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For an odd prime p and two positive integers n � 3 and k with
n

gcd(n,k)
being odd, the paper determines the weight distribution

of a class of p-ary cyclic codes C over Fp with nonzeros α−1,

α−(pk+1) and α−(p3k+1) , where α is a primitive element of Fpn .
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Nonlinear functions over finite fields have useful applications in coding theory and cryptography
[17,2]. Some linear codes having good properties [15,17,3,12,7,5,20] were constructed from highly
nonlinear functions [18,6,19,4,13,8].

Let q be a power of a prime p, and Fqn be a finite field with qn elements. A p-ary [m, l] linear code
is an l-dimensional subspace of F

m
p . The Hamming weight of a codeword c1c2 · · · cm is the number of

nonzero ci for 1 � i � m. In this paper, we study a class of [pn − 1,3n] cyclic codes C given by
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C = {
c(ε,γ , δ) = (

Trn
1

(
εx + γ xpk+1 + δxp3k+1))

x∈F
∗
pn

∣∣ ε,γ , δ ∈ Fpn
}
,

where k is a positive integer and Trn
1 is the trace function from Fpn to Fp . The code C is constructed

from the function Trn
1(εx + γ xpk+1 + δxp3k+1), which can have high nonlinearity if either γ or δ is

nonzero. It is easy to see that α−1, α−(pk+1) , α−(p3k+1) and their Fp-conjugates are all nonzeros of
the cyclic code C , where α is a primitive element of Fpn [17].

In this paper we assume that p and n
gcd(k,n)

are both odd, and we determine the weight distribu-
tion of the code C . To this end, we will focus on determining the ranks of a class of quadratic forms
and calculating two classes of exponential sums. The ranks of quadratic forms are determined through
finding the number of solutions to a class of linearized polynomials

Lγ ,δ(z) = γ zpk + γ p−k
zp−k + δzp3k + δp−3k

zp−3k

over the field Fpn . By applying the theory of quadratic forms, two classes of exponential sums are
evaluated and the weight distribution of the cyclic code C is determined. The moment identities of
the exponential sums are established in this paper based on the method used in [11], which dealt
with the exponential sums

∑
x∈Fpn e(αxpk+1 + βx2 + γ x) for α,β,γ ∈ Fpn . Throughout the paper, we

set d = gcd(k,n), s = n
gcd(k,n)

and n � 3.
The remainder of this paper is organized as follows. Section 2 gives some definitions and prelimi-

naries. Section 3 studies the rank distribution of a class of quadratic forms. Section 4 determines the
weight distribution of C .

2. Preliminaries

In this paper, we always assume that p is an odd prime. Identifying Fqn with the n-dimensional
Fq-vector space F

n
q , a function f from Fqn to Fq can be regarded as an n-variable polynomial on Fq .

The former is called a quadratic form if the latter is a homogeneous polynomial of degree two:

f (x1, . . . , xn) =
∑

1� j�k�n

a jkx jxk,

here we use a basis of F
n
q over Fq and identify x ∈ Fqn with a vector (x1, . . . , xn) ∈ F

n
q . The rank of the

quadratic form f (x) is defined as the codimension of the Fq-vector space

W = {
w ∈ Fqn

∣∣ f (x + w) = f (x) for all x ∈ Fqn
}
, (1)

denoted by rank( f ). Then |W | = qn−rank( f ) .
For a quadratic form f (x), there exists a symmetric matrix A such that f (x) = XT A X , where X is

written as a column vector and its transpose is XT = (x1, x2, . . . , xn) ∈ F
n
q . The determinant det( f ) of

f (x) is defined to be the determinant of A, and f (x) is nondegenerate if det( f ) �= 0. By Theorem 6.21
of [16], there exists a nonsingular matrix B such that BT AB is a diagonal matrix. Making a nonsingular
linear substitution X = BY with Y T = (y1, y2, . . . , yn), one has

f (x) = Y T BT ABY =
r∑

i=1

ai y2
i (2)

where r � n is the rank of f (x) and a1,a2, . . . ,ar ∈ F
∗
q .
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Let m be a positive factor of the integer n. The trace function Trn
m from Fpn to Fpm is defined by

Trn
m(x) =

n/m−1∑
i=0

xpmi
, x ∈ Fpn .

Let e(y) = e2π
√−1 Trn

1(y)/p and ζp = e2π
√−1/p .

The following lemmas will be used throughout this paper.

Lemma 1. (See Theorems 5.33 and 5.15 of [16].) Let Fq be a finite field with q = p l , where p is an odd prime.
Let η be the quadratic character of Fq. Then for a �= 0,

∑
x∈Fq

ζ
Trl

1(ax2)
p =

{
η(a)(−1)l−1 p

l
2 , if p ≡ 1 (mod 4),

η(a)(−1)l−1(
√−1 )l p

l
2 , if p ≡ 3 (mod 4).

Lemma 2. (See Theorems 6.26 and 6.27 of [16].) Let q be an odd prime power, and f be a nondegenerate
quadratic form in l variables over Fq. Define a function υ(ρ) over Fq by υ(0) = q − 1 and υ(ρ) = −1 for
ρ ∈ F

∗
q . Then for ρ ∈ Fq the number of solutions to the equation f (x1, . . . , xl) = ρ is

ql−1 + q
l−1

2 η
(
(−1)

l−1
2 ρ · det( f )

)
for odd l, and

ql−1 + υ(ρ)q
l−2

2 η
(
(−1)

l
2 det( f )

)
for even l.

Lemma 3. (See Theorem 5.15 of [16].) (i) Let ζp = e2π
√−1/p and η be the quadratic character of Fp . Then

p−1∑
ρ=0

η(ρ)ζ
ρ
p =

√
(−1)

p−1
2 p

where η(0) is defined to be 0.
(ii) Let the function υ(ρ) over Fp be defined by υ(0) = p − 1 and υ(ρ) = −1 for ρ ∈ F

∗
p . Then

p−1∑
ρ=0

υ(ρ)ζ
ρ
p = p.

3. Rank distribution of a class of quadratic forms

In this section, we study the rank distribution of the quadratic forms Trn
d(γ xpk+1 + δxp3k+1) for

nonzero γ or δ.
To determine the distribution, we define a related exponential sum

S(ε,γ , δ) =
∑

x∈Fpn

e
(
εx + γ xpk+1 + δxp3k+1), ε,γ , δ ∈ Fpn . (3)
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Then the possible values of the ranks are measured by evaluating the exponential sum S(ε,γ , δ). For
discussion of the exponential sum of a general quadratic form, please refer to Refs. [10] and [14].

Proposition 1. For odd s and δ ∈ F
∗
pn , the exponential sum S(ε,γ , δ) satisfies

∣∣S(ε,γ , δ)
∣∣ = 0, p

n
2 , p

n+d
2 , or p

n
2 +d.

Proof. Notice that

∣∣S(ε,γ , δ)
∣∣2 = S(ε,γ , δ)S(ε,γ , δ)

=
∑

x∈Fpn

e
(−εx − γ xpk+1 − δxp3k+1) ∑

y∈Fpn

e
(
ε y + γ ypk+1 + δyp3k+1)

=
∑

x, z∈Fpn

e
(
εz + γ zpk+1 + δzp3k+1 + γ zpk

x + γ zxpk + δzp3k
x + δzxp3k )

=
∑

z∈Fpn

e
(
εz + γ zpk+1 + δzp3k+1) ∑

x∈Fpn

e
(
xLγ ,δ(z)

)
(4)

where y = x + z and

Lγ ,δ(z) = γ zpk + γ p−k
zp−k + δzp3k + δp−3k

zp−3k

is a linearized polynomial in z. Let V be the set of all roots of Lγ ,δ(z) = 0. (By abuse of notation, we
use V to denote the set in despite of its dependence on γ and δ.) Thus, V is an Fpd -vector space.
By (4), we have

∣∣S(ε,γ , δ)
∣∣2 = pn

∑
z∈V

e
(
εz + γ zpk+1 + δzp3k+1). (5)

Let

Φγ ,δ(x) = γ xpk+1 + δxp3k+1 − δp−k
xp2k+p−k + δp−2k

xpk+p−2k
. (6)

By (6), we have

Trn
1

(
Φγ ,δ(z)

) = Trn
1

(
γ zpk+1 + δzp3k+1) (7)

and

Φγ ,δ(z) + Φγ ,δ(z)p−k = zLγ ,δ(z). (8)

If z ∈ V , then by (8),

Φγ ,δ(z)pk = −Φγ ,δ(z). (9)

Since gcd(k,n) = d, there is an integer k′ such that kk′ ≡ d (mod n) and hence, Φγ ,δ(z)pd =
Φγ ,δ(z)pkk′ = (−1)k′

Φγ ,δ(z), where the last equality is derived from (9). If k′ is even, Φγ ,δ(z)pd =
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Φγ ,δ(z) and then Φγ ,δ(z)pk = Φγ ,δ(z), which together with (9) again implies Φγ ,δ(z) = 0. If k′ is odd,
then

Φγ ,δ(z)pd = −Φγ ,δ(z). (10)

By the property Trn
d(Φγ ,δ(z)) = Trn

d(Φγ ,δ(z)p−d
) of trace function and (8), we have

0 = Trn
d

(
zLγ ,δ(z)

)
= Trn

d

(
Φγ ,δ(z)

) + Trn
d

(
Φγ ,δ(z)p−k )

= 2 Trn
d

(
Φγ ,δ(z)

)
= 2

(
Φγ ,δ(z) + Φγ ,δ(z)pd + · · · + Φγ ,δ(z)p(s−1)d)

= 2Φγ ,δ(z),

where the last equal sign holds due to (10) and s being odd. This implies Φγ ,δ(z) = 0 and

Trn
1(γ zpk+1 + δzp3k+1) = Trn

1(Φγ ,δ(z)) = 0 by (7). Conversely, if Φγ ,δ(z) = 0, then by (8), Lγ ,δ(z) = 0

and Trn
1(Φγ ,δ(z)) = 0. Therefore, z ∈ V if and only if Φγ ,δ(z) = 0. Further, in this case Trn

1(γ zpk+1 +
δzp3k+1) = 0. Thus, by (5),

∣∣S(ε,γ , δ)
∣∣ =

√
pn

∑
z∈V

ζ
Trn

1(εz)
p . (11)

Since V is an Fpd -vector space, we can assume |V | = pd m for an integer m � 0.

If m � 3, then Φγ ,δ(z) = 0 has at least p3d solutions. For a fixed z0 ∈ V \{0} and for any z ∈ V , we
have Φγ ,δ(z) = Φγ ,δ(z0) = 0 and Φγ ,δ(z + z0) = 0 since z + z0 is also in the vector space V . Thus, the
equation

(z + z0)
(
z0Φγ ,δ(z) + zΦγ ,δ(z0)

) − zz0Φγ ,δ(z + z0) = 0 (12)

has at least p3d solutions.
By (6), Eq. (12) becomes

δp−2k(
zpk

z0 − zzpk

0

)(
zp−2k

z0 − zzp−2k

0

) − δp−k (
zp2k

z0 − zzp2k

0

)(
zp−k

z0 − zzp−k

0

) = 0, (13)

which has at least p3d roots on variable z. Let z = wz0, then

δp−2k
zpk+p−2k+2

0

(
w pk − w

)(
w p−2k − w

) − δp−k
zp2k+p−k+2

0

(
w p2k − w

)(
w p−k − w

) = 0.

Let u = w p−k − w , the above equation can be rewritten as

−δp−2k
zpk+p−2k

0 upk (
up−k + u

) + δp−k
zp2k+p−k

0

(
up2k + upk)

u = 0,

which has at least p2d roots on u since w p−k − w = u has at most pd roots on w for each u. Define

Ψδ,z0(x) = δp−2k
zpk+p−2k

0 xpk (
xp−k + x

) − δp−k
zp2k+p−k

0

(
xp2k + xpk )

x.
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Similarly, for each nonzero root u0 of Ψδ,z0(u) = 0, the equation

(u + u0)
(
u0Ψδ,z0(u) + uΨδ,z0(u0)

) − uu0Ψz,z0(u + u0) = 0

has at least p2d solutions on u. By the definition of Ψδ,z0(x), the above equation is equivalent to

δp−2k
zpk+p−2k

0

(
upk

u0 − uupk

0

)(
up−k

u0 − uup−k

0

) = 0.

This shows that u = vu0 where v ∈ Fpd . Consequently, for each given u0 �= 0, the above equation has

at most pd roots. This gives a contradiction and then m � 2.
Notice that Trn

1(εz) is a balanced or zero mapping on the vector space V . Therefore,∑
z∈V ζ

Trn
1(εz)

p = 0, 1, pd , or p2d . This finishes the proof. �
Remark 1. The possible ranks of some quadratic forms can be determined by directly calculating
the number of the solutions to their related linearized polynomials [21,11]. The number of the roots
to the linearized polynomial Lγ ,δ(z) in Proposition 1 is discussed by studying that of an associated
nonlinear polynomial. The method was first presented to study a linear mapping over a finite field
of characteristic 2 [9] and further used to discuss some triple error correcting binary codes with BCH
parameters [1]. In Proposition 1, we applied this method to the cases of odd characteristic.

From Proposition 1, the value of the dimension m determines the rank of the following quadratic
form.

Corollary 1. For odd s and δ ∈ F
∗
pn , the quadratic form

Ωγ ,δ(x) = Trn
d

(
γ xpk+1 + δxp3k+1)

has rank s, s − 1, or s − 2.

When there is exactly one nonzero element in {γ , δ}, the rank of Ωγ ,δ(x) can be determined by
directly calculating the number of solutions to Lγ ,δ(z) = 0.

Proposition 2. For odd s and γ , δ ∈ F
∗
pn , the quadratic forms Ωγ ,0(x) = Trn

d(γ xpk+1) and Ω0,δ(x) =
Trn

d(δxp3k+1) have rank s.

Proof. We only give the proof of rank(Ω0,δ) = s since the other case can be proven in a similar way.

It is sufficient to determine the number of solutions to δzp3k + δp−3k
zp−3k = 0. This equation has

nonzero solutions if and only if (δzp3k+1)p3k−1 = −1. If the latter holds, then gcd(p3k − 1, pn − 1) =
(pgcd(3k,n) − 1)| pn−1

2 . Let s1 = n
gcd(3k,n)

and then

pn − 1 = (
pgcd(3k,n) − 1

)(
p(s1−1)gcd(3k,n) + p(s1−2)gcd(3k,n) + · · · + pgcd(3k,n) + 1

)
.

Notice that s1 is a factor of the odd integer s. As a consequence, p(s1−1)gcd(3k,n) + p(s1−2)gcd(3k,n) + · · ·
+ pgcd(3k,n) + 1 is odd and pn−1

2 cannot be divided by pgcd(3k,n) − 1. Thus, −1 is not (pgcd(3k,n) − 1)th

power of any element in F
∗
pn and then δzp3k + δp−3k

zp−3k = 0 has only the zero solution. This finishes
the proof. �
Remark 2. For γ , δ ∈ F

∗
pn , Trd

1(Ωγ ,0(x)) and Trd
1(Ω0,δ(x)) are p-ary bent functions.
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To study the rank distribution of the quadratic form Ωγ ,δ , for i ∈ {0,1,2}, we define

Ri = {
(γ , δ)

∣∣ rank(Ωγ ,δ) = s − i, (γ , δ) ∈ Fpn × Fpn \ {
(0,0)

}}
. (14)

Lemma 4. |R2| = (pn−d−1)(pn−1)

p2d−1
.

Proof. If (γ , δ) ∈ R2, then γ δ �= 0 by Propositions 1 and 2, and V is a two-dimensional vector space

over Fpd . Let {v1, v0} be a basis of V over Fpd . Then, v1 v−1
0 /∈ Fpd and (v p4k

1 v p2k

0 − v p2k

1 v p4k

0 )(v pk

1 v p2k

0 −
v p2k

1 v pk

0 ) �= 0. By (13),

δpk−1 = (v p3k

1 v p2k

0 − v p2k

1 v p3k

0 )(v1 v p2k

0 − v p2k

1 v0)

(v p4k

1 v p2k

0 − v p2k

1 v p4k

0 )(v pk

1 v p2k

0 − v p2k

1 v pk

0 )

=
(

v p2k

1 v pk

0 − v pk

1 v p2k

0

(v p2k

1 v0 − v1 v p2k

0 )pk+1

)pk−1

.

Thus,

δ = λ
v p2k

1 v pk

0 − v pk

1 v p2k

0

(v p2k

1 v0 − v1 v p2k

0 )pk+1
(15)

for an element λ ∈ F
∗
pd . Since Φγ ,δ(v1) = γ v pk+1

1 + δv p3k+1
1 − δp−k

v p2k+p−k

1 + δp−2k
v pk+p−2k

1 = 0, we

have

γ = −δv p3k−pk

1 + δp−k
v p2k+p−k−pk−1

1 − δp−2k
v p−2k−1

1 . (16)

From (15) and (16), γ and δ are uniquely determined by v1, v0 and λ. Further, there are exactly
pd − 1 pairs (γ , δ) corresponding to a given pair (v1, v0).

On the other hand, for any v0 ∈ F
∗
pn and β /∈ Fpd , let v1 = βv0. If δ and γ are defined by (15)

and (16), respectively, then Φγ ,δ(v1) = 0. In the sequel, we will prove v0Lγ ,δ(v0) = 0.
From (15), we have

δv p3k+1
0 = λ(β p2k − β pk

)

(β p2k − β)pk+1
. (17)

Then

(
δv p3k+1

0

)(
β − β p2k ) = λ(β p2k − β pk

)

(β − β p2k
)pk

and
(
δv p3k+1

0

)(
β p2k − β

)pk = λ(β p2k − β pk
)

β p2k − β
.

Thus, by (16) and (17),
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v0Lγ ,δ(v0)

= γ v pk+1
0 + (

γ v pk+1
0

)p−k + δv p3k+1
0 + (

δv p3k+1
0

)p−3k

= (−(
δv p3k+1

0

)
β p3k−pk + (

δv p3k+1
0

)p−k

β p2k+p−k−pk−1 − (
δv p3k+1

0

)p−2k

β p−2k−1)
+ (−(

δv p3k+1
0

)p−k

β p2k−1 + (
δv p3k+1

0

)p−2k

β pk+p−2k−1−p−k

− (
δv p3k+1

0

)p−3k

β p−3k−p−k) + δv p3k+1
0 + (

δv p3k+1
0

)p−3k

= (
δv p3k+1

0

)(
1 − β p3k−pk) + (

δv p3k+1
0

)p−k(
β p2k+p−k−pk−1 − β p2k−1)

+ (
δv p3k+1

0

)p−2k (
β pk+p−2k−1−p−k − β p−2k−1) + (

δv p3k+1
0

)p−3k (
1 − β p−3k−p−k )

= β−pk (
δv p3k+1

0

)(
β − β p2k )pk + β p2k−pk−1(δv p3k+1

0

)p−k (
β − β p2k )p−k

+ β p−2k−1−p−k(
δv p3k+1

0

)p−2k (
β p2k − β

)p−k + β−p−k (
δv p3k+1

0

)p−3k (
β p2k − β

)p−3k

= λ

(
β p2k−pk − 1

β − β p2k
+ β p2k−1 − β p2k−pk

β − β p2k
+ β p−2k−p−k − β p−2k−1

β − β p−2k
+ 1 − β p−2k−p−k

β − β p−2k

)

= λ

(−β−1(β − β p2k
)

β − β p2k
+ β−1(β − β p−2k

)

β − β p−2k

)

= λ
(−β−1 + β−1)

= 0.

This shows Lγ ,δ(v0) = 0, and hence Φγ ,δ(v0) = 0. Thus {v1, v0} is a basis of the Fpd -vector space
consisting of all solutions to Φγ ,δ(x) = 0.

There are totally (pn−1)(pn−pd)

(p2d−1)(p2d−pd)
two-dimensional vector subspaces of Fpn over Fpd , thus,

|R2| =
(

pd − 1
) × (pn − 1)(pn − pd)

(p2d − 1)(p2d − pd)
= (pn − 1)(pn−d − 1)

p2d − 1
. �

The values of S(0, γ , δ) can be discussed in terms of rank(Ωγ ,δ) as below.
For (γ , δ) ∈ R0, rank(Ωγ ,δ) = s and by a nonsingular linear substitution as in (2), Ωγ ,δ(x) =∑s

i=1 hi y2
i , where hi ∈ F

∗
pd and (y1, y2, . . . , ys) ∈ F

s
pd . Then by Lemma 1,

S(0, γ , δ) =
∑

x∈Fpn

ζ
Trd

1(Ωγ ,δ(x))
p

=
∑

y1,y2,...,ys∈Fpd

ζ
Trd

1(h1 y2
1+h2 y2

2+···+hs y2
s )

p

=
s∏

i=1

∑
yi∈Fpd

ζ
Trd

1(hi y2
i )

p
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=
{∏s

i=1(η(hi)(−1)d−1 p
d
2 ), p ≡ 1 (mod 4),∏s

i=1(η(hi)(−1)d−1(
√−1 )d p

d
2 ), p ≡ 3 (mod 4)

=
{

(−1)d−1η(
∏s

i=1 hi)p
n
2 , p ≡ 1 (mod 4),

(−1)d−1η(
∏s

i=1 hi)(
√−1 )n p

n
2 , p ≡ 3 (mod 4).

(18)

Similarly, we have

S(0, γ , δ) =
∑

y1,y2,...,ys∈Fpd

ζ
Trd

1(h1 y2
1+h2 y2

2+···+hs−1 y2
s−1)

p

= pd
s−1∏
i=1

∑
yi∈Fpd

ζ
Trd

1(hi y2
i )

p

=
{

η(
∏s−1

i=1 hi)p
n+d

2 , p ≡ 1 (mod 4),

η(
∏s−1

i=1 hi)(
√−1 )n−d p

n+d
2 , p ≡ 3 (mod 4)

(19)

for (γ , δ) ∈ R1, and

S(0, γ , δ) =
{

(−1)d−1η(
∏s−2

i=1 hi)p
n
2 +d, p ≡ 1 (mod 4),

(−1)d−1η(
∏s−2

i=1 hi)(
√−1 )n−2d p

n
2 +d, p ≡ 3 (mod 4)

(20)

for (γ , δ) ∈ R2.
From (18), (19) and (20), for (γ , δ) ∈ Ri with i ∈ {0,2}, we have

S(0, γ , δ) =
√

(−1)
pd−1

2 θi p
n+id

2 , θi ∈ {±1}, (21)

and for (γ , δ) ∈ R1,

S(0, γ , δ) = θ1 p
n+d

2 , θ1 ∈ {±1}. (22)

Two subsets Ri, j of Ri for i ∈ {0,1,2} are defined as

Ri, j = {
(γ , δ) ∈ Ri

∣∣ θi = j
}

(23)

where j = ±1.
The following result can be obtained based on equalities (18), (20) and the fact that s is odd.

Lemma 5. For i ∈ {0,2}, |Ri,1| = |Ri,−1|.

Proof. For i ∈ {0,2}, let (γ , δ) ∈ Ri and u ∈ F
∗
pd such that η(u) = −1. Then

Ωuγ ,uδ(x) = Trn
d

(
uγ xpk+1 + uδxp3k+1) = u Trn

d

(
γ xpk+1 + δxp3k+1) = uΩγ ,δ(x).
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By (18) and (20),

S(0, uγ , uδ) = η(u)s−i S(0, γ , δ) = (−1)s−i S(0, γ , δ) = −S(0, γ , δ).

The above equality shows that for j ∈ {1,−1}, if (γ , δ) ∈ Ri, j , then (uγ , uδ) ∈ Ri,− j . This finishes the
proof. �
Proposition 3.

(i)
∑

γ ,δ∈Fpn

S(0, γ , δ) = p2n.

(ii)
∑

γ ,δ∈Fpn

S(0, γ , δ)2 =
{

p2n(2pn − 1), pd ≡ 1 (mod 4),

p2n, pd ≡ 3 (mod 4).

Proof. The result in (i) can be directly verified, and we only give the proof of (ii).
Notice that

∑
γ ,δ∈Fpn

S(0, γ , δ)2 =
∑

x,y∈Fpn

∑
γ ∈Fpn

ζ
Trn

1(γ (xpk+1+ypk+1))
p

∑
δ∈Fpn

ζ
Trn

1(δ(xp3k+1+yp3k+1))
p

= p2n|T1|,

where T1 consists of all solutions (x, y) ∈ Fpn × Fpn to the equation xpk+1 + ypk+1 = 0 since xpk+1 +
ypk+1 = 0 implies xp3k+1 + yp3k+1 = 0.

If xy = 0, (x, y) = (0,0) is the only solution of xpk+1 + ypk+1 = 0.
If xy �= 0, we have ( x

y )pk+1 = −1. If this equation has solution, say x
y = α j for a primitive element

α of Fpn and 1 � j < pn − 1, then j(pk + 1) ≡ pn−1
2 (mod pn − 1). This equality holds if and only if

gcd(pk +1, pn −1)| pn−1
2 . Notice that gcd(pk +1, pn −1) = 2 and s is odd. Consequently, ( x

y )pk+1 = −1
has solutions if and only if pn ≡ 1 (mod 4). Further, in this case the number of solutions is equal to 2.
Thus, xpk+1 + ypk+1 = 0 has 2(pn − 1) solutions if pn ≡ 1 (mod 4), and no solution if pn ≡ 3 (mod 4).

The above analysis and the equality pn ≡ pd (mod 4) finish the proof. �
With the above preparations, the rank distribution of Ωγ ,δ(x) can be determined as below.

Proposition 4. (i) For i ∈ {0,1,2} and j ∈ {1,−1}, Ri, j satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|R0,1| = |R0,−1| = (pn+2d−pn+d−pn+p2d)(pn−1)

2(p2d−1)
,

|R1,1| = (pn−d+p
n−d

2 )(pn−1)
2 ,

|R1,−1| = (pn−d−p
n−d

2 )(pn−1)
2 ,

|R2,1| = |R2,−1| = (pn−d−1)(pn−1)

2(p2d−1)
.

(ii) For odd s, when (γ , δ) runs through Fpn × Fpn \ {(0,0)}, the rank distribution of the quadratic form
Ωγ ,δ(x) is given as follows:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s, (pn+2d−pn+d−pn+p2d)(pn−1)

p2d−1
times,

s − 1, pn−d(pn − 1) times,

s − 2,
(pn−d−1)(pn−1)

p2d−1
times.

Proof. By Propositions 1, 2, 3, Lemmas 4 and 5, we have the following identities of parameters |Ri, j|
with i ∈ {0,1,2} and j ∈ {±1}:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|R0| + |R1| + |R2| = p2n − 1,

p
n+d

2 (|R1,1| − |R1,−1|) + pn = ∑
γ ,δ∈Fpn S(0, γ , δ),

(−1)
pd−1

2 pn|R0| + pn+d|R1| + (−1)
pd−1

2 pn+2d|R2| + p2n = ∑
γ ,δ∈Fpn S(0, γ , δ)2,

|R0,1| = |R0,−1|,
|R2,1| = |R2,−1| = (pn−d−1)(pn−1)

2(p2d−1)
.

This finishes the proof. �
By (14), (18)–(23) and Proposition 4, an immediate result is given as below.

Corollary 2. For odd s, when (γ , δ) runs through Fpn × Fpn \ {(0,0)}, the exponential sum S(0, γ , δ) defined
in (3) has the following distribution:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
(−1)

pd−1
2 p

n
2 ,

(pn+2d−pn+d−pn+p2d)(pn−1)

2(p2d−1)
times,

−
√

(−1)
pd−1

2 p
n
2 ,

(pn+2d−pn+d−pn+p2d)(pn−1)

2(p2d−1)
times,

p
n+d

2 ,
(pn−d+p

n−d
2 )(pn−1)
2 times,

−p
n+d

2 ,
(pn−d−p

n−d
2 )(pn−1)
2 times,√

(−1)
pd−1

2 p
n+2d

2 ,
(pn−d−1)(pn−1)

2(p2d−1)
times,

−
√

(−1)
pd−1

2 p
n+2d

2 ,
(pn−d−1)(pn−1)

2(p2d−1)
times.

4. Weight distribution of the p-ary code C

This section studies the distribution of the exponential sum S(ε,γ , δ) and the weight distribution
of the code C .

If either γ or δ is nonzero, then Trd
1(Ωγ ,δ(x)) is also a quadratic form. By (1), Propositions 1, 2 and

Corollary 1, rank(Trd
1(Ωγ ,δ)) = d · rank(Ωγ ,δ) = n, n − d, or n − 2d.

For ρ ∈ Fp , let Nε,γ ,δ(ρ) denote the number of solutions to Trd
1(Ωγ ,δ(x)) + Trn

1(εx) = ρ . Then,
(3) can be written as

S(ε,γ , δ) =
p−1∑
ρ=0

Nε,γ ,δ(ρ)ζ
ρ
p . (24)
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Let {α1,α2, . . . ,αn} be a basis of Fpn over Fp , and ε = ∑n
i=1 εiαi with εi ∈ Fp . Then the matrix

C = (Trn
1(αiα j))1�i, j�n is nonsingular. Let DT = (ε1, ε2, . . . , εn) ∈ F

n
p and X = BY be defined as in

Section 2, then Trn
1(εx) = DTC X . Denote DTC B = (b1,b2, . . . ,bn), and we have

Trd
1

(
Ωγ ,δ(x)

) + Trn
1(εx) = Y T BT ABY + DTC BY

=
n∑

i=1

ai y2
i +

n∑
i=1

bi yi . (25)

By application of the quadratic form theory, the distribution of S(ε,γ , δ) is discussed and the
weight distribution of C is determined.

Theorem 1. For two positive integers n and k with d = gcd(n,k), if s is odd, then when (ε,γ , δ) runs through
Fpn × Fpn × Fpn , the exponential sum S(ε,γ , δ) defined in (3) has the following distribution:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pn, 1 time,

0, (pn − 1)(p2n−d − p2n−2d + p2n−3d − pn−2d + 1) times,√
(−1)

p−1
2 p

n
2 ζ

ρ
p ,

(pn−1+η(−ρ)p
n−1

2 )(pn+2d−pn+d−pn+p2d)(pn−1)

2(p2d−1)
times,

−
√

(−1)
p−1

2 p
n
2 ζ

ρ
p ,

(pn−1−η(−ρ)p
n−1

2 )(pn+2d−pn+d−pn+p2d)(pn−1)

2(p2d−1)
times,

p
n+d

2 ζ
ρ
p ,

(pn−d−1+υ(ρ)p
n−d−2

2 )(pn−d+p
n−d

2 )(pn−1)
2 times,

−p
n+d

2 ζ
ρ
p ,

(pn−d−1−υ(ρ)p
n−d−2

2 )(pn−d−p
n−d

2 )(pn−1)
2 times,√

(−1)
p−1

2 p
n+2d

2 ζ
ρ
p ,

(pn−2d−1+η(−ρ)p
n−2d−1

2 )(pn−d−1)(pn−1)

2(p2d−1)
times,

−
√

(−1)
p−1

2 p
n+2d

2 ζ
ρ
p ,

(pn−2d−1−η(−ρ)p
n−2d−1

2 )(pn−d−1)(pn−1)

2(p2d−1)
times

for odd d, and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pn, 1 time,

0, (pn − 1)(p2n−d − p2n−2d + p2n−3d − pn−2d + 1) times,

p
n
2 ζ

ρ
p ,

(pn−1+υ(ρ)p
n−2

2 )(pn+2d−pn+d−pn+p2d)(pn−1)

2(p2d−1)
times,

−p
n
2 ζ

ρ
p ,

(pn−1−υ(ρ)p
n−2

2 )(pn+2d−pn+d−pn+p2d)(pn−1)

2(p2d−1)
times,

p
n+d

2 ζ
ρ
p ,

(pn−d−1+υ(ρ)p
n−d−2

2 )(pn−d+p
n−d

2 )(pn−1)
2 times,

−p
n+d

2 ζ
ρ
p ,

(pn−d−1−υ(ρ)p
n−d−2

2 )(pn−d−p
n−d

2 )(pn−1)
2 times,

p
n+2d

2 ζ
ρ
p ,

(pn−2d−1+υ(ρ)p
n−2d−2

2 )(pn−d−1)(pn−1)

2(p2d−1)
times,

−p
n+2d

2 ζ
ρ
p ,

(pn−2d−1−υ(ρ)p
n−2d−2

2 )(pn−d−1)(pn−1)

2(p2d−1)
times

for even d, where ρ = 0,1, . . . , p − 1, η is the quadratic character of Fp and υ(0) = p − 1, υ(ρ) = −1 for
ρ ∈ F

∗
p .
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Proof. Since s is odd, the integer n − d is always even. If d is odd, then n and n − 2d are both odd.
The proof in this case is divided into the following subcases.

(i) For (γ , δ) = (0,0), S(ε,0,0) = 0 for ε �= 0, and pn for ε = 0.
(ii) For (γ , δ) �= (0,0), the discussion is divided into three subcases.
In the case of (γ , δ) ∈ R0, for 1 � i � n, let yi = zi − bi

2ai
. Then

∑n
i=1(ai y2

i + bi yi) = ρ is equivalent

to
∑n

i=1 ai z2
i = λε,γ ,δ + ρ, where λε,γ ,δ = ∑n

i=1
b2

i
4ai

. Let Δ0 = ∏n
i=1 ai , then Lemma 2 implies

Nε,γ ,δ(ρ) = pn−1 + p
n−1

2 η
(
(−1)

n−1
2 (λε,γ ,δ + ρ)Δ0

)
. (26)

Notice that the matrix C B in (25) is nonsingular. As a consequence, (b1,b2, . . . ,bn) runs through
F

n
p as ε runs through Fpn . λε,γ ,δ is also a quadratic form with n variables bi for 1 � i � n. Again by

Lemma 2, as ε runs through Fpn ,

λε,γ ,δ =
n∑

i=1

b2
i

4ai
= ρ ′ occurring pn−1 + p

n−1
2 η

(
(−1)

n−1
2 ρ ′Δ0

)
times (27)

for each ρ ′ ∈ Fp since η((4n ∏n
i=1 ai)

−1) = η(
∏n

i=1 ai).
By (24), (26) and Lemma 3(i), we have

S(ε,γ , δ) = η
(
(−1)

n−1
2 Δ0

)
p

n
2

√
(−1)

p−1
2 ζ

−λε,γ ,δ

p . (28)

By (27), as ε runs through Fpn , for each ρ ∈ Fp , we have

S(ε,γ , δ) = η
(
(−1)

n−1
2 Δ0

)√
(−1)

p−1
2 p

n
2 ζ

ρ
p occurring pn−1 + p

n−1
2 η

(
(−1)

n+1
2 ρΔ0

)
times. (29)

In the case of (γ , δ) ∈ R1, the rank of Trd
1(Ωγ ,δ(x)) is n − d, and then

Trd
1

(
Ωγ ,δ(x)

) + Trn
1(εx) =

n−d∑
i=1

ai y2
i +

n∑
i=1

bi yi .

If there exists some bi �= 0 for n − d < i � n, then for any ρ ∈ Fp , Nε,γ ,δ(ρ) = pn−1 and
S(ε,γ , δ) = 0. Since the matrix C B is nonsingular, there are exactly pn − pn−d choices for ε such
that there is at least one bi �= 0 with n − d < i � n, as ε runs through Fpn .

If bi = 0 for all n − d < i � n, then
∑n−d

i=1 (ai y2
i + bi yi) = ρ is equivalent to

∑n−d
i=1 ai z2

i = λε,γ ,δ + ρ,

where λε,γ ,δ = ∑n−d
i=1

b2
i

4ai
and zi = yi + bi

2ai
for 1 � i � n − d. Let Δ1 = ∏n−d

i=1 ai , then for any ρ ∈ Fp

and even n − d, by Lemma 2,

Nε,γ ,δ(ρ) = pd(pn−d−1 + υ(λε,γ ,δ + ρ)p
n−d−2

2 η
(
(−1)

n−d
2 Δ1

))
,

i.e.,

Nε,γ ,δ(ρ) = pn−1 + υ(λε,γ ,δ + ρ)p
n+d−2

2 η
(
(−1)

n−d
2 Δ1

)
. (30)
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By Lemma 2, when (b1,b2, . . . ,bn−d) runs through F
n−d
p ,

λε,γ ,δ =
n−d∑
i=1

b2
i

4ai
= ρ ′ occurring pn−d−1 + υ

(
ρ ′)p

n−d−2
2 η

(
(−1)

n−d
2 Δ1

)
times (31)

for each ρ ′ ∈ Fp . Then by (24) and (30),

S(ε,γ , δ) = η
(
(−1)

n−d
2 Δ1

)
p

n+d
2 ζ

−λε,γ ,δ

p

since
∑

ρ∈Fp
v(ρ + λγ ,δ,ε)ζ

ρ+λγ ,δ,ε
p = p by Lemma 3(ii). Notice that υ(−ρ) = υ(ρ) for any ρ ∈ Fp .

By (31), when (b1,b2, . . . ,bn−d) runs through F
n−d
p ,

S(ε,γ , δ) = η
(
(−1)

n−d
2 Δ1

)
p

n+d
2 ζ

ρ
p occurring pn−d−1 + υ(ρ)p

n−d−2
2 η

(
(−1)

n−d
2 Δ1

)
times (32)

for each ρ ∈ Fp .
In the case of (γ , δ) ∈ R2, the rank of Trd

1(Ωγ ,δ(x)) is n − 2d and

Trd
1

(
Ωγ ,δ(x)

) + Trn
1(εx) =

n−2d∑
i=1

ai y2
i +

n∑
i=1

bi yi .

Similarly, if there exists some bi �= 0 with n − 2d < i � n, then Nε,γ ,δ(ρ) = pn−1 for any ρ ∈ Fp

and S(ε,γ , δ) = 0. When ε runs through Fpn , there are pn − pn−2d choices for ε such that there is at
least one bi �= 0 with n − 2d < i � n.

If bi = 0 for all n − 2d < i � n, a similar analysis shows that for any ρ ∈ Fp , by Lemma 2,

Nε,γ ,δ(ρ) = pn−1 + p
n+2d−1

2 η
(
(−1)

n−2d−1
2 (λε,γ ,δ + ρ)Δ2

)
(33)

where λε,γ ,δ = ∑n−2d
i=1

b2
i

4ai
and Δ2 = ∏n−2d

i=1 ai . When (b1,b2, . . . ,bn−2d) runs through F
n−2d
p , by

Lemma 2,

λε,γ ,δ =
n−2d∑
i=1

b2
i

4ai
= ρ ′ occurring pn−2d−1 + p

n−2d−1
2 η

(
(−1)

n−2d−1
2 ρ ′Δ2

)
times (34)

for each ρ ′ ∈ Fp . Thus, by Lemma 3(i), (24) and (33), we have

S(γ , δ, ε) = η
(
(−1)

n−2d−1
2 Δ2

)√
(−1)

p−1
2 p

n
2 +dζ

−λγ ,δ,ε
p .

Consequently, when (b1,b2, . . . ,bn−2d) runs through F
n−2d
p ,

S(ε,γ , δ) = η
(
(−1)

n−2d−1
2 Δ2

)√
(−1)

p−1
2 p

n
2 +dζ

ρ
p

occurring pn−2d−1 + p
n−2d−1

2 η
(
(−1)

n−2d+1
2 ρΔ2

)
times (35)

for each ρ ∈ Fp .
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From the above analysis, S(ε,γ , δ) = pn if and only if ε = γ = δ = 0, and S(ε,γ , δ) = 0 occurs pn −
1 + (pn − pn−d)|R1|+ (pn − pn−2d)|R2| = (pn − 1)(p2n−d − p2n−2d + p2n−3d − pn−2d + 1) times. By (28)

and Corollary 2, for i ∈ {1,−1}, there are |R0,i | pairs (γ , δ) ∈ Fpn × Fpn such that η((−1)
n−1

2 Δ0) = i.
Thus for each ρ ∈ Fp , we have

S(ε,γ , δ) = ±
√

(−1)
p−1

2 p
n
2 ζ

ρ
p

occurring
(

pn−1 ± p
n−1

2 η(−ρ)
)|R0,±1| times

when (ε,γ , δ) runs through Fpn × Fpn × Fpn . The other cases can be similarly analyzed.
For the even case of d, the integers n, n − 2d are also even. This case has a difference from the

odd case of d only in the application of Lemma 2. It can be proven in a similar way and we omit the
proof here. �

Notice that the weight of the codeword c(ε,γ , δ) is equal to pn − 1 − (Nε,γ ,δ(0) − 1) = pn −
Nε,γ ,δ(0). Consequently, the values Nε,γ ,δ(0) for any given ε,γ , δ are needed to determine the weight
distribution.

Theorem 2. For two integers n and k with d = gcd(n,k), if s = n/d is odd, then the weight distribution of the
code C is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 1 time,

(p − 1)pn−1, (pn − 1)(1 + p2n−1 + (p − 1)p2n−d−1 − p2n−2d

+ (p − 1)p2n−3d−1 + pn−1 − (p − 1)pn−2d−1) times,

(p − 1)pn−1 − p
n−1

2 ,
(p−1)(pn−1+p

n−1
2 )(pn+2d−pn+d−pn+p2d)(pn−1)

2(p2d−1)
times,

(p − 1)pn−1 + p
n−1

2 ,
(p−1)(pn−1−p

n−1
2 )(pn+2d−pn+d−pn+p2d)(pn−1)

2(p2d−1)
times,

(p − 1)(pn−1 − p
n+d−2

2 ),
(pn−d−1+(p−1)p

n−d−2
2 )(pn−d+p

n−d
2 )(pn−1)

2 times,

(p − 1)(pn−1 + p
n+d−2

2 ),
(pn−d−1−(p−1)p

n−d−2
2 )(pn−d−p

n−d
2 )(pn−1)

2 times,

(p − 1)pn−1 − p
n+d−2

2 ,
(p−1)(pn−d−1+p

n−d−2
2 )(pn−d−p

n−d
2 )(pn−1)

2 times,

(p − 1)pn−1 + p
n+d−2

2 ,
(p−1)(pn−d−1−p

n−d−2
2 )(pn−d+p

n−d
2 )(pn−1)

2 times,

(p − 1)pn−1 − p
n+2d−1

2 ,
(p−1)(pn−2d−1+p

n−2d−1
2 )(pn−d−1)(pn−1)

2(p2d−1)
times,

(p − 1)pn−1 + p
n+2d−1

2 ,
(p−1)(pn−2d−1−p

n−2d−1
2 )(pn−d−1)(pn−1)

2(p2d−1)
times

for odd d, and
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 1 time,

(p − 1)pn−1, (pn − 1)(p2n−d − p2n−2d + p2n−3d − pn−2d + 1) times,

(p − 1)(pn−1 − p
n−2

2 ),
(pn−1+(p−1)p

n−2
2 )(pn+2d−pn+d−pn+p2d)(pn−1)

2(p2d−1)
times,

(p − 1)(pn−1 + p
n−2

2 ),
(pn−1−(p−1)p

n−2
2 )(pn+2d−pn+d−pn+p2d)(pn−1)

2(p2d−1)
times,

(p − 1)pn−1 − p
n−2

2 ,
(p−1)(pn−1+p

n−2
2 )(pn+2d−pn+d−pn+p2d)(pn−1)

2(p2d−1)
times,

(p − 1)pn−1 + p
n−2

2 ,
(p−1)(pn−1−p

n−2
2 )(pn+2d−pn+d−pn+p2d)(pn−1)

2(p2d−1)
times,

(p − 1)(pn−1 − p
n+d−2

2 ),
(pn−d−1+(p−1)p

n−d−2
2 )(pn−d+p

n−d
2 )(pn−1)

2 times,

(p − 1)(pn−1 + p
n+d−2

2 ),
(pn−d−1−(p−1)p

n−d−2
2 )(pn−d−p

n−d
2 )(pn−1)

2 times,

(p − 1)pn−1 − p
n+d−2

2 ,
(p−1)(pn−d−1+p

n−d−2
2 )(pn−d−p

n−d
2 )(pn−1)

2 times,

(p − 1)pn−1 + p
n+d−2

2 ,
(p−1)(pn−d−1−p

n−d−2
2 )(pn−d+p

n−d
2 )(pn−1)

2 times,

(p − 1)(pn−1 − p
n+2d−2

2 ),
(pn−2d−1+(p−1)p

n−2d−2
2 )(pn−d−1)(pn−1)

2(p2d−1)
times,

(p − 1)(pn−1 + p
n+2d−2

2 ),
(pn−2d−1−(p−1)p

n−2d−2
2 )(pn−d−1)(pn−1)

2(p2d−1)
times,

(p − 1)pn−1 − p
n+2d−2

2 ,
(p−1)(pn−2d−1+p

n−2d−2
2 )(pn−d−1)(pn−1)

2(p2d−1)
times,

(p − 1)pn−1 + p
n+2d−2

2 ,
(p−1)(pn−2d−1−p

n−2d−2
2 )(pn−d−1)(pn−1)

2(p2d−1)
times

for even d, as (ε,γ , δ) runs through Fpn × Fpn × Fpn .

Proof. We also only give the proof for odd d, and omit the proof of the other case.
(i) For (γ , δ) = (0,0), Nε,γ ,δ(0) = pn−1 for ε �= 0, and pn for ε = 0.

(ii) For (γ , δ) ∈ R0. Notice that there are p−1
2 square and non-square elements in F

∗
p , respectively.

As ε runs through Fpn , by (26) and (27),

Nε,γ ,δ(0) = pn−1 occurring pn−1 times

and

Nε,γ ,δ(0) = pn−1 ± p
n−1

2 η
(
(−1)

n−1
2 Δ0

)
occurring

p − 1

2

(
pn−1 ± p

n−1
2 η

(
(−1)

n−1
2 Δ0

))
times.

For (γ , δ) ∈ R1, if there exists some bi �= 0 for n −d < i � n, then for any ρ ∈ Fp , Nε,γ ,δ(ρ) = pn−1.
If bi = 0 for all n − d < i � n, when (b1,b2, . . . ,bn−d) runs through F

n−d
p ,

Nε,γ ,δ(0) = pn−1 + (p − 1)p
n+d−2

2 η
(
(−1)

n−d
2 Δ1

)
occurring pn−d−1 + (p − 1)p

n−d−2
2 η

(
(−1)

n−d
2 Δ1

)
times

and
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Nε,γ ,δ(0) = pn−1 − p
n+d−2

2 η
(
(−1)

n−d
2 Δ1

)
occurring (p − 1)

(
pn−d−1 − p

n−d−2
2 η

(
(−1)

n−d
2 Δ1

))
times.

For (γ , δ) ∈ R2, if there exists some bi �= 0 with n − 2d < i � n, then Nε,γ ,δ(ρ) = pn−1 for any
ρ ∈ Fp .

If bi = 0 for all n − 2d < i � n, when (b1,b2, . . . ,bn−2d) runs through F
n−2d
p ,

Nγ ,δ,ε(0) = pn−1 occurring pn−2d−1 times,

and

Nγ ,δ,ε(0) = pn−1 ± p
n+2d−1

2 η
(
(−1)

n−2d−1
2 Δ2

)
occurring

p − 1

2

(
pn−2d−1 ± p

n−2d−1
2 η

(
(−1)

n−2d−1
2 Δ2

))
times.

We only give the frequencies of the codewords with weight (p − 1)pn−1 and (p − 1)pn−1 − p
n−1

2 .
Other cases can be similarly analyzed. The weight of c(ε,γ , δ) is equal to (p − 1)pn−1 if and only if
Nε,γ ,δ(0) = pn−1. By the above analysis and Proposition 4, the frequency is equal to

pn − 1 + pn−1|R0| +
(

pn − pn−d)|R1| +
(

pn − pn−2d + pn−2d−1)|R2|
= (

pn − 1
)(

p2n−1 + (p − 1)p2n−d−1 − p2n−2d + (p − 1)p2n−3d−1

+ pn−1 − (p − 1)pn−2d−1 + 1
)
.

The weight of c(ε,γ , δ) is equal to (p − 1)pn−1 − p
n−1

2 if and only if Nε,γ ,δ(0) = pn−1 + p
n−1

2 . The
corresponding frequency is

p − 1

2

(
pn−1 + p

n−1
2

)|R0,1| + p − 1

2

(
pn−1 + p

n−1
2

)|R0,−1|

= (p − 1)(pn−1 + p
n−1

2 )(pn+2d − pn+d − pn + p2d)(pn − 1)

2(p2d − 1)
. �
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