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The results in this paper were obtained by making certain observations 
about modules and generalizing to functor categories. The idea is to generalize 
the techniques of homological algebra to functor categories, in particular, to 
find a suitable definition for a tensor product of functors. This was done in [S] 
for additive functor categories, and recently the invention of ends and coends 
in [3], and the use to which they were put in the work of Dubuc [4], has 
allowed us to extend this definition of the tensor product to a much larger 
class of functors (this definition is given in Section 2 of this paper). 

Many of our results parallel those of Bunge [l]. Her approach was inspired 
by certain observations about sets, whereas our approach stems from a more 
“homological” viewpoint. We feel that the latter approach not only simplifies 
the exposition of these results, but also allows us to be much more general in 
some cases. 

We now give some definitions, state our observations on modules, and give 
a rough idea how these observations generalize. 

Let X be a category. A triple T on X is given by T = (T, 7, p), where 
T: X-+ X is a functor, 7: lx 5 T is a natural transformation from the 
identity functor on X to T, and PL: TT 2 T is a natural transformation from T 
composed with itself to T, for which the identities p . 7T = p . TV = l= 
and TV . pT = p . Tp hold. Dually, one defines a cotriple on X. 

Examples of a triple and of a cotriple which are pertinent to this paper are 
the following. Let R be a ring, and let RM be the category of left R-modules 
(we shall always assume that our rings and modules are unitary). Suppose S 
is a ring and f: R -+ S is a ring homomorphism. Then f induces a left and 
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right R-module structure on S, making S into an R - R bimodule. We define 
a triple Tf = (T, , qr , pf) on zM by T,(M) = S OR 1M, 

(identifying R 8s - with the identity functor on RM via the canonical 
isomorphism R OR M g M), and 

where m: S OR S -+ S is the “multiplication” map given by m(s @ s’) = ss’. 
The ring structure on S gives the required identities for T, to be a triple. 
We refer to Tf as the scaZur extension triple associated tof. Dually, we construct 
a cotriple G, = (G, , Ed , 6,) on RM by letting G,(M) = Hom,(S, M), 

cf(M) = Hom,(f, M): Hom,(S, M) -+ Hom,(R, M) z M, 

and 
6,(M) = Hom,(m, M): Hom,(S, M) 

---f Hom,(S OR S, M). 

The main theorem of this paper is a generalization of the following theorem 
for modules: if T = (T, 7, cl) is a triple on zM for which T is cocontinuous 
(i.e., T preserves direct sums and cokernels), then there is a ring S and a ring 
homomorphism f: R --f S for which one has an isomorphism of triples 
T s T, , T, the scalar extension triple associated tof. 

The proof of the theorem for modules is an application of Watt’s theorem 
[13], which may be stated as follows: if R and R’ are rings and U: RM -+ R,M 
is a cocontinuous functor, then there is an R’ - R bimodule E for which 
U E E OR -. Consequently, given a triple T = (T, r), CL) on zM for which 
T: zM + RM is cocontinuous, by Watts’ theorem there is a R - R bimodule 
S for which T s S OR -, and then one shows that the triple structure on T 
induces a ring structure on S and a ring homomorphism f : R + S. 

We now describe how this theorem, and its proof, are generalized in this 
paper. 

Let Ab denote the category of Abelian groups, let C be a small preadditive 
category (a category whose Horn sets are endowed with an Abelian group 
structure in such a way that composition in C is bilinear), and let [C, Ab] 
be the category whose objects are additive functors from C to Ab and whose 
morphisms are natural transformations between these functors. The functor 
category [C, Ab] generalizes a module category in the following way: if one 
associates to a ring R a preadditive category R with one object whose 
morphisms are elements of R, composition is multiplication in R, and with 
Abelian group structure on the (unique) Horn set the additive structure of R, 
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then one has an isomorphism of categories [R, Ab] g sM. (One also has an 
isomorphism of categories [R”, Ab] z MR , the category of right R-modules, 
where Co denotes the dual or “opposite” category of C for any category C.) 

Let X and A be any two categories. An adjoint pair (U, F): A + X is a 
pair of functors U: A -+ X and F: X + A for which F is adjoint to U, i.e., 
for every pair of objects X of X and A of A one has a bijection 

b’(x,a): A(FX, A) gz X(X, Uiz) 

with @~r,~) natural in both X and A. An adjoint pair (U, F): A - X induces 
a triple T on X (see [7]) as follows. One defines natural transformations 
7: 1x => UF and l :FU 2 IA, called the unit and counit of the adjoint pair 
(U, F) respectively, by letting 7X = Btr,rr)( 1 Fx) for all objects X of X and 

E~ = 8&&lr,J for all objects A of A. Then the triple T on X induced by 
(U, F) is given by T = (UF, 7, D;F). Similarly, one has a cotriple G on A 
induced by (U, F) given by G = (FU, E, Fv U). 

As an example, letf : R + S be a ring homomorphism, let U,: ,M ---f sM 
be the functor which regards every S-module N as an R-module by defining 
the operation of R on N by ry = f(r)y for every Y E R and y  EN, and let 
F,: RM -+ ,M be given by F,(M) = S OR M for every R-module M. Then 

(U,,F,):.M+ RM is an adjoint pair, and the triple induced by (U, , Ff) 
is the scalar extension triple T, associated to f.  

More generally, let C and C’ be small preadditive categories, and let 

x: C -+ C’ be an additive functor. Then x induces a functor 

Ab”: [C’, Ab] + [C, Ab] 

given by Ah”(G) = G . x for every object G: C’ + Ab of [C’, Ab]. It is 
well known that Ab” has a left adjoint (Ab”)!: [C, Ab] -+ [C’, Ab]. We let 
T, denote the triple on [C, Ab] induced by the adjoint pair 

(Ab”, (Ab”)l): [C’, Ab] ---f [C, Ab]. 

T, is a generalization of the scalar extension triple, for if C and C’ both have 
exactly one object, then they are preadditive categories associated to rings R 
and S, the functor x: C -+ C’ induces a ring homomorphism f: R + S, and 

T, s Tf . 
Our main result for additive functor categories is the above theorem for 

modules translated to additive functor categories, namely: if C is a small 
preadditive category and if T is a triple on [C, Ab] whose functor is cocon- 
tinuous, then there is a small preadditive category C’ and an additive functor 
x: C --L C’ for which T e T, . Using the tensor product of functors defined 
in [8] (which generalizes that of modules) we were able in [9] to extend Watts’ 
theorem to additive functor categories, the role of bimodules being filled by 
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biadditive bifunctors U: C x C’ --f Ab. Our main theorem follows from this 
generalized version of Watt’s theorem. 

The work of Dubuc in [4] has allowed us to generalize from additive 
functor categories to a much larger class of functor categories, and it is at 
this level of generality that we state and prove our results in this paper. More 
specifically, let V be a category with sufficient structure so that one can do 
category theory relative to V, generalizing category theory relative to sets, by 

which one means that: 

(i) there is a notion of a V-category A, which differs from the notion 

of an ordinary category in that, given two objects A and B of A, the Horn set 
A(A, B) becomes an object of V instead of a set; 

(ii) given two V-categories A and B there is a notion of a V-functor 

F: A + B, which differs from the notion of an ordinary functor in that, given 
two objects A and B of A, FAB: A(A, B) ---f B(FA, FB) is a morphism of V 
instead of a map of sets; 

(iii) V is itself a V-category. 

For the sufficient structure on V, one assumes V is a closed category (i.e., 
what in [5] is called a symmetric monoidal closed category) which we define in 
Section 1. If  V is bicomplete (both complete and cocomplete in the ordinary 

category theory sense) then for any small V-category C there is a V-category 
Vc whose objects are the V-functors F: C -+ V. All of V-category theory is 
done in such a way that Ab is an example of a bicomplete closed category and 
Ab-category theory is category theory restricted to preadditive categories and 
additive functors (in particular, for any small Ab-category C, AbC is the 
functor category [C, Ab] discussed above). Ens, the category of sets, is also a 
bicomplete closed category, and Ens-category theory is just ordinary category 
theory. 

There are many other examples (e.g., Ban, the category of complex Banach 
spaces and linear maps of norm < 1, is also a bicomplete closed category, and 

Ban-category theory would deal with categories whose Horn-sets are complex 
Banach spaces). 

In Section 1, we define a closed category V and outline V-category theory 
following the exposition given by Dubuc in [4], whose viewpoint we find 
most useful (in fact, essential) for our purposes. 

In Section 2, we generalize our results of [S] and [9] to V-categories. In 
particular, Theorem 2.10 becomes the suitable V-functor category version 
of Watts’ theorem. 

In Section 3, we prove our main result. Recall that in applying Watts’ 
theorem to obtain our result for modules, we observed that “the triple 
structure on T induces a ring structure on S and a ring homomorphism 
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f: R --+ S.” Most of Section 3 is devoted to making this observation more 
precise in the situation of V-functor categories. Once this is done, we may 
apply the Watts’ theorem of Section 2 to obtain our main theorem, 
Theorem 3.12, which says that given any small V-category C and a V-triple T 
on Vc whose functor is V-cocontinuous, then there is a small V-category C’ 
and a V-functor x: C -+ C’ which is a surjection on objects so that T z T, , 
where T, is the V-triple associated to the induced functor V? Vc’ + Vc 
and its left adjoint. 

In Section 4, we use this result to obtain some characterizations of functor 
categories. To describe these results, we first give some definitions. 

Recall that above we described how every adjoint pair (U,F): A + X 
gives rise to a triple T on X. Conversely, in [7] it is shown that a triple 
T = (T, 7, p) on X gives rise to an adjoint pair in the following way. We 
define a T-algebra to be a pair (A, a) with A an object of X and cy: TA --+ A 
a morphism of X for which 01 . ya = 1, and 01 . pa = 01 . Tel. If (A, a) and 
(B, p) are T-algebras, then a morphism of T-algebras f: (A, a) -+ (B, @) is a 
morphism f : A + B in X for which f. (Y = /? . Tf. The T-algebras and their 
morphisms form a category XT, the category of T-algebras (or the Eilenberg- 

Moore category associated to T). There are functors UT: XT -+ X and 
FT: X + XT, given on objects by UT(A, a) = A for every T-algebra 
(A, a) and FX = (TX, px) for every object X of X, and one shows that 
(UT, FT): XT + X is an adjoint pair. 

Given an adjoint pair (U, F): A -+ X, let T be the triple on X induced by 
(U,F), and let (UT,FT): XT --+ X be the adjoint pair associated to T as 
described above, with XT the category of T-algebras. Then there is a canonical 
functor @: A ---f XT, called the comparison functor, for which UT . 0 = U 
(@ is given on objects A of A by @(A) = (UA, UC,)). One says that the 
adjoint pair (U, F) is tripleable if @ is an equivalence of categories. 

Dually, for a cotriple G = (G, E, 8) on A, the category of G-coalgebras, 
GA, is defined with objects pairs (C, r), C an object of A and y: C + GC 
a morphism of A such that cc . y = 1, and 8, . y = fi . y. There is an 
adjoint pair (GU, GF): A --+ GA associated to G. If (U, F): A -+ X is an 
adjoint pair and G is the cotriple on A associated to (U, F), there is a canonical 
comparison functor @: X --t GA such that GF . @ = F. One says that (U, F) 
is cotripleable if @ is an equivalence of categories. 

As an example, let f: R + S be a ring homomorphism, and consider the 
adjoint pair (U, , F,): sM -+ sM defined above. In fact, (U, , Ff) is tripleable, 
so that the comparison functor gives an equivalence of categories 
.M z (RM)T’. 

In particular, let R be any ring and let Z denote the ring of integers. Then 
there is a unique homomorphism of rings f: Z--f R giving us a canonical 
adjoint pair (U, , F,): RM --f rM = Ab (in this case, U, is the functor that 
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considers every R-module as an Abelian group). Then BM g AbTt, where T, 
is the triple associated to the adjoint pair (U, , F,), and Tt has a cocontinuous 
functor. Furthermore, our main result (for modules) shows that this property 
characterizes module categories, namely, given any triple T on Ab whose 
functor is cocontinuous, there is a ring R for which RM z Abr. 

In Theorem 4.1, we generalize this characterization of module categories to 
show that V-functor categories of the form Vc are characterized by the 
property that they are equivalent to V-categories of T-algebras for some 
V-cocontinuous V-triple T on VS, where S is some index set (which may 
be taken to be the set of objects of C) and Vs is the category obtained by 
taking the product of S copies of V and making it into a V-category (see 
Section 4). 

The rest of this section is devoted to showing that Bunge’s first and second 
characterizations of functor categories [1(4.6,4.16)], with somewhat weaker 
hypotheses, follow from the characterization given above. 

In Section 5, we dualize the results of Section 3 to obtain a generalization of 
the following theorem for modules: if G = (G, E, 6) is a cotriple on aM for 
which G is continuous (i.e., G preserves products and kernels), then there is a 
ring S and a ring homomorphism f : R + S for which one has an isomorphism 
G z Gf and for which G(RM) z .M. 

We have considered generalizations of triples on sM with cocontinuous 
functors and cotriples on .M with continuous functors. We next attack the 
generalizations of the following: Suppose R is a commutative ring and A is an 
R-coalgebra, i.e., A is an R-module and there are R-homomorphisms 
2: A --f R and 8: A + A OR A satisfying the usual identities. We can then 
define a cotriple G = (G = A OR- , E = Z @a- , 6 = 8 OR-) on RM and 
a triple T = (T = Hom,(A, -), 7 = Hom,(i, -), TV = Hom,(& -)) on 
RM with G cocontinuous and T continuous. Then G(aM) is the category of 
comodules over the coalgebra A and (RM)T . is the category of contramodules 
over (I (see [6, Chapter III, Section 51). Generally, these categories are not 
equivalent to categories of modules. However, when /I is a finitely generated 
projective R-module, i.e., G and T are both continuous and cocontinuous, 
G(RM) z (aM)T g n,M where fl* = Horn&l, R). The equivalence of 
these categories follows from the fact that for A a finitely generated projective 
R-module the isomorphisms Hom,(/l, -) c /I* @a and /l OR- z 
Hom,(fl*, - ) give rise to equivalences of triples and cotriples T z T, and 
G z G, where f: R - A* is the ring homomorphism 

R G Hom,(R, R) Hom(znR)+ A*. 

The key to generalizing this situation is the dualization functor 
*: (VCyJ -+ vc” which is the usual dualization functor *: RMO + MR given 
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by M* = Hom,(M, R) when C = R and V = Ab. Using this dualization 
functor we prove (5.10) that a V-triple T on Vc whose functor is V-continuous 
and V-cocontinuous is equivalent to a V-triple T, where x: C --f C’ is a 

V-cocontinuous functor and is surjective on objects and V5: Vc’ -+ Vc and 
its left adjoint induce the V-triple T, . The dual of this theorem (5.11) for 
a V-cotriple on Vc with a V-continuous and V-cocontinuous functor is 
proved for V = Ens or RM where R is a commutative ring. 

I. REVIEW OF RELATIVE CATEGORY THEORY 

In this section, we review the definition of a closed category and outline the 
development of category theory relative to a closed category, following [4]. 

(1 .l> DEFINITION. A monoida category V consists of (i) a category V,; 
(ii) a bifunctor - @ - : V, x V, + V, , called the tensor product of V 
which we assume is associative, i.e., for any three objects U, V, and W there 
is an isomorphism in V, , a: (U @ V) @ W---f U @ (V @ W), natural in 
U, V, and W; (iii) an object I of V which is the unit of V, i.e., for each object V 
of V there are isomorphisms in V, , r: V@l+ VandZ:I@ V+ V,natural 

in V. The isomorphisms satisfy coherence conditions which may be found in 
[l 11. A monoidal category V satisfying (iv) for each pair of objects U and V 
of V, there is an isomorphism y: U @ V - V @ U natural in U and V (and 
coherence conditions) is called symmetric. A symmetric monoidal category 
satisfying (v) there is a bifunctor V(-, -): (V,)” x V, -+ V, , called the 
internal Horn of V, such that for any three objects U, V, and W of V, there is a 
bijection w: V,( U @ V, W) --f V,( U, V( V, W)) natural in U, V, and W; is 
called a closed category. We refer the reader to [ 11 and [ 1 l] for a more detailed 
discussion of these concepts. 

Ab is a closed category, with tensor product the usual tensor product of 
Abelian groups, with unit the group of integers, and with internal Horn given 
by, for all Abelian groups A and B, Ab(A, B) = Hom(A, B) with Abelian 
group structure the usual one of “pointwise” addition. Ens is also a closed 
category, with tensor product the Cartesian product of sets, with unit any 
set with exactly one element, and with internal Horn given byEns(X, Y) = Yx 
(the set of all functions from X to Y) for any two sets X and Y. We refer the 
reader to [l] for more examples. 

(1.2) DEFINITION. Let V be a closed category. A V-category A consists of 
(i) a class of objects / A 1; (ii) for any two objects A and B of A, an object 
A(A, B) of V; (iii) for any three objects A, B, and C of A, a morphism 
c: A(B, C) @ A(A, B) + A(A, C) of V, , called composition, which is 
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associative, i.e., the two morphisms from (A(C, D) @ A(B, C)) @ A(A, B) to 

A(A, D), c(A(C. D) @ c)a and c(c @ A(A, B)), are equal for any four objects 
A,B,CandDofA;( )f iv or each object A of A, a morphismj,: I - A(A, A), 

called the identity of A, with the property that for every object B in A, 

c(j, 0 A(& 4) = Y, and c(A(A, B) @j,) = E. 
We note that associated to every V-category A is an ordinary category A,, , 

called the underlying category of A, whose objects are those of A and, for any 
two objects A and B of A, , A,(A, B) = V,,(I, A(A, B)). 

We mention the following operations on V-categories: 

(i) to a V-category A is associated its V-dual category A”, the V-category 
whose objects are those of A and, for every A, B E 1 A I, A”(A, B) = A(B, A) 
(note that (A”)” = A); 

(ii) to two V-categories A and B is associated their V-product category 
A @ B, the V-category whose objects are ordered pairs (A, B) with A E 1 A 1 
and B E 1 B I, and for every A, A’ E 1 A ! and B, B’ E 1 B I, 

A @ B((A, B), (A’, B’)) = A(A, A’) @ B(B, B’). 

(I .3) DEFINITION. Let A and B be V-categories. A V-functor F: A -+ B 
consists of (i) a function F: ( A j + / B ( assigning to each object A of A an 

object FA of B; (ii) f  or each pair of objects A and B of A, a morphism 
FAB: A(A, B) --f B(FA, FB) of V, such that for any three objects A, B, and C 
of A, c(FBC @ FAB) = Fact, and for any object A of A, FAA j, = j, . 

We note that (i) given two V-categories A and B, we may define the 
contravariant V-functors from A to B to be the V-functors from A0 to B; 
and (ii) given V-categories A, A’, and B, we may define the V-bifunctors from 

A and A’ to B to be the V-functors from A @ A’ to B. 
Given any V-category A and any morphism /3: B 4 B’ of A, (that is, 

a morphism fi: I + A(B, B’) of V,), th en for any object A of A, there is a 
morphism A(A, /3): A(A, B) + A(A, B’) in V, defined by A(A, /I) = 
c(/3 @ A(A, B))Z-I. Similarly, one defines, for every object C of A, a morphism 
A@, C): A(B’, C) - A(B, C). 

(1.4) DEFINITION. Let F, G: A + B be two V-functors. A V-natural 
transformation v: F a G is a collection {va E B,(FA, GA) 1 A E 1 A I} such 
that, for any two objects A and B of A, B(IJA, vB)FAB = B(vA , GB)GAB . 

For any object k’ of a closed category V, we observe that the natural 
bijections w of (v) of (I .I) imply that the functor - @ 5’: V, -+ V, is adjoint 
to the functor V(V, -): V, + V, for all V E j V /. Consequently, the internal 
Horn of V makes V into a V-category. 

Furthermore, let A be a V-category and let 4 E ( A (. Then we may define 

48I/25/2-3 
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a V-functor A(A, -): A -+ V by letting A(A, -)(B) = A(A, B) for all 
objects B of A and, for any pair of objects B and C of A, letting 

(A(4 -NBC: 44 C) - VW4 3, A(4 C)) 

be the morphism corresponding to composition c: A(B, C) @ A(A, B) - 
A(A, C) under w. We shall say that a V-functor G: A -+ V is V-representable 
and is V-represented by an object A E ( A ( if there is a V-natural isomorphism 
G z A(A, -). Similarly, we have the contravariant V-representable V-functors. 

For the closed category of sets Ens, Ens-categories, Ens-functors, and 
Ens-natural transformations are just the ordinary categories, functors, and 
natural transformations. For the closed category of Abelian groups Ab, 
Ab-categories are the preadditive categories and Ab-functors are the additive 
functors (Ab-natural transformations and natural transformations of additive 

functors are the same). 
We now wish to define the notion of a V-cocomplete V-category and 

V-cocontinuous V-functor. Dubuc [4] has shown that a straightforward 
generalization of the notion of a complete category is not desirable, and that 
the notions of “V-cocomplete” and V-cocontinuous” should incorporate 
“tensors” and “coends” as well as “colimits.” We begin by defining these 
concepts. 

(1.5) DEFINITION. Let A be a V-category, A be an object of A, and Y an 

object of V. The tensor of V with A is an object V @A A of A which V-repre- 
sents the V-functor V(V, A(A, -)): A + V. A is said to be tensored if for 

everyAEIAIandVEIV/,V@AAexistsinA. 
Dually, the cotensor of V and A is an object A( V, A) which V-represents the 

V-contravariant functor V( V, A(-, A)): A0 + V, and A is said to be 
cotensoved if, for every A E ) A / and V E / V (, A( V, A) exists. 

We note that V is always tensored and cotensored, with @v = @ and 
V(-, -) = V(-, -). I f  A is a cocomplete Ab-category, then A is tensored, 
and for all A E 1 A /, -BA A: Ab ---f A is the unique cocontinuous functor 
for which Z @Ja A g A (Z being the group of integers). I f  X is a complete 
Ens-category then X is cotensored, and for all A E j X ) and S E / Ens /, 
X(S, A) = I7,A, the product of S-copies of A. 

(1.6) DEFINITION. Let C be a V-category and let T: Co @ C ---f V be a 
V-functor. The coend of T is an object of V, denoted by J-c T(C, C), and a 
V-natural family of morphisms {h,: T(C, C) -+ s” T(C, C)},-slcl of V 
satisfying the universal property that given any object V of V and a V-natural 
family {ac: T(C, C) -+ V),.l,~ of V, there is a unique morphism 
a: SC T(C, C) + V in V satisfying the equation a/\, = a, for each C E 1 C I. 
The end of T, SC T(C, C), is defined dually. 
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Suppose A is a V-category and S: Co @ C + A is a V-functor. Then the 
coend of S is an object SC S(C, C) of A, together with a V-natural family of 

morphism (h,: S(C, C) ---f s” S(C, C)} C.lCl of A, such that for all .4 E / A 1, 

the object A@ S(C, C), A), together with the family {A(& , A)},,,.1 , is 
the end of the V-functor A(S(-, -), A): C @c” ---t V. 

Let C be a small category and F, G: C -+ Ens be functors. Define a functor 

T: C” x C ---f Ens by T(C, C’) = Mor(FC, GC’), the set of maps from FC 
to GC’, for all objects C and C’ of C. Then the end of T, SC T(C, C), is the 
set of natural transformations from F to G. 

Let C be a small Ab-category, F: C” + Ab and G: C + Ab be additive 
functors. Define T: Co @C -+ Ab by T(C, C’) = FC @ GC’ for all C, 
C’ E j C j. Then the coend of T, s” T(C, C’) exists, and is the tensor product 
of functors F gc G as defined in [S]. In particular, if R is a ring and C = R, 

then F corresponds to a right R-module N, G corresponds to a left R-module 
M, and SC T(C, C) s N OR M. 

The notions of end and coend were introduced in [3] and further discussed 
in [I l] (the integral sign notation is due to Yoneda). They will be of funda- 
mental importance for this paper for, as the examples indicate, they will allow 
us to define “V-functor categories” at the end of this section and the “tensor 
product of V-functors” in Section 2. 

Recall that, if F: I? + A is a functor (I’ and A ordinary categories), a cone 
of F is a family of morphisms (ah: A -+ F(A)},, , r , of A (for some object A of A) 

such that for every morphism i: X ----f h’ of r, F(j) . a, = a,,’ , and that the 
limit of F is an object 1imF of A together with a cone {i,: lim F -+ F(h)},,,,, 
satisfying the universal property that, given any object A of A and given any 

cone h: A -W)lnolrl , there is a unique morphism a: A -+ lim F in A 
for which i,, . a = a,+ for all h E 1 I’ /. Dually, one has “cocones” and “colimits.” 

(1.7) DEFINITION. Let A be a V-category, r a category, and F: r - A 
a functor. Then the V-colimit of F is an object of A, denoted by V-colim F, 
together with a cocone {p,: F(X) --f T/-colimF},,,r, , such that for every 

A E I A 1, the cone {4pA T 4L,i~i is a limit in V. Dually, one defines V-lim F. 
We note that every V-colimit in A is a colimit in A and that every colimit 

in V is a V-colimit. I f  A is a tensored V-category and C is any V-category, 
the coend of a V-functor S: Co @ C + A is a V-colimit [4, p. 381. 

(1.8) DEFINITION. A V-category A is called V-cocomplete if it is tensored 
and, for all small categories I’ and for all functors F: r - A, V-colim F 
exists. Dually, we define V-complete. 

As examples, an Ens-complete category is an ordinary complete category, 
while an Ab-cocomplete category is an Ab-category with coproducts and 
cokernels. 
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We note that if V is cocomplete, then V is V-cocomplete. 

(1.9) DEFINITION. Let A and B be V-categories and let f :  A ---f B be a 
V-functor. Then j is called V-cocontinuous if j preserves tensors, coends, and 

V-colimits. Dually, we define V-continuous. 
We state below the duals of [4, Propositions III. I. 1, 2, and 5, pp. 112-l 141. 

(1.10) PROPOSITION. For V-categories A and B: (i) for every A E j A I, 
A( -, A): A0 + V is V-continuous; 

(ii) a V-junctor f: A - B is V-cocontinuous 22 for every B E / B / the 
V-fun&or B( j-, B): A” + V is V-continuous; 

(iii) if B is tensored and V E / V 1, then the V-junctor V (S&: B -+ B 
is V-cocontinuous. l 

We sketch briefly the notions of V-adjoint functors and V-triples, which are 
straightforward generalizations of the ordinary notions discussed in the 

Introduction. 

(I .11) DEFINITION. Let X and A be V-categories. Then a V-adjoint pair 
(U, F): A - X is a pair of V-functors U: A + X and F: X --f A for which 
F is V-adjoint to U, i.e., for every X E 1 X ) and for every A E / A / there is 
an isomorphism in V, Bc~,~): A(FX, A) --, X(X, UA), which is V-natural in 
X and A. 

As in the Introduction, one obtains V-natural transformations 7: lx 2 UF 
andE:FU * lA, called the unit and counit of (U, F), respectively. One also 
has the following 

(1.12) PROPOSITION. [4, Proposition 111.1.3 (and its dual), p. 1141. If  
(U, F): A -+ X is a V-adjoint pair, then U is V-continuous and F is V-cocon- 
tinuous. 1 

(1.13) DEFINITION. Let X be a V-category. Then a V-triple on X is a 
triple T = (T, 7, CL) with T: X -+ X a V-functor and r]: lx =S T and 
p: TT 3 T V-natural transformations such that p . 7T = p . Tq = lr and 
p . Tp = p . PT. Dually, one defines a V-cotriple on X G = (G, E, 6). 

As in the ordinary case, every V-adjoint pair (U, F): A -+ X induces a 
V-triple T on X by letting T = (UF, 7, UEF), where v  and E are the unit 
and counit of (U, F), respectively. 

Given a V-triple T on a V-category X, one may construct a V-category of 
T-algebras XT if one assumes V has equalizers. The objects of XT are 
T-algebras. (A, a: TA -+ A) as defined in the Introduction. If  (A, a) and 
(B, b) are T-algebras, one lets XT((A, a), (B, b)) be the object of V which is 
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the equalizer of the two morphisms of V from X(A, B) to X( TA, B), X(a, B) 

and X( TA, b)TAB . One obtains a V-adjoint pair (UT, FT): XT --f X by letting 

UT(A, a) = A for every T-algebra (A, a) and by letting F(X) = (TX, p,J 
for every X E 1 X (. Furthermore, the V-triple on X induced by (UT, F) is T. 

Given a V-adjoint pair (U, 8’): A ---f X, let T be the triple on X induced by 
(U, F), and (assuming V has equalizers) let (UT, FT) be the V-adjoint pair 
defined above. Then there is a canonical V-functor @: A + XT, called the 
comparison functor, for which L iT . @ = U (@ is given on objects by @(A) = 
(UA. UC,,) for all A E j A I). 

(I. 14) DEFINITION. Suppose V has equalizers and suppose (U, F): A + X 
is a V-adjoint pair. Then (U, F) is said to be V-tripleable if the comparison 
functor @ is a V-equivalence of V-categories. 

As is done in the Introduction, one dualizes this definition to define 

V-cotripleable. 
We now turn our attention to the subject of Kan extensions. 

(1.15) DEFINITION. Suppose S: C --t A and T: C + B are V-functors. 
Then the V-left Kan extension of T along S is a V-functor Lan, T: A + B, 
together with a V-natural transformation 7: T => (Lan, T) . S, satisfying the 
universal property that given any V-functor F: A -+ B and any V-natural 
transformation y: T * FS, there is a unique V-natural transformation 

9: Lan, T 3 F for which @S . 71 = q. Dually, one defines the V-right Kan 
extension of T along S Ran, T: A -+ B. 

The following is a special case of the dual of [4, Theorem 1.4.2, p. 501. 

(1.16) PROPOSITION. Let B be a V-cocomplete V-category, C be a small 
V-category, and S: C + A and T: C + B be V-functors. Then Lan, T: A-P B 
exists and, for every A E / A (, one has 

Lan, T(A) = SC A(SC, A) BB TC. 

Dually, if B is V-complete and C is a small V-category, Ran, T: A -+ B 
exists and, for every A E I A 1, one has 

Ran, T(A) = s B(A(A, SC), TC). 1 
C 

Suppose S: C 4 A is a V-functor, with C a small V-category and A a 
V-cocomplete V-category. Then from (1.16) Lan, S exists. Furthermore, the 
universal property of Lan, S allows us to construct a V-cotriple structure on 
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Lan, S, Gs = (Lan, S, l s , S,), called the density cotriple of S (see [4, 
pp. 67-711 where Dubuc considers the dual situation and constructs a triple 
structure on Rans S, called the codensity triple of S). 

(1.17) DEFINITION. Let A be a V-cocomplete V-category, let S: C ---f A 
be a V-functor with C a small V-category, and let G, = (Lan, S, es , S,) be 
its density cotriple. Then we say S V-generates if, for every A E / A 1, 
(E~)~: Lan,S(A) --j A is a V-epimorphism in A. We say that S is V-dense if 
es: Lan, S => 1 A is a V-natural equivalence. 

Dually, for A V-complete, we define the notions of V-cogenerates and 
V-codense in terms of the unit of the codensity triple of S. 

This definition is less general than that given by Dubuc in [4, Defini- 
tions 11.3.1 and 2, p. 821, as we assume our V-category is V-cocomplete 
(or V-complete). However, our definition is adequate for the purposes of this 
paper and avoids some technicalities. 

Let R be a ring and let RM be the category of left R-modules. Construct the 
Ab-category R associated to R and let S: R” --j RM be the (additive) functor 
that assigns to the one object of R” the ring R considered as a left R-module 
over itself and assigns to every “morphism” a of R” the left R-homomorphism 
S(a): R - R given by S(a)(x) = xa for every x E R. Then S is Ab-dense, 

since this statement is equivalent to the fact that every left R-module is the 
cokernel of a homomorphism between free R-modules. 

In the manner of the Introduction this statement generalizes to functor 
categories and is given in 1.20. 

We now develop the notion of V-functor categories following [4, 
Chapter IV]. For this purpose, we shall assume from now on that V is a 

complete category. 
Let C be a small V-category and let D be any V-category. We define a 

V-category DC by letting the objects of DC be the V-functors F: C --f D 
and, for all V-functors F, G: C ---f D, letting Dc(F, G) = SC D(FC, GC), 
the end of the V-functor D(F-, G-): Co @C -+ V (composition and 

identities of Dc are naturally defined using the universal properties of ends). 
The morphisms of the underlying category of DC are the V-natural trans- 
formations. 

From the definition of end (1.6) we have, for every F, G E 1 DC I, a 
V-natural family {(ec)ro: DC(F, G) ---f D(FC, GC)},,,,, of morphisms of V, 
called the evaluation morphisms. Using these we may define, for every C E 1 C 1, 
a V-functor e,: Dc --f D called the evaluation functor at C by letting 
e,(F) = FC for every F E 1 DC /. 

The fact that limits in an ordinary functor category can be constructed 
“point-wise” generalizes to the statement that the family of evaluation 
functors {e,: Dc + D} “creates” V-limits. More generally, one has 
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(1.18) PROPOSITION. [4, Proposition IV.l.4, p. 1531. For all V-categories 
D and for all small V-categories C, the family of evaluation functors 

{ec: DC - D)c,Ic~ creates ends, coends, tensors, cotensors, V-limits and 

V-colimits. In particular, if D is V-complete (V-cocomplete), then DC is also, and 
for every C E j C I, e,: DC ---f D is V-continuous (V-cocontinuous). 1 

Now we let D = V and obtain V-versions of the Yoneda lemma and 
properties of the Yoneda embeddings. 

(I. 19) THEOREM (V-Yoneda lemma, [4, Proposition IV.]. 1, p. 1521. Let 
C be a small V-category, C E 1 C 1, and F E 1 Vc 1. Then 

Vc(C(C, -), F) z FC. [ 

For C a small V-category, define the right Yoneda functor Rc = R: C + Vc” 
to be the V-functor defined by R(C) = C( -, C) and for all D, D’ E 1 C j, 
R oo,: C(D, D’) - VC’(RD, RD’) is the unique morphism in I’ for which 

e&,, = (C(C, -))ob, for every C E / C 1. We define the left Yonedu functor 

L,: C + (Vc>” by letting Leo: C” + Vc be Ii,, , the right Yoneda functor on 
C” (for every C E 1 C /, L,(C) = C(C, -)). It follows from 1.19 that for all 

D,D’4CI,Rm, is an isomorphism in V, so that the right and left Yoneda 

functors are embeddings. 

(I .20) THEOREM ([4, Proposition IV. I .2, p. 1521, although we assume V is 
cocomplete so that we may use our (I. 17)). Suppose V is cocomplete. Then 
for all small V-categories C, the right Yoneda functor R, is V-dense and the left 
Yoneda functor L, is V-codense. 1 

We remark that if C is a small Ab-category, then RcO: c” + [C, Ab] 
being Ab-dense is equivalent to every additive functor F: C --f Ab being the 
cokernel of a natural transformation between coproducts of representable 
functors. As the Yoneda lemma implies that the representable functors of 
[C, Ab] are projective objects, this implies the “homological” statement that 
[C, Ab] has enough projectives. 

2. TENSOR PRODUCTS OF FLINCTORS AND ADJOINT PAIRS 

In this section we define the tensor product of functors and prove our 
V-functor category version of Watts’ theorem. 

Throughout the rest of this paper, we shall assume that V is a closed 
category which is bicomplete, i.e., both complete and cocomplete (as are the 
closed categories Ens and Ab), that D is a V-bicomplete V-category, and that 
C is a small V-category. 
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Then forf : Co -+ V and g: C ---f D, letf - Bog - : Co @ C -+ D denote 
the V-functor defined by (f - &g -)(C’, C) = fC’ @n gC for all C’, 
C E / C 1. We define the tensor product off and g by f  & g = fc fC &, gC 
(this generalizes the tensor product of modules, as discussed previously in the 
examples after (1.6)). This tensor product can be made into a functor, so that 
we have the following definition. 

(2.1) DEFINITION. We define the tensor product functor, 

--&-:vCO~DC+D, 

to be the V-functor given by 

f  ocg = jCfC %gC, 

Note that if D = V, then f  &g s g gcO f, as av = @ is symmetric. 

I f  g is in DC and R,: C --j Vc” is the right Yoneda embedding, then 

- & g = Lan,,(g) : Vc” + D 

(the “realization” functor of g in [4, p. 1581) and (-& g) Rc = g [4, 
pp. 52-591. The functor -&g has a V-right adjoint D(g -, -): D + Vc” 
(called the “singular” functor of g in [4, p. 1581) defined on objects by 
D(g -, -)(D)(C) = D(gC, D) for every object C of Co and D of D. 

We recall the following proposition. 

(2.2) PROPOSITION. (Day and Kelly [3, (6.3), p. 1881.) For g in DC, 
-&g: Vo” ---f D is a V-cocontinuous V-functor for which (- & g) R, = g. 

Furthermore, if G: Vc” --f D is a V-cocontinuous V-functor for which GR, = g, 
there is a unique V-natural equivalence E - $& g + G such that YRc = 1 g . 

Putting this information together, we obtain the following 

(2.3) THEOREM. Let F: Vc’ + D be a V-functor. Then there is a V-natural 

transformation Ed: -&FRc * F satisfying the universal property that if 
01: F’ * F is a V-natural transformation and F’: VcO ---+ D is V-cocontinuous, 
then there is a unique V-natural transformation Cu: F’ =+ - & FR for which 
Ed . oi = 01. Furthermore, Ed is an equivalence aJfF is V-cocontinuous. 

Proof. Let g: C + D be a V-functor. Then Lan,,g = -&g. Since 

g = (-&g)Rc, (1.15) in this case gives us that for every V-functor 
F: Vc” -+ D and for every V-natural transformation v: g 3 FR, , there is a 
unique V-natural transformation p’: -&g =X F for which qRc = v. 
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For a given F: Vc” ---f D, let g = FRC , let q~ be the identity on FR, , 
and let Ed be the corresponding q, We note that cFRC = lFRC , so that if F is 
V-cocontinuous, Ed is an equivalence by (2.2). 

Suppose F’: Vc’ -D is V-cocontinuous and QI: F’ 3 F is a V-natural 
transformation. One obtains a commutative diagram 

Since F’ is V-cocontinuous, Ed’ is an equivalence, hence we may let 
G = (-& OIR~)(E~,)-~ so that l F Or = 01, demonstrating the existence of 5. 

For any V-natural transformation /3: F’ => - & FR, such that Ed . p = 01, 
one has /3R, = olRc since cFRC is the identity. It follows from the uniqueness 
of -@c olRc (- & orRc is unique such that (-@c aR,)R, = aA,-) that 

p . EFS = -@corRc.Hencep ==& 1 

Let C’ be another small V-category. Then for any V-functor g: C -+ D, let 
D(g -, -)*: DC’ + (VcO)“’ g Vco@c’ be the functor induced by the 
singular functor of g, D(g -, -): D + V c0. Since -&g is V-left adjoint to 
D(g -, -), we have a proposition: 

(2.4) PROPOSITION. For any V-functor g: C -+ D, the V-left adjoint to 
D(g -, -).+ is (-&g),: Vc”@ + DC’, the functor induced by 

-&g : V=’ -+ D. I 

For any V-functor u: Co @ C’ + V, we shall denote (-@,,g).Ju) by 

u @c&Y. 
Dualizing 2. I, we have the following definition. 

(2.5) DEFINITION. The symbolic Horn functor is the V-functor 

[-, -lc: (Vc)O @DC + D 

defined by [f, g]c = SC D(fC, gC) for every f E 1 Vc 1 and g E 1 DC /. 
We note that for g: C -+ D a V-functor, [-,g]c: (Vc), --f D is the 

“corealization” functor of [4], and that we have [-, g]c = Ran,c(g), where 
2;(Fg~ ( vIc)~ is the left Yoneda embedding. Also, if D = V, [f, glc = 

> . 
Dualizing (2.2) and (2.3) gives us the following proposition. 
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(2.6) PROPOSITION. For g in DC, [-, glc: (Vc), --j D is a V-continuous 
V-functor for which [-, glc L, = g. Furthermore, ;f  G: (Vcy - D is a 
V-continuous V-functor for which GL, = g, there is a unique V-natural 
equivalence Y: G 3 [-, glc such that YL, = I B . 1 

(2.7) THEOREM. LetF: (Vcy + D be a V-functor. Then there is a V-natural 
transformation qF: F 3 [-, FLJc satisfying the universal property that ;f  
/3: F =S F’ is a V-natural transformation and F’: (Vcy -+ D is V-continuous, 
then there is a unique V-natural transformation /?: [-, FL,], =S F’ for which 

8. qp = /3. Furthermore, 7F is an equivalence iSfF is V-continuous. 1 

To dualize (2.4), let f  E 1 DC’ 1 and consider the V-functor 

D(-,f -):D-+ (Vc’y, 

the “cosingular” functor offof [4], d fi e ne on objects byD(--,f -)(O)(C’) = d 
D(D, fC’). D(-, f -) is V-left adjoint to [-, f]c , so that the induced 
functor, 

D(--, f-)* : DC -+ ((Vc’p)c s (VcO’=‘)~, 

is V-left adjoint to ([-, flc,).+ . For any V-functor u: Co @C’ --j V, we shall 

denote U-,fk>&) by l%flc . 
One observes that for all f E 1 DC’ 1 and g E 1 DC j, D( -, f),(g) = 

D(g -, -).+(f) as objects in V cO@c’. Thus, (2.4) and its dual give us this 

theorem: 

(2.8) THEOREM. Let C and C’ be small V-categories and u: C* @ C’ - V 
be a V-bifunctor. Then u ?& -: DC + DC’ is V-left adjoint to [u, -lc, . [ 

(2.9) DEFINITION. We say that a V-bifunctor u: Co @C -+ V represents 
the V-adjoint pair ([u, -Ice , u @c -): DC’ - DC. 

The following is the V-functor category version of Watts’ theorem. 

(2.10) THEOREM. Every V-adjoint pair (U, F): Vc’ ---f Vc is represented 
uniquely by a V-bifunctor u: Co @ C’ -+ V. 

Proof. Since F: Vc + Vc’ is V-cocontinuous, we have from (2.3 with 

D = Vc’) that F is V-equivalent to - &, FR z FR & -, where 
R: Co --f Vc is the right Yoneda embedding. Let u be the V-functor corre- 
sponding to FR: Co ---f Vc’ under the V-equivalence (Vc’)c” G Vc”Oc’, 
so thatF= u & -. Since U is V-right adjoint to F and, by (2.8), [u, -]c 
is V-right adjoint to u & -, we have U z [u, -]c by uniqueness of 
adjoints. 1 
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Suppose u: Co @ C’ - V and v: C’” @ C” 4 V are V-functors. Then we 

may define a V-functor v  @c, u: Co @C” - V so that (v & u)(C, C”) = 
v(-, CO) & u(C, -) for all CE]Ci and C”E]C/. Note that 
u @c -: Vc - Vc’ and v  & --: Vc’ - Vc”, while 

(v gjcT u) @c -: vc + VC”. 

The following is a consequence of (2.2). 

(2.11) THEOREM. For V-functors u: c” @ C’ ---f V and v: C’” @ C” + V, 
there is a canonical V-equivalence 

(v i&p -) . (u @jc -) s (v @j,* u) & -. 1 

A corollary follows immediately: 

(2.12) COROLLARY. If a V-adjoint pair (U, F): Vc’ + Vc is represented 
by u: Co @ C’ ---f V and a V-adjoint pair (U’, F’): Vc” + Vc’ is represented 
by v: C’* @C” --f V, then the composition of adjoint pairs (UU’, F’F) is 
represented by v  6& u: Co @ C” - V. m 

We apply these results to the following situation. Let X: C + C’ be a 

V-functor, let D”: DC’ + DC be the V-functor induced by x (D*(h) = hx for 
every h E I DC’ I), and let C’(x--, -): C” @C’ + V and 

C’(-,x-):C’“@C+V 

be the V-bifunctors defined by C’(x--, -)(C, C’) = C’(xC, C’) and 

C’(-, x-)(C’, C) = C’(C’, XC) f  orallCE/CIandC’EIC’].Onechecks 
that [C/(x-, -), -]c s D” g C’(-, x-) &, -. It follows from (2.8) that 

(2.13) THEOREM. Let x: C ---f C’ be a V-functor and let D”: DC’ -+ Dc 
be the V-functor induced by x. Then Dx is V-equivalent to C’(-, x-) &T - 
and to [C’(x-, -), -lc, . Furthermore, Dx has a V-left adjoint (D*)‘s 
C’(x--, -) & - and a V-right adjoint (D”)r E [C’(-, X-), -lc. 

3. V-COCONTINUOUS TRIPLES AND MONOIDS 

We now consider the underlying category of the category of V-bifunctors 
VcOQc, which we will denote by [Co @ C, V] (the objects of this category are 
also known as Benabou’s “profunctors” or “distributors” from C to C). When 
C = R and V = Ab, [Co @C, V] is the category of R-bimodules. The 
category [Co @ C, V] is almost a closed category, for all it lacks is the sym- 
metry of the tensor product. It is an example of the following. 



244 FISHER-PALMQUIST AND NEWELL 

(3.1) DEFINITION (Lambek [9, p. 981.) A category W is called biclosed if it 
is a monoidal category with tensor product 0: W x W -+ W and further- 
more,forall?4J~/W~,W@-:W--tWhasarightadjointW\-:W+W 
and -0 W has a right adjoint -jW: W + W. 

The following is mentioned in [2, pp. 36-371. 

(3.2) PROPOSITION. The category [Co @ C, Vj is biclosed. 

Proof. We have defined a tensor product u & v  of two V-bifunctors u 
and v  in [Co @ C, V] above (in the paragraph preceding (2.11)). It follows 
from (2.11) that one has a natural equivalence 

a: (u & v) & w a u & (v ac w). 

The unit is the Horn bifunctor C = C(-, -): Co @ C + V, and the left 
and right identity natural equivalences 1: C & u 3 u and r: u &C 3 u 

follow from (2.2). 
It follows from (2.8) that u & - has a right adjoint u\-. This functor is 

given by (u\v)(C’, C) = Vc(u(C, -), v(C’, -)) for all bifunctors 
v: Co @ C - V and objects C, C’ E / C I. 

Since -@,u = u BcO -, it follows from the above that -@c u has 
a right adjoint -/u. This functor is given by 

(v/u)(C’, C) = VC”(u(-, C’), v(-, C)). 

for all bifunctors v: Co @ C + V and objects C, C’ E 1 C I. 1 

The metacategory End(Vc), with objects being V-functors from Vc to 
itself and with morphisms being V-natural transformations, is a strict 

monoidal category with tensor product of two functors being their composition 
and the unit being the identity functor on Vc (“strict” means that the “a,” 
“I,” and “Y” of (1.1) are identity maps). 

(3.3) DEFINITION. Let M = (M, , @J, I, a, 1, r) and M’ = (M,‘, @‘, I’, 
a’, I’, Y’) be two monoidal categories. Then a morphism of monoidal categories 
@: M -+ M’ consists of(i) a functor @: M, -+ M,‘; 

(ii) for each A, B E / M 1, a morphism q: @A 0’ @B - @(A @ B) in 
M’, natural in A and B, so that for all A, B, C E 1 M 1 the diagram 
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(iii) a morphism vO: I’ ---f @I in M’ so that, for every A EM, one has 

(I’ 0’ @A ‘O@‘@’ ) @I 0’ @A -% @(I @ A) % @A) = l’, 

and 

(@A 0’ I’ d?%?k+ @A 0 @I * @(A @ I) 3) @A) = r’. 

We say that @ is a strict morphism of monoidal categories if q0 and the y’s 

are isomorphisms in M,‘. 
The right Yoneda embedding RCO: c” ---, Vc induces a metafunctor, 

R*: End(Vc) ---f [Co @ C, V], 

given by R*F is the bifunctor corresponding to FR,,: Co ---f Vc under the 
equivalence VcO@Jc z (V”)‘” for all F: Vc + Vc. 

(3.4) T HEOREM. The metafunctor R*: End(Vc) ---f [c” @C, V] is a 
morphism of monoidal metacategories. Furthermore, R* has a left adjoint R1, 
given by Rz(u) = u Bc - for u in [Co @ C, V], which is a strict morphism of 
monoidal metacategories. The restriction of R* to the full submetacategory of 
End(Vc) whose objects are the V-cocontinuous V-endofunctors on Vc gives an 
equivalence of categories between this submetacategory and [Co @ C, V]. 

Proof. The adjointness follows from the universal property of Kan 
extensions, as R’(u) = u & - = - BcO u = LanRcO u for u E [Co @) C, V] 
(thought of as a V-functor u: C” ---f Vc under the equivalence Vcooc z 
(V’)‘“). The V-natural transformations, 

Rl(u) . R’(v) = (u Bc -) . (v & -) * (u @, v) Bc - = RL(u & v), 

of (2.1 I) and 

I vc 2 R”(C) 

(2.10), with F = lvc , are equivalences, so that R’ is a strict morphism of 
monoidal categories. It follows from Maranda [12, Corollary, p. 7761 that R* 
is a morphism of monoidal categories. 

The unit of the metaadjoint pair, 

(R*, Rz): End(Vc) -+ [Co @C, V], 

is an equivalence by (2.2). The counit for this metaadjoint pair is seen to be 
cF of (2.3) (replacing Co by C and letting D = V’), which is an equivalence 
if f  F is V-cocontinuous. The rest of the theorem follows from these observa- 
tions. [ 



(3.5) DEFINITION. Let M = (M, , 0, I, a, 1, Y) be a monoidal category. 
A monoid object of M is a triple (JG’, 7, p), with M an object of M, and 

- 7pl M and CL: M @ M -+ M morphisms of M, , for which the diagrams 

and 
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We let U(V”) denote the full submetacategory of End (V’) whose objects 
are the V-cocontinuous V-endofunctors on Vc, and let y: %‘(V’) + [Co @C, V] 
be the equivalence of metacategories obtained by restricting R* to %?(V”). 
Then the inclusion metafunctor i: %?(V’) + End(Vc) has a metaright 
adjoint, i.e., U(Vc) is a coreflective submetacategory of End(Vc). Further- 
more, y  and i are strict morphisms of monoidal categories. 

commute in M, . 
Dually, a comonoid object of M is a triple (N, c, S), with N an object of M, 

and~:N-+IandS:N-+N@NmorphismsofM,sothat(e@N)~S =I, 
(N@E).S==r,anda.(S@N).S=(N@S).S. 

If  M and M’ are monoidal categories and @: M -+ M’ is a morphism of 
monoidal categories, then @ preserves the monoid objects of M in the sense 
that, if (M, q, p) is a monoid object of M, (@M, Q(T) ’ vO, CD(~) . 9’) is a 
monoid object of M’ (where q and v0 are the morphisms associated to @ in 
(3.3)). In fact, if (Ml, Q , pr) and (M, , 7s , ps) are monoid objects of M, 
define a homomorphism of monoid objects t: (Ml , yl , pl) -+ (Mz , q2 , & to be 
a morphism t: Ml -+ Mz in M, for which (t + Q) = Q and t . pcLI = pz . (t @ t). 
I f  we let Man(M) denote the category of monoid objects of M and their 
homomorphisms, a morphism of monoidal categories @: M -+ M’ induces 
a functor @: Man(M) - Mon(M’). We note that if Q, is strict, we may make 
similar observations about the comonoid objects of M. 

One sees that the monoid objects of End(Vc) are the V-triples on Vc and 
that the monoid objects of v(V”) are the V-triples on Vc with V-cocontinuous 
functor (the comonoid objects of End(Vc) are the V-cotriples on V’). 
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(3.6) COROLLARY. Let T be a V-triple on Vc. Then there is a V-triple T on 
Vc with V-cocontinuous functor and a homomorphism of V-/‘-triples + T S- T 

satisfying the universal property that if T’ is any V-triple on Vc with V-cocon- 
tinuous functor and if ol: T’ =+. T is a homomorphism of V-triples, then there is a 
unique homomorphism of V-triples &: T’ 3 ‘i? for which Ed . & = (Y. Further- 
more, Ed is an equivalence if/ the functor of T is V-cocontinuous. 

Proof. %?(V’) is a coreflective submetacategory of End(Vc) whose inclusion 
metafunctor i is a strict morphism of monoidal metacategories. It follows that 
Mon(%(VC)) is a coreflective submetacategory of Mon(End(VC)), which is an 
equivalent statement of the corollary. 1 

Since y: %Y(V’) + [Co @C, V] is an equivalence of monoidal meta- 
categories, we have the following 

(3.7) COROLLARY. The equivazence y: %(V”) -+ [Co @ C, V] induces: (a) an 
equivalence between the metacategory of V-triples on Vc with V-cocontinuous 
functors and the category of monoid objects in [CO @ C, V]; 

(b) an equivalence between the metacategory of V-cotriples on Vc with 

V-cocontinuous functors and the category of comonoids in [Co @ C, V]. 1 

V is itself a monoidal category, and we may consider the monoid objects of 
V. When V = Ens, Man(V) is the category of monoids (sets with an associative 
binary operation and a unit). When V = Ab, Man(V) is the category of 
rings and ring homomorphisms. As an immediate application of 3.7, we have 
the following 

(3.8) COROLLARY. (a) the category of monoids in V is equivalent to the 
metacategory of V-triples on V with V-cocontinuous functors. 

(b) The category of comonoids of V is equivalent to the metacategory of 
V-cotriples on V with V-cocontinuous functor. 

Proof. One lets I denote the V-category with one object *, with I(*, *) = I, 

and with obvious composition and identity. One has an equivalence of 
monoidal metacategories y: %?(V*) -+ [I” @ I, V]. But we observe that 
VI z V and [I” @ I, V] s V, and the corollary follows. 1 

The rest of this section is devoted to identifying Mon ([CO @C, V]) 
(Benabou’s category of “protriples”). 

(3.9) DEFINITION. Given a monoid object, 

(u,7):c~u,p:u~cu~u), 
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of [Co @C, VJ, we define a V-category C, and a V-functor x,: C -+ C, as 
follows: 

(Cl) the objects of C, are those of C; 

(C2) for objects C and c’ of C, , C,(C’, C) = u(C’, C); 

(C3) for objects A, B, C of C, composition in C, is defined by the 
commutative diagram 

(C4) for C an object of C, , the identity of C in C, is defined to be the 
composition of the identity1 -+ C(C, C) of C and q(C, C): C(C, C) -+ u(C, C); 

(C5) the V-functor x,: C --f C, is defined by x,(C) = C for every 
object C of C and by x&4, B) = TJ(A, B) for every pair of objects A and B 
OfC. 

Conversely, given a V-category C’ and a V-functor x: C + C’, we define 

a monoid object (us , 7X , p,J of [Co @ C, V] as follows: 

(Ml) U, = C’(x -, x -); 

W4 T&L B) = XAB for every pair of objects A and B of C; 

(M3) p,(A, C): (uz @c u,)(A, C) -+ u,(A, C) is the unique morphism 
for which the diagram 

C’(xB, XC) @ C’(xA, xB) “’ - C’(x-, XC) & C’(xA, x-) 

commutes for all objects B of C, where “c” denotes composition in C’. 

One verifies that, given a monoid object (u, 7, p) of [C” @ C, V], the data 
(Cl-5) satisfies the requirements for C, to be a V-category and x,: C + C, 
to be a V-functor and, given a V-functor x: C -+ C’, the data (Ml-3) does 
define a monoid object (uz , vz , pLI) of [Co @C, V]. Furthermore, one sees 
these constructions are almost inverses of each other. We have the following 

(3.10) PROPOSITION. There is an equivalence of categories between 
iLlon([C @ C, V]) and the category whose objects are pairs (x, C’), where C’ is a 
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V-category and x: C ---f C’ is a V-functor which is a surjection on objects, and 

whose morphisms f: (x, C’) --f (y, C”) are V-functors f: C’ -+ C” for which 
fx = y. This equivalence is given by the assignment (u, 7, p) H (xU , C,) for 
all monoid objects (u, 7, p) of [C” @C, V], and its inverse is given by the 
assignment (x, C’) t-+ (u, , Q , p,J for all V-functors x: C --t C’ which are 
surjective on objects. 1 

Let x: C --f C’ be a V-functor on small V-categories C and C’. Then x 
induces a V-functor V”: Vc’ ---f Vc. B y (2.13), Vx has a left adjoint (Vz)l, 
and both V* and (Vz)L are V-cocontinuous. Therefore, the V-triple T, 
induced by the V-adjoint pair (V”, (Vx)l): Vc’ --f Vc has V-cocontinuous 
functor. Furthermore, we have the following 

(3.11) PROPOSITION. Ifx:C + C’ is a surjection on objects, the V-adjoint 

pair (V”, (Vx)l): Vc’ -+ Vc is V-tripleable. 

Proof. We use [4, Theorem 11.2.1, p. 781 and the terminology defined 
there. 

Since Vc is V-cocomplete and V” is V-cocontinuous, V” detects and 
preserves V-coequalizers. Since x is a surjection on objects, it follows that V” 
reflects isomorphisms and hence, since Vc is V-cocomplete, V” reflects 
V-coequalizers. Thus, by the theorem in [4], (V”, (V*)l) is V-tripleable. 1 

We now put together the equivalences of (3.7) and (3.10), along with the 
previous proposition, to obtain the following (the “main theorem” of the 
Introduction). 

(3.12) THEOREM. Let T = (T, ‘I, p) be a V-triple on Vc with T a V-cocon- 
tinuous functor. Then there is a V-category C’ and a V-functor x: C + C 
which is a surjection on objects so that T is isomorphic to the V-triple T, induced 
by the V-adjoint pair (V”, (Vz)l). F ur th ermore, the V-comparison functor gives 
an equivalence of V-categories (V”)’ E V”. 

Proof. Let C’ = C,,, and x = x,,~ . The equivalences of (3.7) and (3.10) 
give us that Ts C’(x--, x-) & -. But, by (2.13), Vx s C’(-, x-) @,I - 
and (Vz)l E C/(x--, -) & -. Therefore, by (2.1 l), the functor of T, is 
given by 

V” . (vy E (C’(-, x-) &* C’(x-, -)) c=& -, 

and one sees that 

C’(-, x-) &* C’(x-, -) s C’(x-, x-). 

Therefore, T E T, . The last assertion of the theorem follows from (3.11). 1 

481/d+4 
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4. CHARACTERIZATIONS OF V-FUNCTOR CATEGORIES 

In this section, we apply (3.12) to obtain some characterizations of 
V-functor categories, including those given by Bunge in [I]. 

Let Sbe a set. We construct from S a corresponding“V-discrete”V-category 
S whose objects are the elements of S and, for any two elements i andj of S, 
S(i,j) = 0, the initial object of V, if i #i, and S(i, i) = I, the unit of V. 

We note the following: 

(1) Vs is V-equivalent to the category V”, the product category of S 
copies of V, made into a V-category by defining 

for all families (A& and (BJ, of objects of V indexed by S; 

(2) for every small V-category C for which there is a bijection 
u: S + ] C I, there is a unique V-functor a: S + C for which a(i) = u(i) 
for every i E S. 

(4.1) THEOREM. Let B be a V-category. Then B is V-equivalent to Vc 
for some small V-category C a# there is a set S and a V-triple T on Vs with 
V-cocontinuous functor for which B is V-equivalent to the V-category of 
T-algebras (VS)T. 

Proof. Let C be a small category and let S be any set for which there is 
a bijection o: S z 1 C /. Th en the I’-functor 6: S --f C induces a V-functor 
V8: Vc -+ Vs. If  we let T, denote the V-triple on Vs induced by the adjoint 
pair (V”, (V”)l), we have by (3.11) that Vc s (Vs)Tu, so that if B is V-equivalent 
to Vc, then B is V-equivalent to (Vs)T~. 

Conversely, if B is V-equivalent to (VS)T, T a V-triple with V-cocontinuous 
functor, then by (3.12) there is a V-category C for which (VS)T g Vc, so 
that B E Vc. u 

As a corollary, we obtain the “first characterization of functor categories” 

of Bunge [l (4.6)]. 

(4.2) THEOREM. Let B be a V-category, S a set, and suppose there is a 
V-adjoint pair (U, F): B --f Vs for which U is V-cocontinuous. Then there is a 
V-category C, a bijection a: S g 1 C /, and a V-equivalence @p: B -+ Vc 
for which U = V’ ’ @ iff  B has V- coequalizers and U reflects isomorphisms. 

Proof. For any small category C, Vc is V-bicomplete, so that Vc has 
V-coequalizers. If  S is any set and u: S z 1 C / is a bijection, V’: Vc + Vs 
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reflects isomorphisms. Consequently, if there is an equivalence of categories 
@: B -+ Vc for which U = V’ . @, B must have V-coequalizers and U must 

reflect isomorphisms. 
Conversely, suppose B has V-coequalizers and U reflects isomorphisms. 

Let T be the V-triple on Vs induced by the V-adjoint pair (U, 3’). Since B has 
V-coequalizers which are preserved by the V-cocontinuous functor U and U 
reflects isomorphisms, it follows from [4, Theorem 11.2.1, p. 781 that (U, F) 
is V-tripleable, i.e., there is an equivalence of categories Qi: B ---f (VS)= for 
which U = UT . @. But F, being a V-adjoint, is V-cocontinuous and U is 
assumed V-cocontinuous so that the functor of T, UF, is V-cocontinuous. The 
rest follows from (4.1) and its proof. 1 

(4.3) DEFINITION. Let B be a V-category, and let K E 1 B (. Then K is 
said to be a V-atom of B if the V-functor B(K, -) is V-cocontinuous. 

The Ab-atoms of the Ab-category RM, for any ring R, are the finitely 
generated projective R-modules. We also note that for any bicomplete closed 
category V, for any small V-category C, and for each C E j C 1, C(C, -) is a 
V-atom of Vc, since the evaluation functor ec: Vc ---f V is V-cocontinuous 

by (1.18) and is V-represented by C(C, -) by the V-Yoneda lemma (1.19). 

(4.4) DEFINITION. A V-cocomplete category B is said to be V-atomic 
if there is a small category C and a V-functor g: C * B which is V-generating 
(1.17) and has the property that gC is a V-atom of B for every C in C. 

We note that for any bicomplete closed category V and small V-category C, 

Vc is V-atomic since the V-functor RcO: C” ---t Vc is V-generating and 
R,,C = C(C, -) is a V-atom for every C in C. 

We say that a V-category B is V-coregular if every V-epimorphism of B is a 
V-coequalizer. I f  V is V-coregular, so is Vc for every small V-category C. 
The proof of this statement is similar to the one for coregularity done in the 
proof of (4.9) in [l]. 

The following is a generalization of the “second characterization of functor 
categories” given by Bunge [l (4.16)]. 

(4.5) THEOREM. Let V be a bicomplete closed coregular category, and let 
B be a V-category. Then there is a small V-category C for which B is V-equiv- 
alent to Vc isf B is a V-cocomplete V-atomic category which is V-coregular. 

Proof. The conditions on B are necessary since we have already noted 
above that a V-functor category satisfies them. 

Suppose B is a V-cocomplete V-atomic category which is V-coregular. 
Then there exists a small category C and a V-functor g: C -+ B which is 
V-generating and has the property that gC is a V-atom of B for every object C 
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of C. Since B is V-cocomplete, the singular and realization V-functors of g, 
U = B(g--, -) and - @cg exist and form an adjoint pair 

(U, -&g) : B --f Vc”. 

Since the family of evaluation V-functors {ec: Vc” + V},,,,, collectively 
creates V-colimits and ecU = B(gC, -) is V-cocontinuous for every object 
C of C, the functor U is V-cocontinuous. Thus the triple T induced by the 
adjoint pair (U, -&g) on Vc” is V-cocontinuous. By (3.11) we have 
(VC”)= is V-equivalent to Vc’ for some small V-category C’. I f  we show that U 

is V-tripleable we will have that B is V-equivalent to (V’“)= and hence to V”. 
Since B has V-coequalizers and U preserves them, we need only show that U 
reflects isomorphisms by [4, Theorem 11.2.1, p. 781. 

Since the functor g is V-generating we have Q: Lan,g(B) -+ B is a 
V-epimorphism for every B in B. Thus, 

B(ea , B’): B(B, B’) -+ B(Lan,g(B), B’) 

is a V-monomorphism for every object B’ of B. Since the diagram 

BP, B’) 
B(~,d’) ------+ B(Lq,g(B), B’) 

\ n 

u B ( jc B:gC B) 08 gc, B') BE' 

;i;; 

1 R 
s VW, B), BW, B')) 

C 

1 

?? 

Vc”( UB, UB’) 

commutes, U,,, is a V-monomorphism for all objects B and B’ in B. Thus 
U is V-faithful. Let f:  B --t B’ be a morphism in B for which U(f) is an 
isomorphism in VcO. Since U is V-faithful it follows that f is both a V-mono- 
morphism and a V-epimorphism. Since B is V-coregular, f is a V-coequalizer 
of a pair of morphisms (a, p) of B. But since f is also a V-monomorphism we 
have 01 = /3, and hencef, being the V-coequalizer of equal morphisms, is an 
isomorphism. 1 

It follows immediately from the above that 

(4.6) COROLLARY. Let V be a bicomplete closed coregular category. Then 
any V-cocomplete V-atomic category which is V-coregular is V-complete. 1 
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We note that if V is a bicomplete closed category with the property that the 
underlying functor V,(I, -): V, -+ Ens is faithful and B is a V-cocomplete 
category, then B has the property that there exists a small V-category C 
and a V-generating functor g: C -+ B iff the set of objects {gC},, is a 
generating set for B. If, in addition, V has the property that V,(I, -) reflects 
isomorphisms, then a V-category B is V-cocomplete iff it is cocomplete; and 
if B is cocomplete then a functor h: B -+ V is V-cocontinuous iff h preserves 
colimits, since in this case, V-colimits, tensors and coends in B can be 
constructed as colimits in B (see [4, Theorem A.2, p. 1681.) If V has all these 
properties and B is a V-category which is cocomplete, then B is V-atomic iff 
B is atomic in the sense of Bunge [l, Definition 4.131. Thus we sharpen 
Bunge’s “second characterization of functor categories” [l (4.16)]. (We note 
that if V is coregular and V&7, -) is faithful, then V,(I, -) reflects 
isomorphisms.) 

(4.7) COROLLARY (Bunge). Let V be a bicomplete coregular closed category 
with the property that the underlying functor V,(I, -): V --+ Ens is faithful. 
Then a V-category B is V-equivalent to Vc for some small V-category C, isf 
B is a cocomplete coregular atomic category. 1 

5. V-CONTINUOUS COTRIPLES AND MONOIDS 

We would like to dualize the results of Sections 2 and 3 to a V-cotriple 
G = (G, E, 6) on Vc for which G is V-continuous. To do this, we need to 
know that every V-continuous functor on Vc has a V-left adjoint. This 
necessitates the following 

(5.1) DEFINITION. A V-bicomplete V-category D is said to have a small 
cogenerating functor if there exist a small V-category B and a V-functor 
K: B + D which is V-cogenerating (1.17), i.e., 

ho : D -+ (Ran,K)D = s i)(D(D, kB), kB) 
B 

is a V-monomorphism for every D in D. 

(5.2) PROPOSITION. If V has a small cogenerating functor, so does Vc for 
every small V-category C. 

Proof. By hypothesis, we have a V-functor k: B -+ V with B small and 
with 7”: V -+ (Ran, k)V a V-monomorphism for every V in V. Define 
u: Co @ B --f Vc to be the V-functor defined on objects by u(C’, B)C = 
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V(C(C, C’), KB) for (C’, B) in 1 C” @ B / and C in 1 C 1. We note that for 
every g in 1 Vc 1 and (C’, B) in 1 C” @B j, Vc(g, u(C’, B)) = V(gC’, KB). 
Now Ran,(k): V -+ V is a V-triple, and hence induces a v-triple 

(Rank k)c: Vc -+ Vc 

with unit ~c: Ivc = (lv)c 3 (Ran, k)C which is pointwise a V-mono- 
morphism. Thus we are done if we show that (Ran, k)c = Ran, u as triples. 

Since Ran, k = sB V(V(-, KB), kB) by (1.16) there are V-natural trans- 
formations 6,: Ran, k * V(V(-, kB), kB) for each object B of B. If  
F: Vc + Vc is a V-functor and ‘p: F => (Ran, k)c is a V-natural transforma- 

tion, v  is equivalent to a V-natural family {tic: I+ V((Fg)C, (Rank k) gC)}. 
This family defines, by the following commutative diagram, a V-natural 
family{~,,)withginIVCj,CinjCI,andB~/BI: 

I--=+ 
w?dC~ PankNm) 

\ 

1 
vmc,Mim 

WFg)C, W’W> W, W) 

I 

n 

t rCB 
VW, W V(Fg)C, W) 

I 

22 

V(Wg, u(C, B)), VW, u, (C, 3)). 

Conversely, a V-natural family {fgcB) d fi e nes uniquely a V-natural family 
{q,J for which the above diagram commutes. By the representability theorem 

of Eilenberg-Kelly [5, Th eorem 8.61, there is a one-to-one correspondence 

between V-natural families (fgCB) and V-natural families 

i.e., a V-natural transformation 9: Fu + u. Thus, (Ran, Lz)~ = Ran, u. 1 

A category is said to be well powered if the subobjects of any object in the 
category are in one-to-one correspondence with a set. (We note that Ens and 
Ab are well powered categories.) 

(5.3) PROPOSITION. Let V be a well powered bicomplete closed category 
which has a small cogenerating functor. Then every V-continuous functor 
G: Vc + A has a V-left adjoint which is Ran,(id). 
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Proof. Since V is well powered Vc is V-well powered [4, Proposi- 
tion IV.1.31. This, together with (5.2) and [4, Theorem 111.2.21 in which 
Ran,(id) is shown to exist and be the V-left adjoint of G, finishes the proof. 1 

We shall assume henceforth that V is well powered and has a small 

cogenerating functor. 
Let Z(Vc) be the full submetamonoidal category of End(Vc) whose objects 

are V-continuous functors on Vc, with the inclusion functor L: Y(Vc) ---f 

End(Vc) a strict monoidal metafunctor. By the above, every object G of 
9(Vc) has a V-left adjoint F = Ran&id), and by (2.10) the adjoint pair 
(G, F) is represented by a V-functor u: Co @C + V with G e [u, -]c 
andFsu@c-. 

For a monoidal category M, let tM be the transpose monoidal category 
with the same objects as M and with tensor, Q, defined by M “0 M’ = 
M’ @ M for all objects M and M’ in M. A monoid in M becomes a monoid 
in tM. Then we have by (2.10) and (5.3) 

(5.4) THEOREM. The functor N: t[CO @C, V]” ---f Z(Vc) defined by 
N(u) = [u, -lc fOY 24. in [C” @C, V] zs a strict morphism of monoidal meta- 
categories which is an adjoint equivalence with right adjoint NT defined by 
N’(G)(C’, C) = F((C’, -))C, where F = Ran,(id), the V-left adjoint of G. 1 

(5.5) COROLLARY. 

(1) The functor N induces an equivalence of monoidal categories between 

the category of comonoids in [c” @I C, V] and the category of V-triples on Vc 
with V-continuous functors. 

(2) The functor N induces an equivalence of monoidal categories between 
the category of monoids in [Co @ C, V] and the category of V-cotriples on Vc 
with V-continuous functors. 1 

(5.6) COROLLARY. Let G = (G, E, 6) be a V-cotriple on Vc with G V-con- 
tinuous. Then there is a V-category C’ and a V-functor x: C -+ C’, which is a 
surjection on objects, such that the V-category of G-coalgebras G(Vc) is V-equiv- 
alent to the V-functor category Vc’. Furthermore, V”: Vc’ + Vc and its 
V-right adjoint (Vx)’ induce the V-cotriple G. 

Proof. By 5.5(2) there is a monoid u: Co @C --t V with N(u) = 
[u, -]c e G. Since u & - is V-left adjoint to G and is a V-triple with its 
triple structure induced by the cotriple structure on G, we can apply (3.12) 
(2.13), and [l (2.7 and 2.8)] to get the desired result. 1 

In the remainder of this paper we investigate T-algebras (G-coalgebras) 
when T (G) is a bicontinuous triple (cotriple) on Vc. As mentioned in the 
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introduction this generalizes the situation when C = R (R a commutative 
ring) and T = Hom,(d, -)(G = /l OR -) where A is an R-coalgebra which 
is a finitely generated projective R-module. 

Define the dualization functor D: “[Co @C, V]" + [Co @ C, V] to be 
the composition of the monoidal functors N: t[C” @ C, VI0 -+ 9(Vc) and 
R*L: Z(Vc) + [Co @C, V]. By direct calculation one sees that on objects 
u in [Co @C, V] and (A, B) in Co @C, Du(A, B) = (u\C)(A, B) = 
Vc(u(B, -), C(A, -)). (When V = Ab and C = R (R any ring) then 
[CO @C, V] is the category of R-bimodules and for iI4 and R-bimodule 
DM = the group of left R-homomorphisms from M to R, regarded as an 
R-bimodule in the usual way.) Since D is a map of monoidal categories, it 
maps comonids of [Co @ C, V] into monoids of [Co @ C, V]. 

For each f in Vc we can define f * in Vc” by letting f * be the composition of 
R,,: C” -+ VC and Vc(f, -): Vc + V (one sees thatf*(C) = Vc(f, C(C, -)) 
for every object C of Co). The operation * defines a contravariant V-functor 
- *: (Vc>, -+ Vc”. We note that f * is always V-continuous. 

(5.7) PROPOSITION. Let f be in Vc. 

(1) There is a V-natural transformation 

$f * a, - => VC(f, -), 

which is an equivalence z$f Vc(f, -) is V-cocontinuous. 

(2) There is a V-natural transformation 

171: -* &f * VC(-,f), 

which is an equivalence iff - * &f is V-continuous (- * @ f is the composition 
of -*:(VC)o+Vcoand -&f:VCo-+V). 

In addition, vr( f ) = E~( f ). 

Proof. Statement (1) is (2.3) with F = Vc(f, -) and C replaced by Co. 
Statement (2) is (2.7) withF = -* @,-J 1 

Now if w: Co @ C --f V is a V-functor, Dw(-, C) = w(C, -)* for all C in 
C. Thus there is a V-natural transformation 

ew: Dw Gj, - 3 [w, -lc , 

between endofunctors on Vc and we have 

(5.8) COROLLARY. For a V-functor w: Co @ C + V the following statements 
are equivalent: 
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(4 eW: Dw & - =z- [w, -lc is an equivalence; 

(b) [w, -lc is V-cocontinuous; 

If  V = Ens or RM for R a commutative ring then (b) is equivalent to 

(c) w(C, -) is a retract of a representable functor for every C in C. 

Proof. (a) is equivalent to (b) by (5.7). The equivalence of (b) and (c) 
follows from the following lemma. 1 

(5.9) LEMMA. Let V = Ens or RM where R is a commutative ring. Then 
the following are equivalent for f  in Vc: 

(a) -&f: Vc” -+ V is V-continuous; 

(b) - * @jjc f  : (Vcy -+ V is V-continuous; 

(c) Vc(f, -) is V-cocontinuous; 

(d) f  is a retract of a representable functor. 

Proof. (a) 2 (b) is obvious since -* &f is the composition of two 
V-continuous functors if &f is V-continuous. (b) 3 (c) 3 (d) * (a) can 
be proved by using the arguments in [8 (4.4)] where /3 is the 77 of (5.7) and 
[9 (4.2)] where /3 is the E of (5.7). 1 

(5.10) THEOREM. Let T = (T, 7, u) be a triple on Vc with T a bicon- 
tinuous V-functor. Then there is a V-category C’ and a cocontinuous V-functor 
x: C + C’ which is a surjection on objects, such that the category of T-algebras is 
equivalent to the category Vc’. Furthermore V”: Vc’ -+ Vc and its left adjoint 
induce the triple T. 

Proof. We need only show that the functor x: C + C’ of (3.12) is 
V-cocontinuous. By (5.5) (I), T s [w, -lc for some comonoid w of 
[Co @C, V]. By (5.8) T N Dw & -. Since T N C’(x-, x-) & - by 
(3.12) we have Dw N C’(x-, x-). In particularC’(x--, XC) N Dw(-, C) = 
w(C, -)* is continuous for every C in 1 C I. Since x is a surjection on objects 
this implies x is V-cocontinuous. i 

(5.11) THEOREM. Let V = Ens or sM where R is a commutative ring and 
G = (G, E, S) be a cotriple on Vc with G a V-bicontinuous functor. Then there 
is a V-category C’ and a continuous V-functor x: C -+ C’, which is a surjection 
on objects, such that the category of G-coalgebras is equivalent to the category 
Vc’. Furthermore Vx and its right adjoint induce the cotriple G. 

Proof. We need only show that the functor x: C -+C’ of (5.6) is continuous 
where G N [u, -lc for the monoid u = C’(x-, x-). Since G is cocontinuous, 
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(5.8) implies C’(xC, x-) is a retract of a representable functor and therefore 
continuous for every C in C. Thus, since x is surjective on objects, x is 

continuous. i 

An unanswered question is the following: What is a nice description of the 
closed categories for which (5.9) holds and hence (5. I 1) holds ? 
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