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SUMMARY

The growth plate (GP) comprising sequentially differ-
entiated cell layers is a critical structure for bone
elongation and regeneration. Although several key
regulators in GP development have been identified
using genetic perturbation, systematic understand-
ing is still limited. Here, we used single-cell RNA-
sequencing (RNA-seq) to determine the gene ex-
pression profiles of 217 single cells from GPs and
developed a bioinformatics pipeline named Sinova
to de novo reconstruct physiological GP develop-
ment in both temporal and spatial high resolution.
Our unsupervised model not only confirmed prior
knowledge, but also enabled the systematic discov-
ery of genes, potential signal pathways, and surface
markers CD9/CD200 to precisely depict develop-
ment. Sinova further identified the effective combina-
tion of transcriptional factors (TFs) that regulates GP
maturation, and the result was validated using an
in vitro EGFP-Col10a screening system. Our case
systematically reconstructed molecular cascades in
GP development through single-cell profiling, and
the bioinformatics pipeline is applicable to other
developmental processes.

INTRODUCTION

Mammalian body dimensions are primarily determined by the

lengthening of skeletal structures; this lengthening is controlled

by growth plate (GP) development, and the GP is composed of

at least four hierarchical zones that are arranged in columns

that are aligned parallel to the longitudinal axis of the bone: the

resting zone (RZ), the proliferative zone (PZ), the prehypertrophic

zone (PHZ), and the hypertrophic zone (HZ) (Yeung Tsang et al.,

2014) (Figure 1A, left). RZ chondrocytes serve as a reservoir of

cells that later form the GP. The proliferative zone is located
Cel
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just below the RZ and consists of proliferative chondrocytes;

these cells rapidly proliferate and undergo stepwise terminal dif-

ferentiation, forming the hypertrophic zone (Yeung Tsang et al.,

2014). The progressive transformation of proliferative chondro-

cytes to hypertrophic cells followed by ossification is the basic

process underlying both bone lengthening in adolescence and

fracture repair after injury (Emons et al., 2011; Scotti et al.,

2013; Yeung Tsang et al., 2014). Abnormal growth development

may cause severe skeletal dysfunction (Kornak and Mundlos,

2003). Therefore, understanding the precise molecular mecha-

nisms of GP development is critical for understanding both phys-

iological and pathological phenomena.

Classical approaches to understand developmental regulato-

ry mechanisms include either creating an in vitro differentiation

model or characterizing model animals with genetic perturbation

at a few time points throughout development. Although in vitro

models that mimic GP development have been reported, these

models require a long cell-culture interval, with increasing sys-

tem instability, and only partially recapitulate the process (Muel-

ler and Tuan, 2008; Yao and Wang, 2013). Therefore, studies of

GP development primarily rely onmousemodels using either ge-

netic perturbations or fluorescent tracing (Leung et al., 2011;

Yang et al., 2014b; Yeung Tsang et al., 2014). Despite recent in-

sights into the indispensable signaling pathway regulators and

specific biomarkers, amore general and systematic understand-

ing of this process remains incomplete.

Single-cell transcriptome sequencing has recently increased

in popularity because it enables the gene expression profiling

of single cells (Navin, 2015; Trapnell, 2015). It is difficult to restore

the temporal and spatial pattern of individual cells due to a loss of

this information in major single-cell techniques, as well as to

identify the systematic regulators during the stage transition of

development (Achim et al., 2015; Durruthy-Durruthy et al.,

2014; Shin et al., 2015; Treutlein et al., 2014; Waldhaus et al.,

2015; Wen and Tang, 2014). Conceptually similar to other devel-

opmental scenarios, the GP is a structure that harbors a sequen-

tial differentiation process across the proliferative zone toward

the hypertrophic zone (Li et al., 2015); we reasoned that each

single cell from postnatal GPs individually represents a given dif-

ferentiation stage, and we sequenced the transcriptome of 217
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Figure 1. Single-Cell Profiling Reveals Cell Heterogeneity throughout the GP

The distal cartilage structure of the tibia at postnatal day 7 (P7) consisted of four zones that were sequentially differentiated: the RZ, the PZ, the PHZ, and the HZ.

The PZ, PHZ, and HZ generally compose the GP structure.

(A) Schematic diagrams of the single-cell analysis of cell populations from the GP. The H&E staining graph and diagram illustrate four cell types comprising tibia

distal cartilage free from invasion by circulating cell types in the C57BL/6 mouse at P7. The dashed-line box indicates the microdissected structure of the GP

across the three zones that were used for the single-cell analysis. These microstructures were trypsinized to yield a single-cell suspension and trapped using the

Fluidigm C1 auto prepare system for the downstream single-cell mRNA-seq experiment (for details, see Movie S1 protocols).

(B) CC of 217 single cells by transcriptome analysis revealed at least three populations.

(B0) Optimal cluster numbers were determined in the delta plot to reveal the relative changes in the cumulative density function (CDF) in the CC.

(C) In parallel, PCA indicated the relative similarity across the 217 cells in three-dimensional space. K-means clustering further grouped the cells into three clusters

marked with different colors in the PCA plot. A dissociated cluster (blue), contained outlier cells that exactly matched a distal cluster (purple dash line box) in the

CC, as indicated by the arrow (B and C).

(D–F) Matrix protein gene expression distributions of Col10a (D), Col9a (E), and Comp (F) in the 217 single cells. The gene expression levels are indicated by the

color of the bar.
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individual cells from GPs. We developed a pipeline, ‘‘Sinova’’

(Figure 1A, right), to integrate multiple unsupervised analyses

and reconstruct GP development both temporally and spatially

at the single-cell level. The reconstructed model not only con-

firmed prior knowledge, but also enabled the systematic discov-

ery of genes with expression pattern across GPs. Notably, the

de novo-identified surface-marker combination (CD9/CD200)

predictively classified cells according to different cell stages

in the GPs; this classification was effectively validated by

fluorescence-activated cell sorting (FACS) sorting. By further

combining gene clusters and cell-stage delineation analysis,

Sinova de novo identified the effective transcriptional factor

(TF) portfolios regulating GP maturation, and these were exper-

imentally cross-validated by an EGFP-Col10a knockin reporter

screening system. Our results indicate how functional genes

and TFs are combined into a master regulatory network at the

systems level during GP development and depict this process

with more precision than ever. Our bioinformatic pipeline dem-

onstrates the ability to resolve a complete developmental

process by interpreting single-cell expression profiles in an

unbiased manner and is readily transferable to other in vivo sce-

narios and is complementary to traditional animal genetic

studies.

RESULTS

Isolation of GP Tissue from a Postnatal Day 7Mouse and
Single-Cell Profiling
We precisely isolated pure mouse postnatal GPs free from

invasion by circulating cell types from the blood vessels on

postnatal day 7 (P7) and completely removed the perichon-

drial structures (Figure S1). These microdissected structures

contain the cell layers from the proliferative zone (PZ) to

the hypertrophic zone (HZ) (Figure 1A, left). To further prevent

the contamination by cells of hematopoietic origin (CD45

positive) during isolation, red blood cells were lysed, and

CD45-negative cell populations were sorted from the trypsi-

nized structures for downstream single-cell analysis. We next

applied a Fluidigm C1 automatic microfluidic platform to

randomly capture and analyze the transcriptomes of 217 single

cells via single-cell mRNA-sequencing (mRNA-seq) (Figure 1A,

middle). We sequenced an average of 3.8 million reads and

mapped more than 9000 genes with confident expression in

at least ten single-cell samples (for details on quality control,

refer to Figure S2).

Cell Heterogeneity in the GP Revealed by Single-Cell
Profiling
On P7, the GP consists of cells at the sequential stage of differ-

entiation, from early proliferative chondrocytes to late-stage

hypertrophic chondrocytes. To broadly characterize potential

heterogeneity, we measured the similarity of the 217 single-cell

samples across the expression profiles of more than 9,000

sequenced genes. Consensus clustering (CC) (Swift et al.,

2004; Wahyudi et al., 2011) was used to account for the correla-

tion between the broadly similar cells throughout development of

the GP. At least three cell populations were revealed after CC,

among which most of the cells belonged to two large groups,
and 13 cells belonged to a smaller, less similar group (Figures

1B, 1B0, and S3).

In parallel, we performed a dimensionality reduction-based

principle component analysis (PCA) to reduce the high-dimen-

sion expression data across these single cells to three dimen-

sions and capture innate single-cell characteristics. We then

applied k-means clustering to group the cell population into

three clusters in three-dimensional space (Figure 1C). Notably,

the outlier cells grouped together (marked in blue) in the PCA,

which dissociated from the bulk population and were consistent

with 13 samples in the distal cluster in CC (Figures 1B and 1C).

Two mixed clusters (marked in green and red) roughly corre-

sponded to two large clusters in CC. The agreement of the

results from two independent and unsupervised methods sup-

ported the rationale of the cell heterogeneity identification.

Matrix proteins are diversely expressed in cartilage tissues.

For example, collagen IX (Col9a) and cartilage oligomeric matrix

protein (Comp) are putatively expressed in cartilage tissues,

whereas collagen X (Col10a) is specifically expressed in the

hypertrophic zone of the GP cartilage (Myllyharju, 2014). We

mapped the expression levels of these genes in the 217 cells

projected in PCA. Both Col9a and Comp were putatively ex-

pressed 1in two large populations, whereas Col10awas differen-

tially expressed, with significantly higher expression in the yellow

cluster (Figures 1D–1F). However, none of these genes were

markedly expressed in the small cluster of 13 cells. Therefore,

we assumed that the 204 cells in the large clusters originated

from the GP, whereas the 13 cells were unidentified outliers

and were thus excluded from the downstream analysis (see Ta-

ble S1 for the potential lineage identity prediction of the 13 cells).

Collectively, we revealed diverse cell heterogeneity based on the

transcriptome expression profiles and confidently identified

broad cell populations from the GP.

Reconstruction of the Temporal Dynamics of GP
Development via Pseudo-Temporal Ordering
Because GP development and many other developmental

contexts are stepwise sequential processes, we developed a

generalized bioinformatics pipeline, ‘‘Sinova,’’ to systematically

resolve the developmental process from single-cell mRNA-seq

(mRNA-seq) data. Sequenced single cells lost their in vivo tem-

poral and spatial information after isolation; therefore, we first

attempted to re-order the 204 single cells according to their dif-

ferentiation stage in the GP.

As data representing these single cells were projected to

three-dimensional (3D) PCA space, the Euclidean distance in

the 3D-PCA reflected the transcriptional similarities among sin-

gle cells. Here, we assumed single cells with greater similarity

were at mutually closer stages of the differentiation process

and referred to theminimal spanning tree (MST)-based algorithm

adapted from ‘‘Monocle’’ (Magwene et al., 2003; Trapnell et al.,

2014) to re-order these single cells into a pseudo-temporal quasi

timeline corresponding to the in vivo developmental process. In

practice, Sinova constructed the MST based on the 3D-PCA

space to computationally ligate similar cells in a stepwise

manner and identified the longest path across the MST, which

corresponds to the longest developmentally pseudo-temporal

sequence of these single cells. Sinova calculated the Euclidean
Cell Reports 15, 1467–1480, May 17, 2016 1469
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distance as the pseudo-temporal interval. Based on this, the

expression fluctuation of each gene was projected across the

pseudo-temporal ordering. Sinova then fit each gene using a

nonlinear function, and genes with defined pseudo-temporal dy-

namics were clustered (Figure 2A, also see Experimental Proce-

dures for details).

Using the Sinova pipeline, we re-ordered the 204 single cells

from the GP in an unsupervised manner across the pseudo-tem-

poral ordering and determined the beginning and end of the

timeline based on the expression levels of the known hypertro-

phic master marker Col10a (Figure 2B). Next, more than 600

genes that were dynamically regulated were identified with a

high correlation threshold (see Experimental Procedures).

Because each single cell was represented as a quasi time-series

point, k-means clustering was used to computationally cluster

these genes based on their high-resolution pseudo-time-series

expression profiles. We applied 10,000 iterations of random

k-means to optimally classify these genes into six clusters based

on co-occurrence probability (Figure 2C, also refer to Experi-

mental Procedures). Subsequently, genes with similar expres-

sion trends were clustered (k = 6) and visualized with a fitting

curve after smoothing (Figure 2D, left). The top 30 genes of

each cluster with highest significance were listed (Table S2),

and the top five genes of each cluster were also re-validated

by single-cell qPCR (Figure S5) to demonstrate the accuracy of

the single-cell RNA-sequencing (RNA-seq) data.

To determine the accuracy of the unsupervised algorithm, we

inspected the gene ontology (GO) profile enrichment among

each cluster of genes (Figure 2D, right). Notably, hypertrophic

differentiation-related GO terms were accumulated in the

constantly upregulated and transiently upregulated clusters

(clusters 1 and 2), including TFs that were previously identified

in hypertrophic regulation, well-known matrix proteins, and Ihh

and Bmp signaling, which is activated in the prehypertrophic

and hypertrophic zones (Minina et al., 2001). Growth hormone

phosphatidylinositol signaling and angiogenic genes were

closely associated with the delayed upregulation cluster (cluster

3), supporting the assumption of late hypertrophy and later

endochondral bone formation in this cluster (Gerber and Ferrara,

2000; Ulici et al., 2008). The expression of the delayed downre-

gulation cluster (cluster 5), which enriched steroid hormone

signaling and non-hypertrophic chondrocyte-associated genes,

was maintained in the early stage and decreased in the late

stage. Transcription and translational activity-associated GO

terms were downregulated across the pseudo-timeline in the
Figure 2. Reconstruction of the Temporal Dynamics of GP Developme

(A) Workflow of the temporal dynamics reconstruction via pseudo-temporal orde

(B) Upper: cells were projected across the pseudo-temporal quasi-timeline bas

microfluidic single-cell trapping system; mixed ID sequences across the pseud

Lower: the expression levels of the hypertrophic marker Col10a were mapped ac

timeline.

(C) Iterations of random k-means clustering identified six optimal clusters among

(D) Six gene clusters with similar expression trends and functional gene identifica

with the indicated trends. All of the genes in each cluster were revealed in the con

red curves. Middle: the most relevant GO terms associated with the genes in each

as histograms (dark blue). Right: previously reported or experimentally validated

under ‘‘known participating genes’’; genes with the most significant expression t

under ‘‘genes with the most significant expression trends,’’ among which genes
transient downregulation cluster (cluster 6), correlating with the

cessation of the cell cycle in proliferative chondrocytes upon

entering hypertrophy (Yang et al., 2014a; Yeung Tsang et al.,

2014). Collectively, the reconstruction of pseudo-temporal

development successfully recaptured most of the findings of

previous genetic model studies without referring to prior

knowledge.
Identification of Molecular Cascades Regulating GP
through Proximo-Distal Axis Reconstruction
The morphology of the GP resembles a cylinder, and cells corre-

sponding to stepwise developmental stages are arranged in uni-

directional ‘‘waterfall’’ structures along the proximo-distal axis

(PDA) (Li et al., 2015). Upon re-inspecting the 3D-PCA and

pseudo-temporal ordering, which transcriptionally reflect the

developmental relationships, we sought to re-map the single

cells into a cylinder space and view the gene expression distribu-

tion along the longitudinal axis, resembling the PDA of the GP

in vivo (Figure 3A, also refer to Experimental Procedures). The

distance from the center of the cylinder does not actually reflect

the physical location in theGP. To demonstrate the effectiveness

of our model, we microdissected the GP structure into three

layers corresponding to the distal (PZ), middle (PHZ), and prox-

imal (HZ) positions and compared the expression levels of

selected genes in each mechanically dissected layer sample

with the expression signature of single cells in the spatial trisec-

tion of the pseudo-PDA model (Figure 3B).

Among the genes that shared a significant spatial expression

pattern, we classified them into (1) matrix protein and regulators;

(2) TFs and co-factors; (3) signaling and related regulators; and

(4) metabolic regulators, and selectively presented and ex-

plained them below (Figures 3C–3F and S4 for additional genes

and corresponding pseudo-PDA patterns).

(1) Matrix protein and regulators (Figure 3C): as expected,

the expression of the well-recognized hypertrophic differ-

entiation marker Col10a was barely detectable in the

distal proliferative zone but began to increase across

the PDA axis. The terminal hypertrophic markers

Mmp13, Spp1, and Dmp1 were only expressed on the

bottom of the proximal layer, supporting previous findings

(Komori, 2010; Yeung Tsang et al., 2014). Collagen IX

(Col9) (Zhang et al., 2003), which was previously regarded

as a putative marker across the GP, exhibited slightly

higher expression in the middle layers compared to the
nt

ring.

ed on the ordering and were color coded based on the original cell ID on the

o-temporal quasi-timeline indicate the unbiased single-cell trapping process.

ross the single-cell points and used to determine the beginning and end of the

the 664 genes with significant pseudo-temporal expression trends.

tion. Left: the genes were clustered in six groups based on relative expression

tour map, and the clustering centers of each expression trend are shown in the

cluster are listed. Enrichment significance scores for each GO term are shown

genes that participate in GP or cartilage development in each cluster are listed

rends (top 20 sorting order based on multiple testing) in each cluster are listed

that overlapped with the ‘‘known participating genes’’ are marked in red.
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distal and proximal layers. Ugp2, which encodes UDP-

glucose pyrophosphorylase, was highly expressed in

the PHZ and HZ and has been proposed to regulate hya-

luronan synthesis in hypertrophic cartilage (Magee et al.,

2001). These examples demonstrate a more precise defi-

nition of spatial gene expression compared to the current

understanding obtained using traditional methods.

(2) TFs and co-factors (Figure 3D): consistent with the

results of previous studies, the expression of the early

chondrogenesis master TF Sox9 was lower in the prox-

imal HZ, whereas Mef2c was induced in several single

cells in the PHZ and HZ, presumably to regulate hypertro-

phic differentiation (Arnold et al., 2007; Yeung Tsang et al.,

2014). Interestingly, although Foxa2/3 were recently iden-

tified as a critical factor in hypertrophic chondrocyte

maturation in genetic mouse models (Ionescu et al.,

2012), our pseudo-temporal-pattern indicated that

Foxa3 expression was induced early in the PZ-PHZ,

whereas Foxa2 expression was restricted mainly to the

PHZ and HZ. Notably, Ncl, which encodes nucleolin,

was highly expressed in the PZ compared to the PHZ

andHZ, consistent with the function of nucleolin in repres-

sing the transactivation of Mmp13 (Figure 3C). We also

determined that several TFs, including Atf3, Id3, and

Foxn2 (Koivisto et al., 2014; Zhao et al., 2011), which

participate primarily in hypertrophic cardiomyopathy,

shared a clear spatial expression pseudo-temporal-

pattern signature, indicating potential roles in directing

hypertrophic chondrocyte differentiation.

(3) Signaling and related regulators (Figure 3E): we success-

fully recapitulated the spatial information of the important

Indian hedgehog signaling molecule gene Ihh (Wongdee

et al., 2013), which is secreted primarily by hypertrophic

cells in the HZ but not by terminal hypertrophic chondro-

cytes. In contrast, Bmp2 signaling appears to be acti-

vated early, as in the PHZ. Interestingly, Smpd3, which

is highly induced from PHZ to HZ, encodes a phos-

phodiesterase that is involved in ceramide and subse-

quent sphingosine-1-phosphate (S1p) biosynthesis (Van

Brocklyn andWilliams, 2012). The S1p signal may be sub-

sequently received downstream by S1P receptor (S1pr1)-

expressing cells among terminal hypertrophic chondro-

cytes, revealing a potential role in cell survival regulation

via the sphingolipid biostat in the HZ. We also identified

the high expression of Spry2, which is responsible for po-

tential angiogenic inhibition (Wietecha et al., 2011), in the

PZ and PHZ but not the HZ. These findings support a
ure 3. Proximo-Distal Axis Reconstruction and Identification of Reg

Workflow of the PDA reconstruction of the GP based on single-cell RNA-seq

Diagram of correlation analysis compared the fitting trends of the selected gene

ection of the reconstructed pseudo-PDA pattern.

F) Spatial distribution of the selected genes in the pseudo-PDA pattern of the

ds) of the gene in each single cell at log scale. The colored bars are indicate

ression level distribution in the trisection of the pseudo-PDA pattern. qPCR

ere applicable. Selected genes with dynamic expression distributions were cla

related regulators (E), and metabolic regulators (F).

Correlation analysis of 30 genes shown by radar map indicated identical tre

dissected bulk sample. PCC, Pearson correlation coefficient.
mechanism in which spatial blood vessel induction is

restricted primarily to the HZ and is responsible for later

blood vessel invasion and subsequent secondary ossifi-

cation center formation.

(4) Metabolic regulators (Figure 3F): among genes with the

most obvious shared pseudo-PDA signatures, we identi-

fied groups that were closely associated with various

metabolic regulatory pathways but with no clear function

in GP development. For instance, Nup98, Cycs, Lmna,

and Ssr1 were predominantly expressed in the PZ/PHZ

and reduced in the HZ, which is consistent with the signif-

icantly reduced metabolic activity in late-stage hypertro-

phic chondrocytes (Terpstra et al., 2003). Map1lc3b, a

gene that encodes a protein with a predicted function in

autophagy (Li et al., 2013), may be associated with

death/survival regulation in the HZ. These genes merit

further exploration in systematic studies of metabolic

regulation during GP development.

Finally, we selectively compared expression signatures in the

computationally reconstructed pseudo-PDA model with qPCR-

tested relative expression level in mechanical trisection samples

for 30 dynamically regulated genes across the pseudo-PDA axis

(as explained in Figure 3B). The correlation analysis revealed

identical trends in the selected genes between the reconstructed

PDA patterns and the mechanical microdissected bulk sample

(Figure 3G), validating the rationality of this PDA reconstruction.
Identification and Validation of Surface-Marker
Combinations to Sort Cell Subpopulations from GPs
The separation and enrichment of cell subpopulation would

facilitate the in vitro study system of cartilage development

and skeletal disorders. Surface proteins are differentially ex-

pressed among different types of cells, which could be exploited

to sort a specific cell type from a mixed population through

FACS. Here, the surface markers CD200, CD24, and CD9 were

dynamically expressed across the reconstructed pseudo-PDA

pattern (Figures 4A–4C). Notably, CD9 was more highly ex-

pressed in the middle PHZ layer, whereas CD200 was predom-

inantly expressed in the HZ layer. In contrast, CD24 was univer-

sally expressed across the GP. We next performed in situ

immunostaining and flow cytometry to sort single-cell suspen-

sions from the GP to selectively validate CD200 and CD24a.

Consistent with the reconstructed model, in the fluorescence-

activated cell sorting (FACS) analysis, more than 85%of the cells

from the GP were CD24a-positive, whereas approximately 30%

of cells were CD200 positive (Figures 4B and 4C, middle). In situ
ulators in the GP

(see Experimental Procedures for details).

s between themechanically dissected three-layer bulk samples and the spatial

GP. Heatmaps were used to reveal the RPKM (reads per kilo-bases per million

d on the left side of each plot. The violin plot on the left reveals each gene’s

of gene expression from the mechanically dissected bulk sample is displayed

ssified as matrix proteins and regulators (C), TFs and co-factors (D), signaling

nds between the reconstructed pseudo-PDA model and the mechanical mi-
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immunofluorescence (IF) staining of the GP sections also vali-

dated the spatial distribution of CD200 and CD24a (Figures 4B

and 4C, right), which were well consistent with the reconstructed

pseudo-PDA pattern, as well as a previous report (Belluoccio

et al., 2010).

We next sought to ask whether these ‘‘in silico’’-discovered

spatial patterns of surface markers from our model could be

practically used to sort functional subpopulations in GPs. Theo-

retically, four CD200/CD9 signatures, namely, CD200-/CD9 low,

CD200–/CD9 high, CD200+/CD9 high, and CD200+/CD9 low,

can approximately distinguish among the PZ, PZ-PHZ, PHZ,

and HZ cells, respectively, according to our computationally re-

constructed PDAmodel (Figure 4D).We analyzed the expression

of the marker genes in the four subpopulations sorted by FACS

(Figure 4E). Notably, the expression levels of three marker genes

and the relative expression levels of CD9 and CD200 in the four

FACS-sorted populations correlated highly with the pseudo-

PDA patterns (Figures 4F–4S, compared to each pseudo-PDA

pattern in the left corner). These cross-validated results further

verified our model, and the single-cell spatial reconstruction

enabled the successful identification of surface-marker combi-

nations to effectively and precisely sort single cells at different

biological stages across the GP.

Reconstruction of the TF Regulatory Network during GP
Development
TFs and co-factors are critical participants in the regulation of GP

development. Because of the difficulties in establishing in vitro

differentiation systems that precisely reflect real physiological

conditions and the low-throughput and tedious methods that

are required to establishmouse geneticmodels, our understand-

ing of the precise transcriptional regulation networks remains

incomplete. To systematically identify the TF portfolios (combi-

nations) that contribute to GP development, we screened genes

with transcriptional activity among genes that were dynamically

regulated within a pseudo-temporal timeline. A total of 36 TFs

were identified from this dataset. Among these TFs, several pre-

viously validated regulators from different experimental contexts

were successfully recapitulated (Table S3). To further predict the

functionally important TF portfolio in GP development, we

reasoned that a TF with more significance would share high

co-expression correlations with a larger number of genes that

were dynamically regulated during development. The binary

expression patterns (Figure 5A) of genes from single-cell

profiling suggested the presence of discrete ‘‘on’’ and ‘‘off’’

states among individual cells, and the distribution of the ‘‘on’’

part was regarded as a continuous fraction of the expression
Figure 4. De Novo Identification and Validation of Surface-Marker Com

(A–C) Spatial distribution of the surface markers CD9, CD200, and CD24a in the p

the gene in each single cell at log scale. The colored bars are indicated on the left

distribution in the trisection of the pseudo-pattern. The expression distributions o

via immuno-fluorescence-activated cell sorting (FACS) and in situ IF staining of G

(D) Schematic diagram illustrating the CD200/CD9 FACS sorting strategy to class

PHZ (CD200+/CD9 high), and HZ (CD200+/CD9 low).

(E) FACS analysis of CD200/CD24 surface protein expression in single-cell susp

(F–S) The relative gene expression across the four CD200/CD9 sorting region

expression signatures of each gene tested are shown adjacent to the bar charts
profile. Consequently, to comprehensively evaluate the associa-

tion of each given gene pair, such as Foxa3/Col10a (Figure 5B),

both characters within a gene pair should be considered as co-

existing binary and continuous expression patterns. We thus

methodologically calculated the connectivity score by inte-

grating both the odds ratio (OR) (for binary relationship) and

the Spearman rank correlation (for continuous relationships)

(Pina et al., 2015), which comprehensively reflected the co-

expression patterns among the TFs and genes across the

pseudo-temporal timeline (Figure 5C; Supplemental Experi-

mental Procedures).

To reduce network complexity, we first globally and compre-

hensively interrogated the co-expression patterns among 36

TFs and 60 of the most significantly regulated genes (top ten

genes each from six clusters) (Figure 5D). The network revealed

a higher positive connectivity between the TFs and the tran-

siently upregulated cluster (cluster 2). In contrast, two downre-

gulated clusters (cluster 5 and cluster 6) shared a significantly

higher proportion of negative associations with the TFs,

revealing global regulation by repression (Figure 5D).

The global connectivity score for each TF indicated the regu-

latory potential for the genes across the entire developmental

process. By evaluating both the score and the TF pseudo-tem-

poral expression pattern, we statistically predicted the participa-

tion of both globally upregulated positive and downregulated

negative TF regulators during GP development (Figure 5E).

Notably, several TFs that were previously shown genetically to

be critical for GP development, including Mef2c, Atf3, Foxa2/3,

and Sox9, were successfully re-captured as having a high regu-

latory potential. We also systematically predicted several previ-

ously unknown TFs, such as the Klf family and Fos family, with

relatively significant connectivity scores throughout develop-

ment. These TFs represent subjects for future genetic model an-

alyses (see Figure 5E and Table S4 for compete list).

The single-cell expression data provided a high-resolution

developmental profile that permitted the TF regulatory network

to be recaptured across sub-divided developmental stages.

We next divided the pseudo-temporal quasi timeline into three

sections by unsupervised k-means clustering (corresponding

to the predefined distal, middle, and proximal stages) and sought

to precisely infer each TF contribution in two transition intervals

by our algorithm (Figure 5F). In this end, Sinova characterized the

integrative co-expression patterns among each TF and the re-

maining dynamically regulated genes among single cells attrib-

uted to each of the transition intervals (Supplemental Experi-

mental Procedures). Notably, although TF portfolios for two

transitions highly overlapped in global analysis (Figure 5E), there
binations to Sort Subpopulations of Cells from the GP

seudo-temporal pattern of the GP. Heatmaps were used to reveal the RPKM of

side of each plot. The violin plot on the left reveals each gene’s expression level

f the surface markers CD200 (B) and CD24a (C) were experimentally validated

P sections from mouse tibias at P7.

ify the four spatial regions, PZ (CD200–/CD9 low), PZ-PHZ (CD200–/CD9 high),

ensions from the GP. Four gating regions are indicated.

s was analyzed by qPCR. The computationally reconstructed spatial gene

.
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was obviously a different TF contribution priority between the

first- and second-state transition process, suggesting the pre-

cise and sequential roles of these TFs at the sub-stage level (Fig-

ures 5G, 5H, and S6 [box for TF portfolio 1/2]; Table S4 for a full

list of TFs and respective connectivity scores). In the first-state

transition, the revealed associations between TFs and genes in

the transient-upregulation cluster (cluster 2) were established

for a majority, as indicated by the sum of connectivity scores

(Figure 5G, and inserted pie chart). However, during the sec-

ond-state transition stage, the TFs were more evenly associated

with each cluster, and there was a significantly increased asso-

ciation with the delayed downregulation cluster (cluster 5) (Fig-

ure 5H). Additionally, while positive regulatory associations

predominated across the first-state transition, more negative

regulatory associations were found in the terminal differentiation

of the GP, increasing the complexity of the gene regulatory

network (GRN).

Finally, we interrogated the GO enrichment for potentially

regulated genes that were significantly associated with TFs

in the two-state transition processes. For the first-state transi-

tion, GO terms were associated with ion exchange, signaling

molecules, and granule transport or secretion; in contrast,

extracellular matrix secretion, ossification, and metabolic ac-

tivity were enriched in the second-state transition (Table S4).

Based on these de novo findings, we systematically recon-

structed a GP development model from an unsupervised sin-

gle cell analysis. In this model (Figure S6), the groups of TFs

listed in portfolio 1 potentially activated the ion exchange

and expression of signaling molecules, including Bmp2 and

Ihh, during the transition from distal PZ to PHZ. The secretion

of these molecules, caused by enhanced Golgi activity, regu-

lates the ossification process downstream in the HZ. The sec-

ond wave of regulation from PHZ toward terminal HZ was

driven by either the enhanced expression of TFs, including

Prr1rqb, RunX3, and Mef2c, or the repression of TFs, such

as Foxn2 and Sox9. The TFs in this portfolio reduce the meta-

bolic activity of cells and induce the secretion of lipid deriva-

tives among the cells in the HZ. Additionally, these TFs

strongly activate ECM production, corresponding to the termi-

nal ossification process.

Identification and Validation of Effective TFs Portfolio
that Facilitate GP Maturation
Because it is difficult to recapitulate GP hypertrophic maturation

in in vitro systems, current approaches mainly rely on tissue-en-
Figure 5. Reconstruction of the TF Regulatory Network during GP Dev

(A and B) Representative binary expression pattern for Atf3, Col10a1, Fos, and So

reflecting the both on/off and continuous nature of gene-gene association (B).

(C) Workflow of the TF regulatory network prediction algorithm adapted to single

(D) Global TF regulatory network across the GP developmental process, inferred

represent the respective gene expression clusters identified in Figure 2, as indi

negative associations. The node size of the TFs is proportional to the relative co

(E) Representative predicted upregulated (positive) and downregulated (negative

validated critical regulators during GP development are marked in red. Refer to T

(F) De novo identification of three sub-stages through k-means clustering acros

middle stage, green; proximal stage, orange. Two-state transition processes are

(G and H) TF regulatory networks among state transition 1 and state transition 2 ar

connectivity scores in each cluster is presented in the pie chart within each state
gineered explants in combination with chemical pre-induction.

Although several TFs and co-factors have been revealed by in-

dependent genetic perturbation experiments, effective TF port-

folios that direct GP maturation have not been fully revealed.

Among the 36 TFs that were identified from a single-cell analysis,

33/36 TFs were upregulated during the pseudo-temporal time-

line. We next sought to determine whether these positive TFs

with high connectivity scores predicted by the Sinova algorithm

could be effective contributors to GP maturation. Because

Col10a is a standard marker for GP maturation, as corroborated

by previous studies, as well as by our single cell reconstructed

pattern, we thus generated an EGFP reporter knockin within

the Col10a gene coding sequence in the mouse chondrocyte

progenitor cell line ATDC5 (Figure 6A). This engineered cell

line, named ATDC5 EGFP-Col10a, did not express Col10a, as

indicated by EGFP florescence at the basal level. We next gener-

ated a lentiviral expression vector pool comprising 33 TFs to

infect ATDC5 EGFP-Col10a, along with puromycin resistance

screening (Figure 6B). Notably, 28.3% of the total cells were

EGFP positive in groups that were infected with vectors from

the expression pool compared to the basal control, indicating

the functionality of 33 positive TFs identified from the single-

cell dataset. Subsequently, cell populations with both EGFP-

high and EGFP-low profiles were sorted, and their relative TF

accumulation was compared (Figure 6C). Rationally, one would

expect that TFs with higher functional priority toward GP matu-

ration would share higher accumulation in the EGFP-high popu-

lation; thus, we screened out 12 TFs with three times higher

accumulation in the EGFP-high population. A total of eight of

12 TFs overlapped with the corresponding top 12 predicted

TFs with the highest connectivity scores, further illustrating the

reliability of the Sinova TF regulatory prediction algorithm

(Figure 6D).

To further demonstrate the effectiveness of the TF portfolio,

we transfected a vector pool comprising eight overlapped TFs

and the eight TF expression vectors individually into the freshly

isolated mouse primary chondrocyte. Interestingly, the transfec-

tion of the pool of eight TFs significantly elevated the Col10a

gene expression, even with a transfection efficiency of �30%,

but eight TF single transfections with equal dose onlymoderately

regulated Col10a expression, highlighting the collective effects

of the identified TFs (Figure 6E). Taken together, these results

demonstrate that a portfolio of eight TFs, as identified using a

combination of bioinformatics prediction and pooled screening,

can effectively facilitate GP maturation.
elopment

x11 (A), and an example of the density distribution between Foxa3 and Col10a1

-cell developmental reconstruction.

by the OR and Spearman rank correlation. Gray nodes, TFs; colored nodes

cated in the legend. Solid red lines, positive associations; dashed blue lines,

nnectivity in each network.

) TFs are listed based on the connectivity score ranks. Previously genetically

able S2 for the full list.

s the pseudo-temporal quasi timeline of GP development. Distal stage, blue;

indicated.

e shown. The detailed formatting and legend are consistent with (D). The sum of

transition process.
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Figure 6. Identification of Effective TFs Portfolio Direct GP Maturation

(A) Diagram of EGFP knockin at the first exon of Col10a coding region in ATDC5 chondrocyte progenitor cell line.

(B) Diagram of TFs pool screening strategy based on lentivirus hybrid infection into the ATDC5 EGFP-Col10a cell line.

(C) Flow cytometry analysis revealed EGFP subpopulation activation after 33 pooled TFs infection. Activated gating in contrast to the basal control is indicated in

the red dashed line andwas further divided into low-EGFP+ and high-EGFP+ subpopulations in sorting process. Representative florescent views of culture ATDC5

EGFP-Col10a are shown on the right side in each experimental condition.

(D) TF accumulation was detected by qPCR between high GFP+ and low GFP+ subpopulations. A total of 12 TFs with a greater than 3-fold enrichment were

highlighted with a yellow box, and the TFs that overlapped with the top 12 predicted TFs with the highest connectivity score are indicated with red narrows.

(E) qPCR of Col10a marker activation upon indicated TF/TFs pool transfection in primary chondrocyte cells. The total transfection dose was equal among each

experimental group. p value and error bars were indicated.
DISCUSSION

Recent developments in single-cell gene expression profiling

permit alterations in gene expression to be tracked among single
1478 Cell Reports 15, 1467–1480, May 17, 2016
cells directly isolated from tissues, thus enabling a systematic

elucidation of the regulatory machinery under in vivo conditions.

Because the GP is a well-arranged structure with unidirectional

differentiation and a cylindrical shape, we assumed that cells



that were isolated from the GP structure would be at different dif-

ferentiation stages across the GP under physiological conditions

(Li et al., 2015).

Here, we developed a pipeline called ‘‘Sinova,’’ which uses an

unbiased bioinformatics approach to determine the transcrip-

tional heterogeneity among 217 single cells. The computational

model allowed us to reorder single cells throughout development

based on their transcriptome similarities in an unsupervised

manner. We then spatially reconstructed the GP, and a modeled

3D pseudo-PDA pattern enabled the discovery and analysis of

gene makers across the GP. For example, we clearly in silico re-

captured the spatial pattern of one of the important known TFs

contributing to hypertrophy, Mef2C, which is well correlated

with a rigorous and elegant animal genetic study (Arnold et al.,

2007). Notably, both temporally and spatially resolved ‘‘high-res-

olution’’ maps of the GP not only enabled a systematic analysis

of the ‘‘in situ’’ regulation mechanism but also de novo identified

surface-marker combinations that enabled the effective sorting

of cell subpopulations at four stages in GPs. To identify effective

TF combinations that direct a given development, Sinova further

applied a hybrid association algorithm that took the advantage of

single-cell expression profiles to estimate the regulatory poten-

tial of each TF along a pseudo-temporal timeline that represents

a model of the GP. Our estimation results highly overlapped with

the experimental screening outcome, which conceptually justi-

fied the rationality of the algorithm.

Sinova shared at least several key differences from the existing

single-cell analysispackages. First,Sinovaused twounsupervised

statisticmethods to identify a reliable cell population in continuous

manner and remove outliers. Second, unlike ‘‘Monocle,’’ which

requires multiple prior information (Trapnell et al., 2014), Sinova

requires only the gene expression matrix as input, which is

more general for in vivo development processes. Third, Sinova

could further exploit the gene correlation relationship to de

novo identify the potential TFs that were biologically meaningful

to the development. On the other hand, Sinova could partially

reconstruct the tissue based on the similarity among single cells

at the global transcriptome level, while ‘‘Seurat’’ reconstructed

the tissue based on the in situ landmark gene hybridization data-

base through a machine-learning concept (Satija et al., 2015).

In conclusion, we developed the Sinova pipeline using a com-

bination of computational models to successfully reconstruct GP

development and potential spatial distributions based on the

transcriptomes of 217 single cells, and we systematically identi-

fied functional genes and proposed regulatory networks that

have not been previously reported in traditional experimental

systems. Our model enhances the systematic understanding of

the complexity of GP development. In addition, our bioinformatic

pipeline is also applicable to other tissues and organ develop-

ment processes in diverse contexts.
EXPERIMENTAL PROCEDURES

Mice and GP Isolation

C57BL/6 wild-type mice at postnatal day 7 were used for GP isolation under

the approval of the Institutional Animals Care and Use Committee of Tsinghua

University. For detailed procedures, refer to the Supplemental Experimental

Procedures and Movie S1.
Sinova Pipeline and Algorithms

Pipeline analysis started from the expression matrix, with each column repre-

senting a single cell and each raw representing a gene. The analysis proce-

dures were based on three sequential modules: (1) unsupervised cell popula-

tion clustering; (2) pseudo-temporal ordering and PDA reconstruction; and (3)

TF regulatory network prediction and analysis.

Statistical Analyses

For qPCR results, the data were expressed as the mean, and the SD was ex-

pressed as an error bar. Statistical comparisons were made between multiple

groups based on Student’s t test, and p values were calculated with Microsoft

Excel. Advanced bioinformatic statistical analyses are described in Supple-

mental Experimental Procedures.

Detailed additional methods are described in Supplemental Experimental

Procedures.
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