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The dynamically assisted pair creation (Schwinger effect) is considered for the superposition of two 
periodic electric fields acting in a finite time interval. We find a strong enhancement by orders of 
magnitude caused by a weak field with a frequency being a multitude of the strong-field frequency. 
The strong low-frequency field leads to shell structures which are lifted by the weaker high-frequency 
field. The resonance type amplification refers to a new, monotonously increasing mode, often hidden in 
some strong oscillatory transient background, which disappears during the smoothly switching off the 
background fields, thus leaving a pronounced residual shell structure in phase space.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

For many decades the Schwinger effect [1] has been considered 
crucial for testing non-perturbative QED as a pillar of the standard 
model of particle physics in the strong-field regime. An obvious 
motivation for the broad interest can be seen in the formal struc-
ture and numerical smallness of the decay rate R of a static, purely 
electric field E0 into a state with on-shell electrons and positrons 
which screen the original field. Schwinger’s seminal formula was 
R ∝ E2

0 exp(−π Ec/E0) in leading order, where the scale is set by 
the electron’s mass m and charge e reading Ec = m2/e (we use 
units with h̄ = c = 1) first introduced by Sauter [2]. Presently 
achievable long-living fields in the laboratory are weak compared 
to Ec , E0 � Ec . Accordingly, the Schwinger rate is exponentially 
small and has escaped an experimental verification until now.

The fields created in peripheral relativistic heavy-ion collisions 
are short-lived, of the order of a few fm/c [3], thus not suitable 
for an exploration of the original Schwinger effect which is for a 
spatio-temporal constant field. Nevertheless, a plethora of interest-
ing strong-field effects are under consideration [4]. For instance, 
magnetars are astrophysical objects with strong fields which could 
serve for identifying Schwinger type effects [5,6]. One should 
also recall that the Schwinger effect for chromoelectric fields is 
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employed in phenomenological models of particle production in 
strong interaction processes [7–9].

Two further aspects highlight the role of the Schwinger ef-
fect. (i) It is conceivable that QED is an effective weak-field theory 
which breaks down for fields of the order of Ec . (ii) A long-living 
field O(Ec) cannot be achieved due to screening processes and 
cascades which consume and transfer the original field energy into 
other degrees of freedom, as discussed in [10–13]. We mention 
further that the decay of a strong external field due to particle pro-
duction is not a privilege of QED, but is generic. For instance, the 
Hawking radiation off a horizon is a famous example w.r.t. gravita-
tional fields [14,15].

In the course of seeking set-ups which could offer the opportu-
nity to verify the above static Schwinger effect, the idea has been 
explored that ultra-intense laser fields could enable the detection 
of the dynamical Schwinger effect [16]. For instance, in the antin-
odes of two counter propagating, linearly polarized laser beams we 
have a periodic (frequency ν), essentially electric field E(t) with 
spatial homogeneity length of O(1/ν) which is, for optical lasers, 
much larger than the Compton wave length λC = 2π/m of the 
electron. The prospects of e+e− pair production in dependence on 
E0 and ν have recently been analyzed [17]. While in a plane wave 
or null field the pair production rate is zero [1], a focused laser 
field provides a non-zero rate, as pointed out in [18]. However, the 
rate is still very small, unless such ultra-intense laser fields as en-
visaged at ELI [19] are at our disposal. Finally we mention Ref. [20], 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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where the mimicking of the dynamical Schwinger effect is accom-
plished in an all-optics setup of a wave guide with curved optical 
axis.

While the Schwinger effect is originally related to a tunneling 
process, which escapes the standard perturbative QED described by 
Feynman diagrams, in the dynamically assisted Schwinger effect 
[21–23] the tunneling is combined with a multi-photon process, 
thus potentially enhancing the pair production rate significantly. 
The essence is a combination of a strong field (may be slowly 
varying) with a weak field which introduces, in particular, a high-
frequency component. Various combinations have recently been in-
vestigated to look for optimum parameter settings. In Refs. [24,25], 
the superposition of two Sauter pulses was considered; Ref. [26]
analyzed the superposition of a strong Sauter pulse with various 
other weak-pulse shapes. The Sauter pulse has a d.c. component 
and can hardly be shaped with present laser technologies. It is 
therefore tempting to investigate the rate enhancement in the su-
perposition of two periodic fields, e.g. as recently done also in 
[27,28]. Such a situation seems to be more realistic in respect to a 
suitable combination of XFEL and optical laser beams. The oppor-
tunities at plain XFEL beams are considered in [29]. Refs. [30,31]
consider the frozen-out early-time population of low-momentum 
electrons (positrons) in various field configurations, while we con-
sider the residual phase space occupation with a realistic (smooth) 
switching on/off the combined fields.

Our framework is the kinetic equation for the single-particle 
distribution derived in [32], see also [17,33–35]. Despite the os-
tensible simplicity of the kinetic equation and the possibility to 
give a compact expression for its solution, it is fairly intransparent 
due to the non-linear and non-Markovian character. Therefore, it 
is hardly possible to read off in a simple manner the dependence 
of the solution on the field parameters. WKB type approaches [23,
36,37], the world line formalism [38] and optimization theory [25]
have been developed to gain further insights into the pair produc-
tion process. We here rely on numerical solutions of the kinetic 
equation to elucidate parameter regions where the dynamically as-
sisted Schwinger effect in two periodic fields, which are smoothly 
switched on and off, leads to a significant enhancement of the 
rate. The numerical simulations (Section 2) are accompanied and 
interpreted by analytical approximations (Section 3) explaining the 
shell structure in phase space. This is supplemented by a system-
atic scan of parameter dependence (Section 4). Our summary is 
given in Section 5.

2. Solutions of quantum kinetic equations

The quantum-kinetic equation without back reaction for the 
time (t) evolution of the one-particle distribution function f
(cf. [39] for a discussion of the meaning of f ) summed over 
spin projections is given either as an integro-differential equation 
[17,32,40]

ḟ (p, t) = Q (p, t)

t∫
t0

dt′ Q
(

p, t′)[1 − η f
(

p, t′)]

× cos 2
[
Θ(p, t) − Θ

(
p, t′)] (1)

or equivalently as a system of three coupled differential equa-
tions

ḟ (p, t) = Q (p, t) u(p, t), (2a)

u̇(p, t) = Q (p, t)
[
1 − η f (p, t)

] − 2ω(p, t)v(p, t), (2b)

v̇(p, t) = 2ω(p, t)u(p, t), (2c)
where u and v denote auxiliary quantities and Θ , ω and Q are 
defined by

Θ(p, t) =
t∫

t0

dt′ ω
(

p, t′), (3)

ω(p, t) =
√

ε2⊥ + (
p‖ − e A(t)

)2
, (4)

Q (p, t) = eE(t)ε⊥
ω2(p, t)

, (5)

with A(t) and E(t) = − Ȧ(t) being the z component of the vec-
tor potential and the electric field, respectively. Our field is thus 
assumed spatially homogeneous, pointing along the z direction. 
Consequently, p‖ denotes the momentum (e.g. of electrons) par-
allel to the z axis and p⊥ the momentum perpendicular to it; 
ε⊥ =

√
m2 + p2⊥ is the transverse energy; p‖ and p⊥ are com-

ponents of the three-vector p. From here on, we set t0 = 0 and 
employ the initial conditions f (t0) = u(t0) = v(t0) = 0. The pa-
rameter η in (1) and (2b) distinguishes the full solution (η = 1, 
considered in this section) from the low-density approximation 
(η = 0, employed in Section 3).

In what follows we consider the synchronized superposition of 
a slow strong field (“1”) and a fast weak field (“2”) with potential

A(t) =
(

E1

ν
cos(νt) + E2

Nν
cos(Nνt)

)
K (νt) (6)

where ν = 2π/T is the frequency of the slow field and N the ratio 
of the frequencies chosen to be integer. We utilize a C∞ envelope 
function (which is infinitely often differentiable)

K (τ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for τ < 0,

smooth transition for 0 < τ < τramp,

1 for τramp < τ < τramp + τf.t.,

smooth transition for τramp + τf.t. < τ < τpulse,

0 for τpulse < τ,

(7)

which is chosen as K (τ ) = h( τ
τramp

)h(
τpulse−τ

τramp
) where h(x) =

g(x)
g(x)+g(1−x) and g(x) = 0 for x ≤ 0, g(x) = e− 1

x for x > 0. The 
field (6) is therefore smoothly switched on and off for a suitable 
choice of the ramping (“ramp”) interval from 0 to τramp and de-
ramping interval from τf.t. + τramp to τpulse = τf.t. + 2τramp; the 
flat-top (“f.t.”) interval is from τramp to τf.t. + τramp. The poten-
tial (6) and thus also the electric field acts for the finite du-
ration τpulse. We have chosen τramp = 5 · 2π and τf.t. = 50 · 2π
meaning five (fifty) oscillations of field “1” for ramping and de-
ramping (the flat-top interval). Thus, the field configuration (6)
is a special model for the spatial homogeneity region of a com-
mon antinode of several (at least four) pair-wise counterpropagat-
ing synchronized beams. In the present study we focus on time 
scales and field strengths similar to those in [24]: E1 = 0.1Ec and 
ν = 0.02m, E2 = 0 . . . 0.05Ec and N = 10 . . . 50. That means the 
individual Keldysh parameters are γ1 = (Ec/E1)(ν/m) = 0.2 and 
γ2 = (Ec/E2)(Nν/m) = O(4 . . .∞). While this parameter regime 
does not exactly match presently available XFEL and intense laser 
technology, it allows for an easy numerical treatment of the ki-
netic equations (and comparison with available literature). In [16], 
γ � 1 is referred to as tunneling regime, while γ 
 1 is the multi-
photon regime.

Solutions of (2a) for η = 1 (i.e. with Pauli blocking) and for 
p‖ = 0 are exhibited in Fig. 1 for νt > τpulse where, according 
to (2), ḟ = 0 since E(νt > τpulse) = 0. (That means, f (νt > τpulse)

represents the residual phase space distribution within the consid-
ered framework.) The middle panels in Fig. 1 exhibit the residual 
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Fig. 1. The residual phase space distribution f (p⊥, p‖ = 0) as a function of p⊥ . The parameters are E1 = 0.1Ec , ν = 0.02m, E2 = 0.05Ec , τramp = 5 · 2π , τf.t. = 50 · 2π . Left 
panels: the slow strong field alone (top and bottom panels are the same, but are displayed for an easy comparison with middle and right panels); middle panels: for the 
field (6); right panels: the fast weak field alone. Top: N = 24; bottom: N = 25. The labels are shell numbers � according to (14). Shell number 7 in the bottom right panel is 
outside the displayed region due to the increase of N .
phase space distributions in p⊥ direction at p‖ = 0 for the field (6), 
while the left (right) panels are for the strong (weak) field alone. 
One observes pronounced peaks which continue (albeit at different 
positions) when displaying other cuts in the p⊥–p‖ plane or sharp 
ridges in contours over the p⊥–p‖ plane. These peaks or ridges are 
referred to as shell structures, already described, for a single peri-
odic field, in various previous papers [17,41–43], originally found 
in [16] and further elaborated in [44–47]. From Fig. 1 one infers 
that the residual phase space occupations for any one of the two 
field contributions that appear in (6) are much smaller than the 
phase space occupations for the superposition of both fields. For 
instance, shell �(“1”) = 341 (left panels in Fig. 1) with peak al-
titude 2.5 × 10−10 becomes, due to the impact of the field “2”, 
shell �(“1”+“2”) = 341 (middle panels in Fig. 1) with peak altitude 
1.5 × 10−4 or 2.0 × 10−3 depending on N . The peak pattern is 
dominated by the slow strong field “1”, where “2” lets even shells 
additionally appear, e.g. shells �(“1”+“2”) = 342, 344, etc. for N = 25, 
which are not visible for the field “1” alone (cf. left panels). Due 
to the comparatively high frequency ν2 = Nν1 of the field “2”, the 
shell numbers �(“2”) are much smaller and the corresponding peaks 
are much higher, but individual structures resembling the right 
panels in Fig. 1 are not evident in the middle panels. The assis-
tance of field “2” consists obviously in lifting the pattern governed 
by field “1”.

The found non-linear amplification is huge – much larger than 
for the superposition of two Sauter pulses in [24]. Refs. [30,31] also 
report very strong amplification effects for periodic fields, but for 
a very special shape function K and a different early-time mode. 
Other field configurations are considered in [48–50], where rela-
tively strong effects in the momentum dependence and particle 
rate are found by modifying a Gaussian electric field by a subcycle 
sinusoidal field.

3. Shell structure and shell shape

To arrive at a qualitative understanding of the numerical results 
of the previous section we resort to the low-density approximation 
(exponentiating results in the Markovian approximation [51])

f (p, t) = 1 ∣∣I(p, t)
∣∣2

, (8)

2

I(p, t) =
t∫

0

dt′ eE(t′)ε⊥
ω(p, t′)2

e2iΘ(p,t′) (9)

which discards the Pauli blocking by setting η = 0 in (1) and (2) or 
f � 1 in (1). While asymptotically f � 1 in Fig. 1, at intermedi-
ate times this needs not necessarily be the case. Nevertheless, the 
low-density approximation yields sufficiently accurate results (on 
the percent level) within the considered parameter domain w.r.t. 
shell positions, peak heights and widths provided by the following 
harmonic analysis.

3.1. Shell structure

Given the periodicity of ω(p, t) w.r.t. to T when considering 
K = 1, a Fourier representation of (4) is in order [16,34]:

Θ(p, t) = Ω(p)t + P (p, t), (10)

where Ω(p) = 1
T

∫ T
0 dt ω(p, t) is the Fourier zero-mode (called 

‘renormalized frequency’ in [16]) and P (p, t) is a T -periodic func-
tion. The resulting expression I(p, t) = ∫ t

0 dt′ F (p, t′)e2iΩ(p)t′ with 
the T -periodic function

F (p, t) = ε⊥eE(t)

ω(p, t)2
e2i P (p,t) (11)

calls for a second Fourier expansion F (p, t) = ∑
� F�(p) e−i�νt with 

the Fourier coefficients

F�(p) = 1

T

T∫
0

dt F (p, t)ei�νt . (12)

Due to the symmetry of the functions ω(t) and cos 2Θ(t) and anti-
symmetry of E(t) and sin 2Θ(t) w.r.t. t = T /2, one finds Re F� = 0, 
which can be used to check the accuracy of numerical calculations. 
Upon time integration in (9) one gets

I(p, t) =
∑

i F�(p)
e−i(�ν−2Ω(p))t − 1

�ν − 2Ω(p)
, (13)
�
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indicating that for

�ν − 2Ω(p) = 0 (14)

sharp ridges/peaks can appear in the distribution function. Solu-
tions of (14) are, for a given value of � which we call shell number, 
p(�)

⊥ (p‖) or, for p‖ = 0, simply p(�)
⊥ . (The labels in Fig. 1 are just 

these shell numbers �.) The small-momentum expansion of Ω(p)

reads

Ω(p) = Ω(p = 0) + Ω‖p‖ + Ω1 p2⊥ + Ω2 p2‖ (15)

with Ω‖ = −T −1
∫ T

0 dt e A(t)/ω(t, p = 0), Ω1 = (1 + γ1∂/∂γ1 +
γ2∂/∂γ2)Ω(p = 0), Ω2 = (1 − γ1∂/∂γ1 − γ2∂/∂γ2)Ω1. The limit 
γ2 → ∞ or E2 → 0 recovers [44] with Ω‖ = 0.

The leading-order behaviour of Ω(p = 0), which also depends 
on the parameters γ1, γ2 and N , is for γ1/γ2 � 1 given by 
(2m/π)

√
1 + 1/γ 2

1 E(1/(1 + γ 2
1 )) [44], where E(x) is the complete 

elliptic integral with E(0) = π/2 and E(1) = 1, i.e.
Ω(p = 0)|γ1→0 → 2m/(γ1π) and Ω(p = 0)|γ1→∞ → m imply-
ing Ω(p = 0) > m. (The corrections to the leading-order term 
are small, e.g. < 0.1% for γ1 = 0.2, γ2 ≥ 10 and N ≥ 10, with 
signs depending on γ2 and N .) Numerically, the effective mass 
m∗ = m

√
1 + 1/(2γ 2

1 ) [51] agrees with Ω(p = 0) better than 1%

(7.3%) for γ1 ≥ 1 (≥0.2) and γ1/γ2 � 1. Towards the tunneling 
regime, i.e. at smaller values of γ1, the effective mass concept is 
found in [52] to be less adequate and one could argue that Ω(p)

is a more sensible quantity, e.g. for identifying shell positions p(�) . 
Since Ω(p) increases with increasing field strength E1 at fixed 
frequency and large values of γ2, the previously lowest shell, char-
acterized by �minν , can “disappear” if Ω(p = 0) becomes larger 
than �minν . This is the analog of channel closing in atomic ioniza-
tion (ATI).

3.2. On-shell occupancy

On shell �, (13) inserted in (8) delivers

f
(

p(�), t
) = 1

2

∣∣∣∣i Fl
(

p(�)
)
t +

∑
k =�

i Fk
(

p(�)
)ei(kν−2Ω(p(�)))t − 1

kν − 2Ω(p(�))

∣∣∣∣
2

= 1

2

∣∣F�

(
p(�)

)∣∣2
t2 + G

(
p(�), t

)
t + H

(
p(�), t

)
, (16)

where G(p(�), t) and H(p(�), t) are bounded oscillating functions 
depending on p(�) . The peak height of a shell at position p(�)

increases accordingly quadratically with time (first term in (16)), 
being periodically modulated with a linearly increasing (second 
term) and a constant amplitude (last term). Due to the superpo-
sition of these modes the actual transient time evolution can be 
quite involved but lacks a physical meaning, as recalled in [39]. 
We observed in our numerical simulations based on (2), how-
ever, that after smoothly switching off the field, the peak height 
f (p(�), νt > τpulse) coincides with the first term in (16): The nu-
merical evaluation of F�(p(�)) according to (12) and using it in 
f (p(�), νt > τpulse) = 1

2 |F�(p(�))|2t2
f.t. with tf.t. as flat-top interval 

time agrees well with numerical results of the peak heights by 
integrating (2). Thus 1

2 |F�(p(�))|2t2
f.t. can be identified with the 

residual on-shell occupancy f (p(�)).

3.3. Shell shape

For a more detailed account of the shell shape, let us expand 
(13) for p‖ = 0 around p(�)

⊥ by setting p⊥ = p(�)
⊥ + �p to find in 

leading order of �p
f
(

p(�)
⊥ + �p,0, t

) ≈ 1

2

∣∣F�

(
p(�)

⊥ ,0
)∣∣2 sin2(Ω ′(p(�)

⊥ ,0)�pt)

(Ω ′(p(�)
⊥ ,0)�p)2

. (17)

Since the full width at half-maximum (FWHM) of sin2(xt)/x2

evolves as ∝ 1/t , the FWHM of f (p(�)
⊥ + �p, 0, t) evolves as ∝

(Ω ′(p(�)
⊥ , 0)t)−1, i.e. the important result arises that the shell width 

shrinks with time. (Here, Ω ′ = ∂Ω/∂ p⊥ is the slope of Ω(p⊥, 0)

at shell position p(�)
⊥ .) The transverse momentum integral for the 

contribution of the shell � can be estimated by

∞∫
0

dp⊥ p⊥ f
(

p(�)
⊥ + �p,0, t

) ≈ π

2

p(�)
⊥

|Ω ′(p(�)
⊥ ,0)|

∣∣F�

(
p(�)

⊥ ,0
)∣∣2

t,

(18)

i.e. despite the quadratic growth of the shell height, the shrinking 
causes a linear increase with time of the line integrated density. 
In fact, the residual density is determined by (18) with t → tf.t. , 
as our numerical investigations based on (2) show. Neglecting the 
pedestrials under the sharp peaks (cf. Fig. 1) the residual density 
n = 2π

∫
dp‖dp⊥ p⊥ f (p) can be estimated by summing over all 

shells � ≥ �min, i.e.

n ≈ 2π2
∞∑

�=�min

p(�)
⊥

2

|Ω ′(p(�)
⊥ ,0)|

∣∣F�

(
p(�)

⊥ ,0
)∣∣2

tf.t. (19)

when neglecting the anisotropy in phase space by setting p(�)
⊥

2 +
p(�)

‖
2 = p(�)

⊥
2
(p‖ = 0) and the peculiarities for p‖ = 0. Numbers are 

discussed in Appendix A.

4. Survey on the parameter dependence

After having identified the decisive role of the Fourier coeffi-
cients F� defined in (12) for shell heights and widths and residual 
density we proceed with a brief survey on some systematics. Fig. 2
exhibits the Fourier coefficients for shells � = 341 and � = 342
which are the lowest allowed shells for both the field (6) (cf. 
middle column in Fig. 1) and the slow strong field alone (cf. left 
column in Fig. 1). Let us first consider shell 341. One observes for 
sufficiently large values of N and field strength E2 of the fast weak 
field a strong increase due to the action of the faster field. The blue 
line is for the slow strong field alone, i.e. E2 = 0, meaning that all 
points above indicate an amplification by the fast weak field. (Re-
member that the density accumulated in the shells, according to 
(17), is proportional to |F�|2.) For N > 30 the apparent �N = 4
periodicity dies out, and |F341| grows with increasing N and E2. 
Since the dynamical phase Θ(t) introduces a highly oscillating part 
of the integrand in (12), small “detunings” by variations of N and 
E2 might cause the irregularly looking pattern at smaller values 
of N , where the impact of the second field can induce even a de-
pletion of shell occupancy. The pattern exhibited in the left panel 
of Fig. 2 continues to higher shells with odd �, however with de-
creasing values of |F�| at higher values of �, as one can infer from 
Fig. 1, top middle panel.

In contrast to the odd shells, the even shell number � = 342
(cf. right panel in Fig. 2) shows a pronounced �N = 2 staggering. 
It can be understood from the symmetry properties of A, E , ω and 
Θ w.r.t. t = T /4, from which F� = 0 for p‖ = 0, k even and N odd 
follows. In particular one field, i.e. E2 = 0, causes only peaks in f
related to odd shell numbers. This is already evident in the bottom 
middle panel in Fig. 1, where no even shells appear at p‖ = 0. (For 
p‖ = 0 however, even shells appear which may display further ze-

roes on p(�)
(p‖), see Fig. A.1 in Appendix A.) The pattern described 
⊥
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Fig. 2. (Color online.) Fourier coefficients |F�| as a function of N for p‖ = 0 and shells � = 341 (left, lines are drawn to guide the eyes; the symbols depict the results for 
integer values of N) and � = 342 (right) and various field intensities E2 (green squares: E2 = 0.01Ec , red triangles: E2 = 0.02Ec , cyan diamonds: E2 = 0.05Ec ). The blue lines 
are for E2 = 0, i.e. the field “1” alone. Note the �N = 2 staggering for the even shell (right).
continues to higher shell numbers, with decreasing values as for 
odd shells. The widespread changes of the Fourier coefficients un-
der variations of N and E2 at frozen-in values of T and E1 let us 
argue that a simple analytical formula can hardly provide an ade-
quate description in the considered parameter range.

Having discussed the amplification effect for a variation of the 
fast weak field parameters E2 and ν2 by means of the Fourier coef-
ficients, let us consider variations of E1 and ν1. Keeping 50 (5+5) 
oscillations of field “1” within the flat-top (ramping+deramping) 
time and (E2/Ec, ν2/m) = (0.05, 0.5) we make variations of ν1/m
down to 0.0025 at fixed E1/Ec = 0.1 (i.e. γ1 = 0.025). The spec-
tra (calculated by means of (1), (2)) for field “1” alone and for 
fields “1+2” look similar to the respective panels in Fig. 1 with 
(i) more closely spaced peaks due to smaller ν1 and (ii) peak max-
ima somewhat reduced. That means our amplification is robust, as 
also under variations of E1 (keeping E1 > E2), as confirmed by an 
analysis of the Fourier coefficients.

As anticipated in Section 3, enlarging τf.t. makes the peaks 
(shells) higher and sharper (cf. (16), (17)), while the pedestrials 
(accessible by (1), (2)) hardly change. The ramping interval τramp
must not be too short to avoid unwanted spikes bracketing the 
electric field; larger values of τramp can be accommodated in an 
enlarged effective τf.t. .

Finally, we mention that non-integer values of N result in a 
similar (albeit non-resonant) amplification, however, with a more 
involved phase space distribution which is no longer accessible by 
the harmonic analysis in Section 3.

5. Summary

In the present work we have considered the dynamically as-
sisted Schwinger effect for resonant periodic fields within the 
framework of the quantum kinetic equation. We have isolated a 
non-linear parametric mechanism which increases the pair cre-
ation rate by many orders of magnitude when combining suit-
ably a strong low-frequency field with a weak high-frequency 
field compared to the rates if both fields acted alone. Both fields 
are subcritical with respect to frequencies and field strengths. 
In contrast to previous work, which often deals with instanta-
neous switching off, the residual phase space distribution ex-
hibits a distinct shell structure which survives the involved tran-
siently oscillating pattern during the time-limited action of the 
periodic fields. The occupancy of the shells grows linearly with 
the flat-top time, while the shell peaks grow quadratically due 
to a new resonance like behaviour. The obvious motivation for 
such a configuration of combined two periodic fields is the su-
perposition of the European XFEL with an ultra-intense optical 
laser system as envisaged in HIBEF [53]. For an easy numerical 
treatment, however, we have selected, in the present case study, 
patches in the field-strength vs. frequency space which, while lo-
cated in the tunneling and multi-photon domains respectively, are 
quite different from more realistic values, for example those in Ta-
ble 1 in [29]. Based on the systematics presented here, we argue 
that no qualitative changes arise when moving towards parame-
ters being more representative for an optical laser-XFEL combina-
tion.
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Appendix A. Phase space distributions

We show in Fig. A.1 plots of f over the full phase space, i.e. the 
distribution over the p⊥–p‖ plane. Fig. 1 is a cross section of these 
contour plots at p‖ = 0. These plots unravel fairly rich structures 
along the ridges, such as deep notches (the missing � = even peaks 
at p‖ = 0 in Fig. 1 are a consequence), the steeper dropping of 
the ridge maximum in p⊥ direction, and the degree of anisotropy 
(that is the elongation in p‖ direction). The ridge structure is nev-
ertheless well described by (14); some details are uncovered by 
generalizing (16), (17) to non-zero p‖ . These pecularities of the 
full phase space distribution are not included in the estimator for-
mula (19). Instead, it is meant to expose the rough dependence on 
the Fourier coefficients (12) and to deliver an order of magnitude 
orientation. In fact, comparing the densities n in units of m3 from 
(19) with a numerical evaluation (num. eva.) we find 

“1” “1+2” “2”

N = 24 num. eva. 2 × 10−12 7 × 10−6 2 × 10−8

(19) 3 × 10−13 1 × 10−6 1 × 10−8

N = 25 num. eva. 2 × 10−12 1 × 10−5 6 × 10−9

(19) 3 × 10−13 4 × 10−6 8 × 10−9

showing that (19) must be employed with care.
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Fig. A.1. (Color online.) As Fig. 1 but for f as a function of p⊥ and p‖ with the color code for f on the right.
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