU,ρ , thereforev ∈ U andL = U .
(2) ⇒ (1) SinceM(u1, . . . ,ur ) is mixed dominating, by Fischer–Shapiro [10, The

rem 2.9], we get(F (u1), . . . ,F (ur )) = IU and by Lemma 3.3 this implies(Fρ(u1), . . . ,
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Fρ(ur )) = IU,ρ . If the characteristic ofK is zero we haveU = L, so IL,ρ = IU,ρ =
(Fρ(u1), . . . ,Fρ(ur )). If the characteristic ofK is p positive, for anyv ∈ L, we have

Fρ(v)p
k = Fρ

(
pkv

) ∈ IU,ρ = (
F(u1)ρ, . . . ,F (ur )ρ

)
and thenIL,ρ ⊂ rad(IU,ρ) = rad(Fρ(u1), . . . ,Fρ(ur )). This completes the proof.�
Remark 3.7. By Fischer–Shapiro [10, Corollary 2.8], if the matrixM(u1, . . . ,ur ) is mixed
dominating, then the vectorsu1, . . . ,ur are linearly independent.

Corollary 3.8. For any lattice idealIL,ρ the fact thatIL,ρ is a set-theoretical complet
intersection on binomials is independent from the characterρ. Moreover, if rad(IL) =
rad(F (u1), . . . ,F (ur )), then for any characterρ,

rad(IL,ρ) = rad
(
Fρ(u1), . . . ,Fρ(ur )

)
.

The proof follows from Theorem 3.6, since condition (2) is independent of the char

Theorem 3.9. Let L be a nonzero positive sublattice ofZm of rank r, and (L,ρ) be a
partial character onZm. Considerr vectorsu1, . . . ,ur ∈ L, the following are equivalent:

(1) IL,ρ = (Fρ(u1), . . . ,Fρ(ur )).
(2) • The matrixM(u1, . . . ,ur ) is mixed dominating,

• L = ∑r
i=1 Zui .

The proof follows from the proof of Theorem 3.6 by taking out the radicals and pu
p = 1 even in positive characteristic. Theorem 3.9 characterizes complete intersection lat-
tice ideals: a lattice idealIL,ρ is a complete intersection if and only if the latticeL has a
basisu1, . . . ,ur such that the matrixM(u1, . . . ,ur ) is mixed dominating.

Corollary 3.10. Let L be a nonzero positive sublattice ofZm of rank r, and (L,ρ)

be a partial character onZm. If the characteristic ofK is zero, we haverad(IL,ρ) =
rad(Fρ(u1), . . . ,Fρ(ur )) if and only ifIL,ρ = (Fρ(u1), . . . ,Fρ(ur )).

The proof of the corollary follows from the proof of Theorem 3.6. Corollary 3.10 st
that in zero characteristic a lattice ideal is a set-theoretic complete intersection on bin
if and only if it is a complete intersection, see also [8, Theorem 2.1].

The aim of the next theorems is to prove Theorems 3.15 and 3.16, which give an
characterization of complete intersection lattice ideals and complete intersection
groups. Lattices that correspond to lattice ideals that are set-theoretic complete intersection
on binomials are also characterized.

We recall the following decomposition theorem of K. Fischer, W. Morris, and J. Sha
for mixed dominating matrices (see [11, Theorem 2.2]) whose claim we adjust to ou
tation.
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Theorem 3.11. Let M(u1, . . . ,ur ) be a mixed dominatingr × m matrix withm � r > 0.

Then there existE1, E2 disjoint nonempty subsets of{1, . . . ,m} with E1∪E2 = {1, . . . ,m},
and disjoint subsetsS1, S2 of {1, . . . , r} with S1 ∪ S2 = {1, . . . , r} − {q} for someq , such
that the matricesM({ui | i ∈ S1}), M({ui | i ∈ S2}) are mixed dominating, where(ui )

Ej =
ui for everyi ∈ Sj , j ∈ {1,2} and(uq)E1 = u+

q , (uq)E2 = −u−
q .

Lemma 3.12. The notation being that of Theorem3.11we have forj ∈ {1,2},
(

r∑
i=1

Zui

)
Ej

=
∑
i∈Sj

Zui

and the latticeU = ∑r
i=1 Zui is the gluing of the latticesUE1,UE2.

Proof. Without loss of generality we takej = 1. Recall thatLE1 = L ∩ ZE1, and
since (ui )

E1 = ui for every i ∈ S1, we conclude that
∑

i∈S1
Zui ⊂ (

∑r
i=1 Zui )E1. Let

u ∈ (
∑r

i=1 Zui )E1 ⊂ ∑r
i=1 Zui . Thenu = uE1 and

u =
∑
i∈S1

λiui +
∑
i∈S2

λiui + λquq .

From which we have that

uE1 =
∑
i∈S1

λiu
E1
i +

∑
i∈S2

λiu
E1
i + λquE1

q .

But then

u =
∑
i∈S1

λiui + λqu+
q .

The last equality implies that the vectorλqu+
q belongs to the positive lattice

∑r
i=1 Zui ,

which is impossible except ifλq = 0. Sou = ∑
i∈S1

λiui . We conclude that(
∑r

i=1 Zui )E1

= ∑
i∈S1

Zui . Therefore,U = UE1 +UE2 +〈uq〉, where(uq )E1 = u+
q , (uq)E2 = −u−

q . �
Theorem 3.13. Let K be a field of positive characteristicp. The lattice idealIL,ρ ⊂
K[x1, . . . , xm] is set-theoretic complete intersection on binomials if and only if the
ticeL is thep-gluing of the two latticesLE1 andLE2 and both lattice idealsILE1,ρ, ILE2 ,ρ

are set-theoretic complete intersections on binomials.

Proof. Suppose that rad(IL,ρ) = rad(F (u1), . . . ,F (ur )). Then Theorem 3.6 gives us th
the matrixM(u1, . . . ,ur ) is mixed dominating. Therefore there existE1, E2, S1, S2 as
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provided in Theorem 3.11. By virtue of Lemma 3.12 the latticeU = ∑r
i=1 Zui is the

gluing of the latticesUE1,UE2. Now U ⊂ L and from Theorem 3.6 we have

(
L : p∞) =

(
r∑

i=1

Zui : p∞
)

,

therefore by Lemma 2.1 there exists a positive integerk such thatpkL ⊂ U = UE1 +
UE2 + 〈uq 〉. But UE1 ⊂ LE1 andUE2 ⊂ LE2 so thatpkL ⊂ LE1 + LE2 + 〈uq 〉. Note also
thatLE1 + LE2 + 〈uq 〉 ⊂ L. Therefore, by Lemma 2.1, we have that

(
L : p∞) = (

LE1 + LE2 + 〈uq 〉 : p∞)
.

Which means thatL is thep-gluing ofLE1 andLE2.
Note also that

(
LEj : p∞) = (

L : p∞)
Ej

= (
U : p∞)

Ej
= (

UEj : p∞)
,

for j ∈ {1,2}. By Remark 3.7, the vectorsu1, . . . ,ur are linearly independent and by The
rem 3.11 the matricesM({ui | i ∈ Sj }) are mixed dominating, forj ∈ {1,2}. Therefore, by
Theorem 3.6 again, we conclude that rad(ILEj

) = rad(F (ui ) | i ∈ Sj ), for j ∈ {1,2}. Recall

that height(ILEj
,ρ) = rank(

∑
i∈Sj

Zui ) = |Sj |, for j ∈ {1,2}, therefore bothILE1,ρ, ILE2 ,ρ

are set-theoretic complete intersections on binomials.
The proof of the converse implication follows from Theorem 2.6 and the rem

that for the lattice (p-) gluing for positive lattices we have rank(L) = rank(LE1) +
rank(LE2) + 1. �

Notice that by Corollary 3.10, in the zero characteristic case, lattice ideals that a
nomial set theoretic complete intersection are complete intersections. Therefore th
characterized also by the next theorem.

Theorem 3.14. The lattice idealIL,ρ ⊂ K[x1, . . . , xm] is a complete intersection if an
only if the latticeL is the gluing of the two latticesLE1 andLE2 and both lattice ideals
ILE1,ρ, ILE2,ρ are complete intersections.

Proof. The proof follows the lines of the proof of Theorem 3.13 by taking out the rad
and puttingp = 1 even in positive characteristic.�

The next theorem is the main result of the article and characterizes all lattice
that are complete intersections and also all lattice ideals that are set-theoretic co
intersections on binomials, in all characteristics.

Theorem 3.15. Let K be a field of any characteristic. The lattice idealIL,ρ ⊂ K[x1, . . . ,

xm] is a complete intersection if and only if the latticeL is completely glued.
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In the characteristic zero case(respectively positive characteristic p case), the lattice
ideal IL,ρ is a set-theoretic complete intersection on binomials if and only if the latticL

is completely glued(respectively completelyp-glued).

Proof. The proof follows by induction on the rankr and is based on Theorems 3.1
3.14. Note that if a lattice has rank zero then the elements of the associated semigr
linearly independent and therefore the lattice is completely (respectivelyp-) glued and of
course a complete intersection.�

The property for a lattice ideal to be a complete intersection does not depend
field, but only on the latticeL ⊂ Zm. Therefore, translating Theorem 3.15 for semigrou
we have:

Theorem 3.16. A finitely generated, cancellative, abelian semigroup with no invert
elements is a complete intersection if and only if it is completely glued.

Theorem 3.16 restricted to affine semigroups gives an exact characterization o
plete intersection affine semigroups:an affine semigroup is a complete intersection if a
only if it is completely glued. An affine semigroup iscompletely gluedif it belongs to the
smallest class of affine semigroups that includes all free affine semigroups and is
under gluing.

Example 3.17. The results of this section help us to provide examples of lattice id
that are complete intersections or set-theoretic complete intersections on binomia
mixed dominating integer matrixM(u1, . . . ,ur ) gives a completely glued lattice, th
L = ∑r

i=1 Zui , and a complete intersection lattice ideal, theIL,ρ in K[x1, . . . , xm], where
K is any field and(L,ρ) a partial character onZm. Also the semigroup〈ei + L | i ∈
{1, . . . ,m}〉 ⊂ Zm/L is completely glued. Considering a latticeL′ such that(L′ : p∞) =
(L : p∞) for some prime numberp, the lattice idealIL′,ρ in K[x1, . . . , xm] is set-theoretic
complete intersection on binomials, whereK is a field of characteristicp.

Mixed dominating matrices can be constructed easily. LetM1 andM2 be mixed domi-
nating matrices of sizesm1 × n1 andm2 × n2 with m1 � 0 andm2 � 0. Letu+ ∈ Nn1 and
u− ∈ Nn2 be any two vectors. Then the matrix

(
M1 0
0 M2

u+ −u−

)

is mixed dominating. To start with, we can consider both matricesM1, M2 to be empty.
Subsequently we use already constructed mixed dominating matrices to constru
ones. Actually the decomposition theorem, see Theorem 3.11 or [11, Theorem 2
mixed dominating matrices says that all mixed dominating matrices can be taken in t
way.
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For example, take asM1 the 1× 3 mixed dominating matrix(1 3 −4), M2 the
empty 0× 1 matrix,u+ = (3,1,0) andu− = (4). Then the matrix(

1 3 −4 0
3 1 0 −4

)

is mixed dominating. Therefore the latticeL = Z(1,3,−4,0) + Z(3,1,0,−4) is com-
pletely glued and the lattice idealIL,ρ is a complete intersection for any characterρ. The
associated semigroup of the latticeL is isomorphic to the semigroup generated by(4,0,0),
(0,4,0), (1,3,0) and(3,1,1) in Z2 ⊕ Z4. Which is completely glued.

Let L′ = Z(1,3,−4,0) + Z(0,2,−3,1). L′ is the associated lattice of the affine sem
group generated by(4,0), (0,4), (1,3) and(3,1) in Z2. Which is not a complete inter
section affine semigroup. Therefore there is no basisu1,u2 of L′ such that the matrix
M(u1,u2) is mixed dominating. Notice that(L′ : 2∞) = (L : 2∞), since 4L′ ⊂ L ⊂ L′.
This implies that in characteristic 2 the two idealsIL′,ρ , IL,ρ have the same radical. Ther
fore IL′,ρ is set-theoretic complete intersection on binomials in characteristic 2.

4. Extreme rays of a complete intersection semigroup cone

Let φ be the projection homomorphism fromZn ⊕ T to Zn and denoteφ(b) = b for
b ∈ Zn ⊕ T . Let A = {ai | 1 � i � m}. We associate with the semigroupNA (or with
the lattice idealIL,ρ ) the rational polyhedral coneσ = posQ(A) := {l1a1 + · · · + lmam |
li ∈ Q and li � 0}. A coneσ is strongly convexif σ ∩ −σ = {0}. The condition that the
latticeL is positive is equivalent with the condition that the coneσ is strongly convex.

A ray R in the cone ofA is anextreme rayof the cone ofA, if given any vectoru ∈ R,
positive integersµ,c1, . . . , ct and elementsw1, . . . ,wt of NA such that

µu = c1w1 + · · · + ct wt ,

thenwj ∈ R for all j = 1, . . . , t . In [11] it was shown that for ann-dimensional complete
intersection affine semigroup withn � 2, its cone contains no more than 2n − 2 extreme
rays. The corresponding statement is true for semigroups ofZn ⊕ T or equivalently lattice
ideals which are complete intersections. But also for lattice ideals that are set the
complete intersections on binomials.

Theorem 4.1. LetNA be an n-dimensional semigroup ofZn ⊕T which is completely glue
or completelyp-glued,n � 2. Then the cone ofA contains no more than2n − 2 extreme
rays.

Proof. The proof almost follows the lines of the proof of [11, Corollary 2.4]. LetNA be
a semigroup ofZn ⊕ T which is completely glued or completelyp-glued. Letψ : Zm →
Zn ⊕ T be the group homomorphism such thatψ(ei ) = ai ∈ Zn ⊕ T , wheree1, . . . , em

is the canonical basis ofZm. Let L be the lattice ker(ψ) of rank r = m − n. We will use
induction onr. If r = 0, thenm = n. Hence the vectors inA are linearly independent an
the cone has exactlyn extreme rays. Sincen � 2, we haven � 2n − 2.
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If r � 1, we can writeA as the disjoint union ofAE1, AE2 such thatZa = ZAE1 ∩
ZAE2 and there is a multiple ofa in NAE1 ∩ NAE2, for some disjoint subsetsE1,E2 of

{1, . . . ,m}. Then we havea ∈ ZA
E1 ∩ ZA

E2. Let b ∈ ZA
E1 ∩ ZA

E2. Thengb ∈ ZAE1 ∩
ZAE2 = Za, whereg is the order of the finite groupT . Thereforegb = λa and sogb = λa.

ThusZA
E1 ∩ZA

E2 is one-dimensional and ifc is any generator, thena = µc. We conclude

that a multiple ofc belongs toNA
E1 ∩ NA

E2.
Let n1, n2 be the dimensions ofNAE1,NAE2, respectively. Thenn1 +n2 = n+1. Letri

be the rank of the latticeLEi , i ∈ {1,2}. It follows fromn1+n2 = n+1 thatr1+r2 = r −1.
Therefore eachri is less thanr. Each extreme ray of the cone ofA is an extreme ray fo

either the cone ofA
E1 or A

E2. Therefore, the number of extreme rays of the cone ofA is

bounded by the sum of the number of extreme rays in the cones ofA
E1 andA

E2. Hence as
long asni � 2, the inductive hypothesis gives that the number of extreme rays of the
of A is bounded by 2n1 −2+2n2 −2 = 2n−2. But if r1 = 1 say, then since the two con

of A
E1 andA

E2 intersect in a semiline, it follows that the cone ofA
E1 is contained in the

cone ofA
E2. Therefore the cone ofA is the same with the cone ofA

E2. But r2 is smaller
thanr, therefore the inductive hypothesis gives the result.�
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