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ABSTRACT 

Results are given concerning the LU factorization of H-matrices, and Gaussian 
elimination with column-diagonaldominant pivoting is shown to be applicable to 
H-matrices. This algorithm, which uses a symmetric permutation to exchange the most 
diagonally dominant column of the unreduced submatrix into the pivotal position, is 
shown to be numerically stable by deriving an upper bound on the growth factor 
associated with the backward error analysis for Gaussian elimination. 

1. INTRODUCTION 

An nXn realmatrix A=(a,.)isan M-matrix if aij<Oforall i# j and 

if ReXa for all x~o(A), & e spectrum of A. There are numerous 
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equivalent conditions for a real matrix A having the M-matrix sign pattern 
to be either a singular or a nonsingular M-matrix (see e.g. Berman and 
Plemmons [2]). The comparison matrix J@(A) = (mij) of an arbitrary n x n 
complex matrix A is defined by 

i 

laiil if i=j, 
mij = 

--Jaiij if i#j. 

With the exception of M-matrices and comparison matrices, we assume that 
any matrix in this paper may have complex-valued entries. If A and B are 
real matrices of the same size, then A < B means that ai j < b,, for all i, j. 
Relative to any M-matrix B, we define the set SJs of complex matrices by 

An n x n matrix A is (column) generalized diagonally dominant if there 
exist scalars d i > 0 (1~ i < n) such that 

djlajj( > C dilaijl, l&j<n. 
i#j 

We let N= {1,2,..., n }, and if 0 c a c N, the principal submatrix of A 
from the rows and columns specified by cr is denoted by A[ LX]. 

We define an n X n (complex) matrix A to be an H-matrix if A(A) is an 
M-matrix. This is the definition given by Berman and Plemmons [2], although 
other definitions have been used. For example, Funderlic, Neumann, and 
Plemmons [5] call A an H-matrix if A is generalized diagonally dominant, 
while other definitions (see e.g. Varga [12], Carlson and Markham [3], and 
Neumann and Plemmons [lo]) require that JY( A) be a nonsingular M-matrix. 
It is well known that a matrix is generalized diagonally dominant if its 
comparison matrix is a nonsingular, or a singular and irreducible, M-matrix, 
but with our definition clearly there exist H-matrices that are not generalized 
diagonally dominant; for example, 

A= ’ ’ 
[ 1 1 1’ 

After k steps (1~ k < n - 1) of the forward elimination of Gaussian 
elimination (without pivoting) applied to an n x n matrix A, the resultant 
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reduced matrix is denoted by 

al.1 =1,2 . . * ul,k ul,k+l 

(1) 
a2,2 ..* a (zt)k 

(1) 
a2,k+l 

A(k) = 

. . 

(k- 1) 
ak,k qi:‘, 

dk?,“!,, k+l 

. . . 
al,, 

. . . a. ‘2)” 

. . . up,‘) 

. . . 
aJI;)l,, 

. . . 
4?2, n 

. . . a(k) 
n,n 

0 ‘iki2,k+l 

(1) 

where UCk) is a k x k upper triangular matrix, C^ck) is k x (n - k) and Ack) 
is(n-k)x(n-k). Letting A@)=A, A(k)exist~iff {A(‘)(l<i<‘k} exists, 
and if aik,” = 0 then a. :kkl)=Ofor k+l,<j<n. Wenotethat 

A(k+l) = TkAck’ 3 ogkgn-2, 

where Tk is an n X n elementary lower triangular matrix of order n and 
index k + 1 (see Stewart [ll, §3.2]), and contains the Gaussianelimination 
“ multipliers.” If a ::1; + r = 0 for k + 1~ j < n, then Tk is not uniquely defined 
and may, for example, be set equal to the n x n identity matrix (as all 
diagonal entries of Tk are l), thus uniquely determining the elimination. The 
matrix A(“- ‘) is upper triangular, and dCk) is often called the Schur comple- 
ment of A[ 1,2,. . . , k ] in A (when A [ 1,2,. . . , k] is nonsingular). Numerical 
stability of the Gaussian elimination algorithm (see e.g. Stewart [ 111) requires 
controlling the size of the “growth factor” y defined by 

where Ack) = (a’!)) and a$) = aij. 
An n x n matrix A is said to admit an LU factorization if it can be 

written as A = LU, where L is an n X n rwnsing&r lower triangular matrix 
and U is an n X n upper triangular matrix. The following result is an 
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immediate consequence of [8, Theorem 21: a matrix A admits an LU 
factorization iff (ok+l,l,ak+1,2,...,ok+l,k) lies in the space spanned by the 
row vectors of A[&2 ,..., k], for k = 1,2 ,..., n - 1. Equivalently, it can be 
seen that A admits an LU factorization iff Gaussian elimination without 
pivoting may be successfully applied to reduce A to upper triangular form 
(i.e., iff the matrices Ack) exist, 1 Q lc Q n - 1). 

Necessary and sufficient conditions for an M-matrix to admit an LU 
factorization into M-matrices (i.e., such that L and U are M-matrices) are 
given by Varga and Cai [13]. We note [6] that there exist (singular, reducible) 
M-matrices which may be LV factored, but not into a product of M-matrices, 
and there exist M-matrices (again singular and reducible) which have no LU 
factorization. However, Kuo [7] proved that for any M-matrix A there exists a 
permutation matrix P such that PAP* admits an LU factorization into 
M-matrices. A numerically stable algorithm which determines such a matrix 
P, and the LU factorization of PAP*, is given by Ahac and Olesky [l]. 

The purpose of this paper is to show that the algorithm of Ahac and 
Olesky [ 11, Gaussian elimination with columndiagonaldominant pivoting, is 
applicable to H-matrices (see Section 3). Our main results are contained in 
Section 4, where the stability of this algorithm is shown by deriving an upper 
bound on the growth factor y. Our proofs of these results depend on 
extending known results on the LU factorization of an H-matrix whose 
comparison matrix is a nonsingular M-matrix to our broader class of H- 
matrices; this we do first, in Section 2. We conclude with two examples in 
Section 5. 

2. LU FACTORIZATION OF H-MATRICES 

We begin with a generalization of a result of Neumann [9, Proposition 51, 
who proved the following when &(A) is a nonsingular M-matrix. 

LEMMA 1. Let A be an n x n H-matrix, let ./I( A) = (mij) denote its 
comparison matrix, and suppose that &(A) admits an LU factorization into 
M-matrices. Then A admits an LU factorization, and if Ack) and MCk), 
respectively, denote the reduced matrices of A and .,@(A), then 

MCk’ < .l( Ack’), l<k<n-1. 

Proof. We note that all Mck) are M-matrices (see Varga and Cai [13, p. 
1861 and Fan [4]) and proceed by induction on k. Firstly, if a,, = 0 then 
ail = 0 for 2 < i < n [since ./l(A) admits an LU factorization], so in this case 
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A(” = M(l) = A. If all # 0, then A(‘) exists and for 2 < i < n 

Similarly, for 2 < i, j < n and i z j, 

= - mii + ( - mil)( - mli) = _ my, 

ml1 

so that rn$) < - Iu$)l. Thus M(l) < d(A(l)). 
For given k (16 k < n - 1) and for all p (1~ p < k), assume that ACp) 

exists and M(p) < JH(A(P)). In particular, MCk) < A(ACk)) implies that 

and 

m(ii) < - (a!‘r)( 
‘J ’ 

k+l<i, j<n and i#j. 

Since Mk+l) exists, either m(kk!l,k+l # 0 or rnjfi,, = 0 for k + 1~ i < n. 
Thus either uiy 1, k + I z 0 or CZ$:~+~ = 0 for k + 1~ i < n, implying that 
tik+ l) exists. In the latter case, Ack+‘) = Ack) and MCk+‘) = MCk’, SO the 
inductive hypothesis implies that Mck+ ‘) < _M( ACk+ “). On the other hand, if 
ak+l k+l#O, thenfor k+2gi<n (k) 

ai k+l’i?l i 
(k) 

>Ia(f)l- ’ ’ I I uik~:)l,k+l 

2 m(k) _ ( - m’k’+l)( - my’l’i) 
11 

m’k”!l,k+l 

by the inductive hypothesis 

= m<k+u. 
II ’ 



102 ALAN A. AHAC, JOHN J. BUONI, AND D. D. OLESKY 

for k+Z<i, j,<n and i# j, 

by the inductive hypothesis 

= - m(,‘r+ 1) 
‘I . 

Thus Mck+ l) < A( Ack+ l) ), which completes the induction. n 

We note that the converse of Lemma 1 is false: if A is an H-matrix which 
admits an LU factorization, then J?(A) doesn’t necessarily admit an LU 
factorization, as shown, for example, by 

1 -1 0 
A=1 lo. 

[ 1 0 -1 1 

Conditions which are necessary and sufficient for an H-matrix to admit an 
LU factorization do not seem to be known. 

The proof of our next lemma follows immediately from Theorem 1 of 
Varga and Cai [13]. 

LEMMA 2. Let A be an M-matrix which admits an LU factorization into 
M-matrices. If A < B and bij < 0 for all i # j, then B is an M-matrix which 
admits an LU factorization into M-matrices. 

The above lemmas give the following sufficient condition for the LU 
factorization of matrices of the class 0, of H-matrices, defined relative to an 
M-matrix B. 

COROLLARY 1. Let B be an M-matrix which admits an LU factorization 
into M-matrices. lf A E fi2,, then A admits an LU factorization. 

Proof. By Lemma 2, A(A) admits an LU factorization into M-matrices 
for all AESOP, and therefore Lemma 1 implies that A admits an LU 
factorization. n 
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In the remainder of this paper, we are concerned with the LU factorization 
of a symmetric permutation PAPT of an H-matrix A. 

3. COLUMN-DIAGONALDOMINANT PIVOTING ON H-MATRICES 

The columndiagonaldominant (cdd) pivoting strategy (see Ahac and 
Olesky [l]) for Gaussian elimination requires that the submatrix A@) of the 
reduced matrix Atk) [see (l)] have a column which is diagonally dominant. In 
this section we show that an H-matrix has a diagonally dominant column, and 
that Gaussian elimination with cdd pivoting may be applied to any H-matrix, 
producing an LU factorization of some symmetric permutation PAP* of A. 
We first state a straightforward generalization of a known result for M- 
matrices. 

THEOREM 1. Given any n X n H-matrix A, there exists at least one index 
j such that 

lajjl 2 Ii laijl, 

i=l 
i#j 

Proof. As J(A) is an M-matrix, this follows from the analogous result 
for M-matrices (see [l, Theorem 11). n 

If A is a nonsingular M-matrix, then there exists at least one index j such 
that strict inequality holds in Theorem 1 (see [l]). However, this does not 
extend to nonsingular H-matrices, as illustrated by 

A= _; ;. 
[ 1 

Referring to (1) suppose that A(‘) is an H-matrix and that column j, 
(k < jk 6 n) has thi maximal column sum in JY( A(“); by Theorem 1, this 
sum is nonnegative. Cdd pivoting is the process of interchanging the (k + 1)th 
and jkth columns and rows of Ack) prior to the (k + 1)th step of Gaussian 
elimination (0 < k < n - 2). This interchanging is equivalent to forming 
P k+ 1 jiA’k’PkT+ 1 j,, where Pk+ 1 j, is an elementary permutation matrix, and 
implies that the diagonal entry of the most diagonally dominant column of 
dck) is the pivotal element for this step of the elimination. The diagonal 
dominance of the column gives the important property that the sum of the 
absolute values of the Gaussian elimination multipliers is < 1 at each step. 
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Provided that Atick) is an H-matrix for 1~ k < n - 1, Theorem 1 insures that 
the cdd pivoting strategy may be used at every step of the elimination. (We 
note that if, at any step, the pivotaf element uiy r, k+ r is zero, then Theorem 
1 implies that a{fi+ I = 0 for k + 2 < 1~ n, so that the LU factorization may 
continue.) The resultant LU factorization will be an LU factorization of 
PAPT for some permutation matrix P. Our next result formalizes the appli- 
cation of Gaussian elimination with cdd pivoting to H-matrices. 

THEOREM 2. Let A be an n X n H-matrix. There exists a permutation 

matrix P such that PAPT admits an LU factorization using Gaussian 

elimination with cdd piuoting. 

Proof. By Theorem 1, A has at least one diagonally dominant column. 
Let j be such that 

i=l i=l 
i+j i#k 

and define &(‘I = P, jAP& where P, is the n X n permut$ion matrix with 
rows 1 and j interchanged. Then er t/rer the (1,l) entry of A(‘) is nonzero, or 
else the entire first column of A(‘) is zero. In either case, one step of Gaussian 
elimination may also be applied to A(“), giving the reduced matrix A(‘), say. 
Clearly P,j~(A)PG = &(PljAP$) is an M-matrix to which one step of 
Gaussian elimination may be applied, giving a reduced matrix which we 
denote by M(l). By the first step of the induction argument in the proof of 
Lemma 1, I@‘) < &(A(‘)). As M(l) is an M-matrix, &(A(‘)) is also an 
M-matrix and so A(‘) is an H-matrix. This completes the first step of the 
Gaussian’elimination, and as A(‘) is an H-matrix, it is clear that the process 
may be continued until some symmetric permutation of A has been reduced 
to upper triangular form. n 

Given an H-matrix A, we note that there may exist more than one 
permutation matrix P such that PAPT has an LU factorization with the 
property that the sum of the absolute values of the Gaussian elimination 
multipliers is < 1 at each step. For example, Gaussian elimination with cdd 
pivoting may be applied to M(A), producing an LU factorization of, say, 
P.M(A)PT. Thus PAP* is an H-matrix such that M(PAPT) has an LU 

factorization, so that Lemma 1 implies that PAPT also has an LU factorization 
and, moreover, that the comparison matrix of the kth reduced matrix of 
PAP* is greater than or equal to the kth reduced matrix of &(PAPT). As the 
LU factorization of P.M(A)PT uses cdd pivoting, the sum of the absolute 
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values of the multipliers of the LU factorization of PAPT must also be < 1. 
However, such an LU factorization does not necessarily (strictly-speaking) 
correspond to the use of cdd pivoting, as it may not use the pivots based 
upon the maximal column sums. We illustrate this in the next example. 

EXAMPLE 1. Consider the following H-matrix A and its comparison 
matrix M: 

A=[ I: -% !] and M=[:i -i -iI. 

The LU factorization of M using cdd pivoting (no interchanges are neces- 
sary) gives the reduced matrices 

M(r)= [ i y! ‘!I and M(s)= [ i -% ‘!I. 

However, Gaussian elimination with cdd pivoting for A gives 

[ 1 
6 -2 2 

A”) = 0 1 2 
3 3, 

0 3: 
-2 

and thus rows and columns 2 and 3 of A(‘) must be interchanged, giving 

[ I 

6 2 -2 
A@‘= 6 ; -g . 

00 g 

Thus, the permutation matrices P, and P2, say, of the “cdd factorization? of 
an H-matrix A and its comparison matrix &(A), respectively, are in general 
different. However, the results of the next section show that the computed 
LU factorization of each of P,APf and P,APz is numerically stable, since in 
either case the growth factor y is guaranteed to be small (as this depends 
only on the abovementioned property of the multipliers). 

Before discussing stability, consider an arbitrary M-matrix I?, and suppose 
P is a permutation matrix such that the LU factorization of P13PT corres- 
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ponds to the application of Gaussian elimination with cdd pivoting to B. 
Then for any A E 51,, _&(PAPr) admits an LU factorization into M-matrices 
(by Lemma 2), and thus (by Lemma 1) the H-matrix PAPT admits an LU 
factorization such that the sum of the absolute values of the multipliers is d 1 
at each step of the elimination. That is, the permutation matrix P permits an 
LU factorization of PAPr for all A E Qa, and the multipliers have the above 
property. 

4. NUMERICAL STABILITY OF THE ALGORITHM 

To examine the stability of Gaussian elimination using cdd pivoting, we 
must bound the growth factor y defined in (2). The row and column 
interchanges of the pivoting strategy complicate expressions for the entries of 
the reduced matrices Ack), making the analysis tedious. However, as usual 
(see e.g. Theorem 2.9 of Stewart [ll, p. 125]), we can assume without loss of 
generality that all of the interchanges required for the particular pivoting 
strategy have been done prior to doing the elimination. 

In the following lemma we derive an upper bound for the magnitude of 
any entry a!!’ of Ack) [see (1)] 
of Ai(k-t), w ‘h 

in terms of certain entries in the jth column 
ere 1~ t < k. Our stability result is a consequence of the case 

k = t in this lemma, as this gives an upper bound for Ia!!) in terms of certain 
entries in the given matrix A”) = A. 

LEMMA 3. Let A’ be any n X n H-matrix, and let P denote a permutation 
matrix such that Gaussian elimination without pivoting applied to A = PA’PT 
is identical to Gaussian elimination with cdd pivoting applied to A’. Let 
l<k<n-landk+l<i, j<n. Thenforanytsuchthat l<t<k, 

Proof. We proceed by induction on t. If a1i-l) = 0, then a$-‘) = 0 for 
k + 1~ I< n. so a!!) = a!!-‘) 
wise, if aiiik- ‘) # 0, ‘then 

‘I 
and clearly ]a$;)] < ]a$;-‘)]+ Iai:-“I. Other- 

as Ia$-“/a$‘)I < 1 using cdd pivoting. Thus the lemma is true for t = 1. 
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Assume that the lemma is true for t = p, where 1 Q p G k - 1; that is, 

If uiklpykl)p = 0, then u~~-P) = a$$P-‘); thus 

lug < (u(i;-q+ i (u{;-p-‘q, 
I=k+l-p 

so clearly 

Iu$ < lu{;-P-“J+ [=$_ #-p-1)1. 
P 

On the other hand, if uitp?-“!)p # 0 then 

< lupl)l+ l= ,$I _ luj;-p-l)l+ lui!-;‘ll’)l 
P 

since the factor multipling (uikpP;‘)I above is a sum of absolute values of 
multipliers at the (k - p)th step oi the cdd factorization, and thus is bounded 
by one. The above inequalities imply that the lemma is true for t = p + 1, 
completing the induction. W 
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Letting t = k in Lemma 3, we obtain a bound for la$i)l in terms of entries 
of A. 

COROLLARY 2. With A’, A, i, j, and k defined as in Lemma 3, 

This corollary clearly implies that 

so on letting k = n - 1 we obtain a bound on the maximal growth possible in 
any entry of any reduced matrix Ack) in terms of the maximum entry of I A(. 
We thus have the following stability result. 

THEOREM 3. Let A be an n X n H-matrix. The growth factor y resulting 
~~o~;~$ation of Gaussian elimination with cdd pivoting to A is bounded 

5. EXAMPLES 

EXAMPLE 2. To illustrate that a large growth factor y is possible in 
H-matrices, consider the matrix 

which is a nonsingular M-matrix for all x > fi. Gaussian elimination without 
pivoting applied to M yields an unbounded growth factor y of x/2 + l/x, 
whereas with cdd pivoting y = 1. 
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EXAMPLE 3. In [13], Varga and Cai give the following example of a 
singular, reducible M-matrix which does not admit an LU factorization into 

M-matrices. Let 

1 

6 -1 0 0 0 0 
-1 6 0 -1 0 -1 

M= ’ ; ’ 
0 -1 

-: 8 ;. 

0 0 0 0 6-l 
-1 0 0 0 -1 6_ 

If A is an H-matrix with &(A) = M, then A may or may not admit an LU 
factorization. However, by Theorem 2 there exists a permutation matrix P 
such that PAPT admits an LU factorization (using cdd pivoting), and by 
Theorem 3 this computation is numerically stable. For example, if 

I 

6 -1 0 0 0 0 
-1 6 0 -1 0 -1 

A= ; ; _: ; 

0 0 0 0 

; ;, I 

6-1 
-1 0 0 0 -1 6 

Gaussian elimination with cdd pivoting gives the LU factorization 

I 
1 0 0 0 0 0 
0 1 0 0 0 0 

PAPT= 

0 

-+ 

1 0 0 0 
_r 6 0 -&loo 1 

L 0 0 0 0 0 0 0 0 1 1 0 1 1 

X 

6 0 -1 -1 -1 0 
06-l 0 0 0 

00 T -1 0 0 

00 0 1219 -1 210 

00 0 0 l6 

0 

-1 
000 0 0 2 
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where 

P= 

-0 1 0 0 0 0 

000010 

000001 

100000 

000100 

.o 0 1 0 0 o_ 
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of R. J. Plemrnons in the writing of this paper. We also wish to acknowledge 
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