Bile acid nuclear receptor FXR and digestive system diseases

Lili Ding¹, Li Yang¹, Zhengtao Wang¹, Wendong Huang¹,*

¹Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
²Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA

Received 1 December 2014; received in revised form 31 December 2014; accepted 5 January 2015

Key Words
Bile acids; Farnesoid X receptor; Gastrointestinal tract; Inflammatory bowel disease; Colorectal cancer; Type 2 diabetes

Abstract
Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR will be of great benefit for the development of new drugs for the treatment of gastrointestinal tract diseases.

Abbreviations: 6-ECDCA, 6α-ethylchenodeoxycholic acid; AF2, activation domain; ANGPTL3, angiopoietin-like protein 3; AOM, azoxymethane; AP-1, activator protein-1; Apo, apolipoprotein; ASBT, apical sodium-dependent bile salt transporter; BAAT, bile acid-CoA amino acid N-acetyltransferase; BACS, bile acid-CoA synthetase; BAs, bile acids; BMI, body mass index; BSEP, bile salt export pump; CA, cholic acid; CD, Crohn’s disease; CDCA, chenodeoxycholic acid; CREB, cAMP regulatory element-binding protein; CYP7A1, cholesterol 7α-hydroxylase; db/db, diabetic mice; DNA binding domain; DCA, deoxycholic acid; DSS, dextrane sodium sulfate; ERK, extracellular signal-regulated kinase; FABP6, fatty acid-binding protein subclass 6; FFAs, free fatty acids; FGFR4, fibroblast growth factor receptor 4; FXR, farnesoid X receptor; FXRE, farnesoid X receptor response element; G6Pase, glucose-6-phosphatase; GLP-1, glucagon-like peptide 1; GLUT2, glucose transporter type 2; GPBAR, G protein-coupled BA receptor; GPCRs, G protein-coupled receptors; GSK3, glycogen synthase kinase 3; HDL-C, high density lipoprotein cholesterol; HNF4α, hepatic nuclear factor 4α; I-BABP, intestinal bile acid-binding protein; IDL-1, interleukin 1; KLF11, Kruppel-like factor 11; Kras, Kirsten rat sarcoma viral oncogene homolog; LBD, ligand binding domain; DCA, deoxycholic acid; DSS, dextrane sodium sulfate; ERK, extracellular signal-regulated kinase; FABP6, fatty acid-binding protein subclass 6; FFAs, free fatty acids; FGFR4, fibroblast growth factor receptor 4; FXR, farnesoid X receptor; FXRE, farnesoid X receptor response element; G6Pase, glucose-6-phosphatase; GLP-1, glucagon-like peptide 1; GLUT2, glucose transporter type 2; GPBAR, G protein-coupled BA receptor; GPCRs, G protein-coupled receptors; GSK3, glycogen synthase kinase 3; HDL-C, high density lipoprotein cholesterol; HNF4α, hepatic nuclear factor 4α; I-BABP, intestinal bile acid-binding protein; IDL-1, interleukin 1; KLF11, Kruppel-like factor 11; Kras, Kirsten rat sarcoma viral oncogene homolog; LBD, ligand binding domain; LCA, lithocholic acid; LRH-1, liver receptor homolog-1; LPL, lipoprotein lipase; MCA, muricholic acid; MRP2, multidrug resistance-associated protein 2; NF-κB, nuclear factor-kappa B; NOD, non-obese diabetic; NRs, nuclear receptors; OX42, organic solute transporter alpha; PEPCK, phosphoenol pyruvate carboxykinase; PGC-1α, peroxisome proliferators-activated receptor γ coactivator protein-1α; SHP, small heterodimer partner; SREBP-1c, sterol regulatory element-binding protein 1c; STAT3, signal transducers and activators of transcription 3; T2D, type 2 diabetes; TLCA, taurocholic acid; TNBS, trinitrobenzensulfonic acid; TNFα, tumor necrosis factors α; UC, ulcerative colitis; UDCA, ursodeoxycholic acid; VSG, vertical sleeve gastrectomy

*Corresponding author. Tel.: +1 626 256 4673x65203; fax: +1 626 256 8704.
E-mail address: whuang@coh.org (Wendong Huang).

Peer review under responsibility of Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.
1. Introduction

Bile acids (BAs) are amphipathic molecules synthesized from cholesterol in the liver. They are physiological detergents that play important roles in facilitating hepatobiliary secretion of endobiotic and xenobiotic metabolites. In the intestines, BAs help intestinal absorption of dietary fats, fat-soluble vitamins, and other nutrients. Over the past decade, BAs change beyond digestive surfactants to signaling molecules in a wide range of biological functions, including glucose and lipid metabolism, energy homeostasis, and the modulation of immune response. The regulatory functions of BAs are mainly the result of activation of intracellular ligand-activated nuclear receptors (NRs), such as the farnesoid X receptor (FXR, NR1H4) and cell surface G protein-coupled receptors (GPCRs), specifically the G protein-coupled BA receptor (TGR5 or GPBAR-1). Chenodeoxycholic acid (CDCA) is the most potent BA for FXR. In contrast, lithocholic acid (LCA) and tauroliotholic acid (TLCA) are most potent endogenous ligands for TGR5 with an EC50 of approximately 10 μmol/L. FXR has been considered as endogenous FXR ligands with high affinity. FXR can be activated by both free and conjugated BAs. The hydrophobic CDCA is the most efficacious ligand of FXR (EC50 = approximately 10 μmol/L). The order of potency of BAs is CDCA > LCA = deoxycholic acid (DCA) > cholic acid (CA), whereas hydrophilic BAs, such as ursodeoxycholic acid (UDCA) and muricholicacid (MCA), cannot activate FXR. These studies have suggested for the first time that BAs are also endocrine hormones. A number of compounds unrelated to BAs were also found to act as FXR ligands with varying degrees of affinity, including androsterone and the exogenous natural products such as forskolin, epigallocatechin-3-gallate and cafestol. In addition, a series of synthetic BA derivatives have been developed as FXR ligands, such as 6-ethylenodeoxycholic acid (6-ECDA) and bile alcohols, showing a higher affinity with FXR than the original BAs. Along with the regulation of BA metabolism, accumulated data have demonstrated that FXR is a multipurpose NR that plays an essential role in maintaining lipid and glucose homeostasis. Thus, activation or repression of FXR can have significant influences on metabolic homeostasis. FXR ligands have been proposed for potential treatment of cholestasis, liver fibrosis, inflammatory bowel disease, atherosclerosis and erectile dysfunction. Detailed analysis of the ChIP-seq data indicates that the global binding patterns of FXR in primary human hepatocytes are similar to those in mouse livers. Therefore, in a major extent, mouse model is suitable for studying human FXR functions. Since numerous excellent review articles on FXR are already available, we will focus on the roles of FXR in digestive system diseases and type 2 diabetes (T2D).

2. Bile acid nuclear receptor FXR

FXR belongs to a subclass of metabolic receptors within the NR-family and is identified as an NR for BAs. It is expressed in several tissues, including liver, intestine, adipose tissue, the vascular wall, pancreas and kidney. Four FXR splice variants have been identified, i.e. FXRα1–4. These isoforms show difference in spatial and temporal expression patterns as well as in transcriptional activities. The general structure of FXR consists of an N-terminal DNA binding domain (DBD), a unique ligand binding domain (LBD) allowing receptor dimerization, and a C-terminal activation domain (AF2) for co-regulator interactions. FXR binds to an FXR response element (FXRE) as a heterodimer with RXR or as monomer to regulate gene expression. A large number of publications have shown that FXR regulates a network of genes in hepatic BA synthesis, biliary BA secretion, intestinal BA absorption, and hepatic BA uptake, thereby playing a key role in the regulation of BA homeostasis.

FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases.
before being excreted into the intestinal lumen, where they function to emulsify dietary lipids and vitamins. In the liver, BAs bind to FXR, which transcriptionally upregulates a protein called small heterodimer partner (SHP; NR0B2) to inhibit trans-activity of hepatic nuclear factor 4α (HNF4α) and liver receptor homolog-1 (LRH-1; NR5A2) that bind to the BA response element in the Cyp7a1 and Cyp8b1 gene promoters.

Roughly 95% of the BAs re-absorption occurs at the terminal ileum through the apical sodium-dependent bile salt transporter (ASBT; SLC10A2)55,56. After transporting inside ileal enterocytes by ASBT, BAs are reversibly bound by the intestinal bile acid-binding protein (I-BABP) (also known as fatty acid-binding protein subclass 6 (FABP6)) expressed in the ileum50,51. I-BABP has an important role in enterohepatic circulation by regulating BA trafficking. It shuttles BAs from the apical to basolateral membrane in the enterocytes52. Finally, organic solute transporter alpha and beta (OSTα and OSTβ) move bile salts to blood vessels, in accordance with its location at the basolateral membrane52. Mechanistic studies reveal that BAs generate a negative feedback on ASBT expression by FXR-mediated induction of SHP, which binds to and represses the transcriptional activities of LRH-1 for the Cyp7a1 gene52. The negative regulation of ASBT expression was observed in mice. But it was not found in rats due to the absence of an LRH-1 responsive element within the rat Asbt promoter52. Similar to the effect of FXR activation in the hepatocytes, activation of intestine FXR by BAs limits BA uptake and promotes basolateral BA secretion to decrease intracellular BA concentrations. BAs in the enterocytes bind FXR and increase the expression of IBABP and two transporters, OSTα and OSTβ, that are responsible for the transport of BAs from the intestine to the portal vein55,56. Thus, FXR controls the entire transport of BAs from the intestinal lumen to the enterocytes, within the enterocytes and ultimately to the blood vessel for transportation to the liver.

Interestingly, intestinal FXR activation also generates an endocrine feedback regulation. Fibroblast growth factor 19 (FGF19) in humans, and its mouse homolog FGF15 (sometimes referred to as FGF19) are activated by FXR in the ileum57,58. FGF15/19 is thought to serve as a neurotransmitter of hepatic effects that are FXR-dependent. FGF15/19 is also expressed in the colon59,60. After administration of the potent synthetic FXR ligand 6-ECDCA orally, FGF15/19 is secreted from the colon into the bloodstream where it circulates to the liver and suppresses BA synthesis through binding and activation of the FGFR receptor 4 (FGFR4) complexed with β-Klotho located on the surface of hepatocytes and other epithelial cells59,60. These effects were not observed in Shp−/− mice, thus suggesting that SHP is required for the suppressive effects of FGF15/19 on BA synthesis.

The administration of bile or conjugated BAs to ascitic cirrhotic rats or obstructive jaundice rats eliminates intestinal bacterial gluconeogenesis by inhibiting the cAMP regulatory element-binding protein (CREB)–peroxisome proliferators-activated receptor γ coactivator protein-1α (PGC-1α) pathway54.

4. FXR and inflammatory bowel disease

IBD, which primarily includes ulcerative colitis (UC) and Crohn’s disease (CD), represents a group of chronic disorders characterized by gastrointestinal tract inflammation52,55. Although many details of IBD have been explored, the exact pathogenetic mechanisms of IBD have not been fully elucidated. At present, IBD is generally believed to result from imbalance of gut microbiota, epithelial dysfunction, and aberrant mucosal immune response50.

Recently, FXR has been implicated to participate in immune modulation and barrier function in the intestine. FXR alleviates inflammation and preserves the integrity of the intestinal epithelial barrier in many ways by regulating the extent of the inflammatory response, maintaining the integrity and function of the intestinal barrier, and preventing bacterial translocation in the intestinal tract56.

First, FXR plays an important role in the mucosal immune response, thereby exerting strong influence on immunoregulation56. Vavassori et al.59 notice that Fxr−/− mice display significantly elevated pro-inflammatory cytokine mRNA expression in the colon. In two complementar models (intra-rectal administration of trinitrobenzenesulfonic acid (TNBS) and oral administration of dextrane sodium sulfate (DSS)), concurrent administration of the potent synthetic FXR ligand 6-ECDCA represses the expression of various pro-inflammatory cytokines, chemokines and their receptors in wild type, but not Fxr−/− mice. In addition, Raybould et al.71 show that FXR activation by INT-747 prevents DSS- and TNBS-induced intestinal inflammation, with improvement of colitis symptoms, inhibition of epithelial permeability, and reduced goblet cell loss. Furthermore, FXR activation inhibits pro-inflammatory cytokine production in vivo in the mouse colonic mucosa, and ex vivo in different immune cell populations23. These results provide strong support for the involvement of FXR in IBD due to counter-regulatory effects on cells of innate immunity22,69. FXR ligands exert anti-inflammatory activities by antagonizing other signaling pathways, in part through the interaction with other transcription factors, including activator protein-1 (AP-1), and signal transducers and activators of transcription 3 (STAT3)50. Several of the intestinal macrophage genes inhibited by FXR agonists are established targets for nuclear factor-kappa B (NF-κB) (tumor necrosis factors α (TNFα), interleukin 1 (IL-1), IL-6, cyclooxygenase-1, cyclooxygenase-2) and AP-1, two most important transcriptional regulators of innate and adaptive immunity in cells23 (Fig. 1).

Second, FXR has been implicated in barrier function by regulating intestinal antibacterial growth. Gut microbiota play important roles in pathogen defense, immunity, and nutrient harvest. Recent evidence suggests that there is a regulatory relationship between the development of IBD and altered gut microbiota52,53. It has been demonstrated that BAs and gut microbiota are closely related to each other. Gut microbiota are involved in the biotransformation of BAs through deconjugation, dehydroxylation, and reconjugation of BAs53. BAs have antimicrobial activities by damaging the bacterial cell membrane, thus inhibiting bacterial outgrowth56.

The administration of bile or conjugated BAs to asctic cirrhotic rats or obstructive jaundice rats eliminates intestinal bacterial growth.
overgrowth, and decreases bacterial translocation and endotoxemia. Inagaki et al. provide an explanation for this protective effect of FXR by demonstrating that intestinal FXR has a crucial role in limiting bacterial overgrowth and thus protecting the intestine from bacterial-induced damage. They show that mice lacking FXR experience bacterial overgrowth, increase intestinal permeability and contain large amounts of bacteria in mesenteric lymph nodes, as well as inflammation of the intestinal walls. However, activation of intestinal FXR by GW4064 leads to the identification of several novel intestinal FXR target genes, including those encoding angiogenin, carbonic anhydrase 12 and inducible nitric oxide synthase, which have been reported to have antibacterial properties. The cytokine IL-18 is also induced by FXR stimulation. IL-18 stimulates resistance to an array of pathogens, including intracellular and extracellular bacteria and mycobacteria, and appears to have a protective role during the early, acute phase of mucosal immune response. These results are consistent with the idea that FXR is critical for controlling intestinal bacterial growth, which has significant implications for maintaining a competent barrier, thereby contributing to the prevention of intestinal inflammation.

5. FXR and colorectal cancer

Colorectal cancer is considered as the third most common form of cancer and the second most common cause of cancer-related death worldwide, leading to an incidence of 1.36 million cases estimated in 2012 (19.2% of total cancer cases) as attending to incidence and mortality statistics. In addition to inherited mutations, lifestyle, diet and nutritional habits are closely related to the development of colorectal cancer. Recently, there is increasing evidence that a fat-rich diet is positively associated with colon cancer incidence. Consumption of high-fat diet has been correlated with elevated levels of BAs in the colonic lumen as a consequence of increased fecal excretion of BAs, which at last promote elevated incidence of colorectal cancer. Consumption of high-fat diet has been correlated with elevated levels of BAs (Figure 1). FXR activation increases mRNA expression of iNOS, ANG1 and CAR12, which are involved in antibacterial defense by producing antimicrobial peptides (iNOS and ANG1) or maintaining appropriate intestinal pH (CAR12). This is important for the homeostasis of intestinal luminal contents and epithelial barrier integrity. Moreover, FXR activation induces the repression of inflammatory genes (IL-1, IL-6 and MCP-1) and promotes antimicrobial actions.

As a result, FXR activity is relevant to modulating intestinal tumorigenesis. Given the crucial roles of FXR in maintaining BA concentrations within a physiological range, thereby preventing BA-induced cytotoxicity, the loss of FXR would contribute to tumorigenesis of colorectal cancer. De Gottardi et al. suggest that FXR mRNA expression is decreased in colonic polyps, and even more pronounced, in colonic adenocarcinoma. These results indicate that FXR expression levels may positively correlated to the degree of malignancy of colon cancer and there is a causal link between FXR and colon carcinogenesis in humans. It is indeed further demonstrated by that FXR deficiency leads to significantly increased sizes and numbers of the tumors in two common murine intestine tumorigenesis models: APCmin mice and azoxymethane (AOM)-induced colon carcinomas. Further studies on a larger collection of human frozen colon carcinomas tissues and human cell lines show that FXR expression alone is not sufficient to initiate colorectal cancer development.

So far, there is considerable evidence for a role of FXR in modulating intestinal tumorigenesis. Given the crucial roles of FXR in maintaining BA concentrations within a physiological range, thereby preventing BA-induced cytotoxicity, the loss of FXR would contribute to tumorigenesis of colorectal cancer. De Gottardi et al. first suggest that FXR mRNA expression is decreased in colonic polyps, and even more pronounced, in colonic adenocarcinoma. These results indicate that FXR expression levels may positively correlated to the degree of malignancy of colon cancer and there is a causal link between FXR and colon carcinogenesis in humans. It is indeed further demonstrated by that FXR deficiency leads to significantly increased sizes and numbers of the tumors in two common murine intestine tumorigenesis models: APCmin mice and azoxymethane (AOM)-induced colon carcinomas. Further studies on a larger collection of human frozen colon carcinomas tissues and human cell lines show that FXR expression alone is not sufficient to initiate colorectal cancer development.
activation of remnant FXR in healthy tissues may prevent and inhibit the promotion of colon cancer34,97,99. Restauration of basal FXR expression through inhibition of DNA methylation or KRAS signaling, or through activation of residual FXR, might slow or prevent the progression of colorectal cancer35,36.

6. FXR, obesity and T2D

The global prevalence of diabetes in 2010 was 280 million people worldwide (around 6.2% of the world's total population), and it has been predicted that in 2030 the prevalence will reach more than 7.5% of the world's total population, paralleling the aging and body mass index (BMI) of the population. Obesity is a leading risk factor for impaired glucose tolerance and T2D. Overweight and obesity lead to adverse metabolic effects on blood pressure, cholesterol levels, triglycerides levels and insulin resistance26,116.

In recent years, a body of evidence has surfaced indicating that FXR plays an important role not only in BA but also in lipid and glucose homeostasis99,100,109,110. Specific targeting of FXR may be an effective way to treat obesity-induced metabolic diseases.

Studies in mice with FXR gene ablation or administering FXR agonists provided key information demonstrating a central role of FXR in lipid homeostasis. \textit{Fxrl-/-} mice display elevated serum cholesterol and triglyceride levels and excessive accumulation of fat in the liver99,100. A more detailed study reveals an increased hepatic synthesis of apolipoprotein B-containing lipoproteins (mainly VLDL) and a reduced clearance rate of HDL cholesteryl esters, both of which have theoretically pro-atherogenic effects in \textit{Fxrl-/-} mice98. Activation of FXR by BAs or synthetic agonists lowers plasma triglyceride levels101,102, by a mechanism that involves the repression of hepatic transcription factor sterol regulatory element-binding protein 1c (SREBP-1c) expression and its lipogenic target genes in mouse primary hepatocytes and liver103,104. The suppression effect of FXR on SREBP-1c expression is thought to be mediated by a signaling cascade that involves SHP104. In addition, activation of FXR facilitates the clearance of VLDL and chylomicrons via repressing the expression of microsomal triglyceride transfer protein and apolipoprotein B103. FXR activation also results in the induction of peroxisome proliferator-activated receptor \(\alpha\) (PPAR\(\alpha\)), which promotes fatty acid \(\beta\)-oxidation105 (Fig. 2).

In addition, FXR activation also directly increases the expression of apolipoprotein A-II and AIV102,106,107, which are activators of lipoprotein lipase (LPL) activity, and decreases the expression of both ApoCIII108 and ANGPTL3109, which are LPL inhibitors. However, FXR appears to suppress apolipoprotein A-I expression100,109,110, the primary protein constituent of high-density lipoprotein defining its size and shape. FXR also regulates the expression of phospholipid transfer protein111 that is responsible for the transfer of phospholipids and cholesterol from low to high-density lipoprotein and suppresses 3-hydroxy-3-methyl-glutaryl-CoA reductase, likely involving sterol regulatory element-binding protein 2112. Another target of FXR is paraoxonase 1, a protein produced in the liver with phospholipase A2 activity that may be important for inactivation of proatherogenic lipids produced by oxidative modification of low-density lipoprotein.

FXR mediated repression of paraoxonase 1 involves the induction of fibroblast growth factor 19, its subsequent binding to the fibroblast growth factor receptor 4, and activation of the c-Jun N-terminal kinase pathway113,114. Finally, FXR represses proprotein convertase subtilisin/kexin 9115, a protein that promotes the intracellular degradation of the low-density lipoprotein receptor by interfering with its recycling to the plasma membrane. Collectively, these findings support the concept that FXR activation decreases plasma lipid levels by suppressing hepatic lipogenesis and lipid secretion and increasing the clearance of lipoproteins from blood (Fig. 2).

In addition to its pleiotropic effects on lipid metabolism, FXR plays a critical role in glucose homeostasis. The generation and phenotypic characterization of \textit{Fxrl-/-} mice confirm this vital role in the regulation of lipid metabolism and glucose homeostasis. \textit{Fxrl-/-} mice not only display elevated serum levels of free fatty acids (FFAs), triglycerides and high density lipoprotein cholesterol (HDL-C)99,100, but also develop signs of insulin resistance as shown by hyperglycemia, impaired glucose tolerance, and severely blunted insulin signaling in both liver and muscle28,116. High glucose concentrations increased FXR O-GlcNAcylation, thereby enhancing its protein stability and transcriptional activity. The fasting/refeeding experiments show that FXR undergoes O-GlcNAcylation in fed conditions, which is accompanied with increased FXR target gene expression and decreased liver bile acid content117. Activation of FXR by synthetic agonists or hepatic overexpression of a constitutively active FXR by adenovirus-mediated gene transfer reduces blood glucose levels in obese \textit{fa/fa} rats, diabetic, leptin deficient, diabetic (\textit{db/db}) mice and wild type mice28,118. This decrease in plasma glucose levels in \textit{db/db} mice was associated with decreased glucose-6-phosphatase expression, increased glycogen levels and synthesis in the liver, providing evidence that activation of FXR lowers plasma glucose levels by sensitizing to insulin action28,116. Pharmacological treatments with BAs or GW4064, both \textit{in vitro} in human hepatoma cell lines and \textit{in vivo} in mice, decrease the expression of the gene encoding phosphoeno lpyruvate carboxykinase (Pepck) and other gluconeogenic genes such as those encoding glucose-6-phosphatase (G6Pase) and fructose 1,6-bisphosphatase119,120. Consistent with these results, CA treatment for five days decreased \textit{Pepck} and G6Pase mRNA levels in wild-type, but not in \textit{Fxrl-/-} mice121. This was associated with a decrease in levels of fasting blood glucose only in wild-type mice, indicating that FXR negatively regulates gluconeogenesis121 (Fig. 2). Moreover, \textit{in vivo} GW4064 treatment reduces PEPCk and G6Pase expression in \textit{db/db} mice28. Paradoxically, some studies28,116, but not all112, report that FXR activation by GW4064 induces PEPCk expression, leading to an increased glucose output in rodent primary hepatocytes \textit{in vitro}16.

Recently, there are independent studies identifying a role for FXR in the regulation of insulin sensitivity29,104,121. \textit{Fxrl-/-} mice are associated with impaired glucose tolerance and insulin resistance. Moreover, whole-body glucose disposal during a hyperinsulimemic euglycemic clamp is decreased in \textit{Fxrl-/-} mice. Consistent with these observations, insulin signaling is impaired in peripheral insulin-sensitive tissues, including skeletal muscle and white adipose tissue29,122. Interestingly, treatment with GW4064 significantly improved insulin sensitivity in both \textit{db/db} and \textit{ob/ob}29 mice. Similar results are obtained when a constitutively active FXR is over-expressed in \textit{db/db} mice32. In contrast, FXR deficiency was also shown to be associated with normal hepatic insulin sensitivity and signaling121,122. The reason for this
discrepancy is unclear, but may be linked to different genetic backgrounds (C57Bl6j28,121 vs. C75Bl6/N121,122) of the mice and/or the insulin dose used during the clamp. The molecular mechanisms behind the insulin-sensitizing effect of FXR remain poorly defined. Since FXR is not expressed in skeletal muscle, it is conceivable that FXR deficiency alters indirectly insulin signaling in this tissue. Recent studies indicated that FXR is expressed by pancreatic \(\beta \)-cells and human islets and regulates the insulin signaling by genomic and non-genomic effects. Genomic effects include Krüppel-like factor 11 (KLF11)-mediated stimulation of glucose induced relocation of glucose insulin gene expression. Non-genomic effects include an Akt-mediated stimulation of glucose induced translocation of the glucose transporter GLUT2 at plasma membrane, increasing the glucose uptake by these cells. FXR-KLF11 regulated pathway has an essential role in the regulation of insulin transcription and secretion induced by glucose. Furthermore, FXR-SHP negative regulatory cascade can regulate gluconeogenesis in the liver.

In humans, pharmacological approaches to induce persistent weight loss and improve glucose level of obesity-induced T2D have so far shown limited effectiveness. However, bariatric surgery has become an effective therapeutic option for morbid obesity, surpassing drug therapies and lifestyle interventions124. Vertical sleeve gastrectomy (VSG) is a bariatric procedure that involves the removal of up to 80% of the stomach along the greater curvature, creating a gastric “sleeve” in continuity with the esophagus and pylorus125. VSG induces loss of body weight and fat mass and improves glucose tolerance in humans and in rodent models126–131. The study of Ryan et al.132 suggests that FXR is required for the sustained maintenance of weight loss and improved glycemic control after VSG. Furthermore, by identifying a model resistant to the effects of bariatric surgery, the authors were able to identify dissect further a role of the microbiota on the positive effects of bariatric surgery. However, the specific mechanisms by which FXR contributes to glucose control by VSG are still unknown. Further investigating the roles of FXR in mediating the anti-obesity and anti-diabetes effect of VSG and other surgeries will be of great interest.

7. Conclusions and future perspectives

Research in BA and FXR signaling during the last 20 years has unraveled its important role in regulation of BA, lipid, glucose, and energy metabolism. In this review, we have summarized the roles of FXR in pathophysiology of the digestive system and the related diseases, including IBD, colorectal cancer and T2D. Recent studies have shown that FXR activation by its ligands affects both immune cells and intestinal epithelium, contributing to intestinal immunomodulation at various levels, thus providing a rationale to extend the clinical trials of FXR ligands to patients with IBD. The critical role of FXR in modulating intestinal tumorigenesis is probably due to its regulation of BA metabolism and detoxification, and its activation may confer protection from BA-induced tumor promoting activities. Activation of FXR improves obesity-induced T2D by regulating lipid metabolism and glucose homeostasis. FXR is required for the positive metabolic effect of VSG surgery. Targeting FXR therefore offers an exciting new perspective for the treatment of these digestive system diseases. However, the therapeutic benefits or risks of synthetic FXR ligands require further consideration in light of differences between mice and humans. One particular challenge in designing FXR agonists is to separate the desired therapeutic effects from the unwanted side effects. The design of organ- or gene-specific FXR modulators may improve their specificity and reduce side effects. A better understanding of the cellular and physiological signaling of FXR and its cofactors will help develop more selective modulators and the development of more efficient therapeutics for digestive system diseases.

Figure 2 The roles of FXR in regulating lipid and glucose metabolism. On one hand, FXR plays an important role in regulating lipid metabolism. Activation of FXR by BAs or synthetic agonists lowers plasma triglyceride levels by a mechanism that involves the repression of hepatic transcription factor SREBP-1c expression and its lipogenic target genes in mouse primary hepatocytes and liver. FXR activation also increases the expression of apolipoprotein Apo CII and AIV and decreases the expression of both Apo CIII 112 and ANGTPL3 to stimulate LPL activity. In addition, FXR mediates the repression of paraoxonase 1 to inactivate pro-atherogenic lipids produced by oxidative modification of low-density lipoprotein. Furthermore, FXR activation promotes fatty acid \(\beta \)-oxidation by inducing the expression of PPAR\(\alpha \). Finally, activation of FXR facilitates the clearance of very low-density lipoproteins and chylomicrons via repressing the expression of microsomal triglyceride transfer protein and apolipoprotein B (Apo B). On the other hand, FXR exerts a critical role in regulating glucose homeostasis. Activation of FXR in \(\beta \)TC6 cells increases Akt phosphorylation and translocation of the glucose transporter GLUT2 at plasma membrane, increasing the glucose uptake by these cells. FXR-KLF11 regulated pathway is an essential role in the regulation of insulin transcription and secretion induced by glucose. Furthermore, FXR-SHP negative regulatory cascade can regulate gluconeogenesis in the liver.
Acknowledgments

We are in debt for those authors whose work cannot be cited in this review due to the limited space. This work was supported by National Cancer Institute of United States (No. 1R01-CA139158, to Wendong Huang), National Natural Science Foundation of China (Nos. 81303186 and ZYX-NSFC-016) and China Postdoctoral Science Foundation (No. 2013M531202).

References

FXR and digestive system diseases

86. Stamp DH. Three hypotheses linking bile to carcinogenesis in the gastrointestinal tract: certain bile salts have properties that may be used to complement chemotherapy. *Med Hypotheses* 2002;59:398–405.

