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Abstract 

The multiple instance problem arises in tasks where the training examples are ambiguous: a 
single example object may have many alternative feature vectors (instances) that describe it, 

and yet only one of those feature vectors may be responsible for the observed classification of 
the object. This paper describes and compares three kinds of algorithms that learn axis-parallel 

rectangles to solve the multiple instance problem. Algorithms that ignore the multiple instance 

problem perform very poorly. An algorithm that directly confronts the multiple instance problem 
(by attempting to identify which feature vectors are responsible for the observed classifications) 

performs best, giving 89% correct predictions on a musk odor prediction task. The paper also 
illustrates the use of artificial data to debug and compare these algorithms. 

Keywords: Machine learning; Drug design; Structure-activity relationships 

1. Introduction 

Consider the following learning problem. Suppose there is a keyed lock on the door to 
the supply room in an office. Each staff member has a key chain containing several keys. 

One key on each key chain can open the supply room door. For some staff members, 

their supply room key opens only the supply room door; while for other staff members, 
their supply room key may open one or more other doors (e.g., their office door, the 
mail room door, the conference room door). 
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Fig. 1, Supervised learning: (a) usual situation and (b) multiple instance situation. 

Suppose you are a lock smith and you are attempting to infer the most general 
required shape that a key must have in order to open the supply room door. If you knew 
this required shape, you could predict, by examining any key, whether that key could 
unlock the door. What makes your lock smith job difficult is that the staff members are 

uncooperative. Instead of showing you which key on their key chains opens the supply 
room door, they just hand you their entire key chain and ask you to figure it out for 

yourself! Furthermore, you are not given access to the supply room door, so you can’t 
try out the individual keys. Instead, you must examine the shapes of all of the keys on 
the key rings and infer the answer. 

We call this kind of learning problem the multiple instance problem. It arises in 
complex applications of machine learning where the learning system has partial or 

incomplete knowledge about each training example. In traditional supervised learning 
problems, the learning system is given training examples of the form { (objecti, results)}. 

This situation is depicted in Fig. 1 (a). Each object is typically represented as a fixed- 
length vector of attribute values (usually called a “feature vector”). 

However, as machine learning applications become more complex, the situation shown 
in Fig. 1 (b) can arise. Here, the learner has incomplete information about each training 
example. Rather than knowing that each training example can be represented as a feature 
vector, the learner only knows that each example can be represented by one of a set 
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of potential feature vectors. In our lock smith problem, instead of knowing which key 
(from each key chain) opens the supply room, the learning system only knows that one 

of the keys on the key chain opens the door. 
An early example of this learning situation arose in the Meta-DENDRAL project 

[ 5,271. In Meta-DENDRAL, the goal was to learn rules that could predict the behavior 
of molecules inside a mass spectrometer. A mass spectrometer bombards a molecule 
with high energy particles, which causes the molecule to break into fragments. These 

fragments are then analyzed to produce a histogram of their mass-to-charge ratio, which 

is called a mass spectrum. The main problem in Meta-DENDRAL was to predict which 

bonds would break, Each molecule is analogous to a key chain, and each bond is 

analogous to an individual key. By observing several molecules (and the resulting 
fragments), Meta-DENDRAL was able to formulate a small number of bond-breakage 

rules that accounted for the observed fragments. 
A similar situation arises in explanation-based learning with a “promiscuous” domain 

theory [ lo]. Given an input example, the domain theory can construct multiple expla- 

nations that account for the observed result. The learning task is to examine several 

training examples and find one explanation that can account for all of the observed 
results. In this case, each example is like the key chain, and each alternative explanation 

is like an individual key. 

The multiple instance problem also arises in the application domain of drug activity 
prediction, which is of central importance in this paper. In this domain, the input object 

is a molecule, and the observed result is a measurement of the degree to which the 
molecule binds to a target “binding site”. A binding site is a cavity or pocket (part of a 
much larger molecule) into which the input molecule binds. A good drug molecule will 
bind very tightly to the desired binding site, while a poor drug molecule will not bind 

well. The variant instances are alternative “conformations” of the molecule-alternative 
shapes that the molecule can adopt by rotating its bonds. One (or a few) of these 
shapes actually bind to the binding site and produce the observed result. The other 
conformations typically have no effect on binding. The learning task is to infer the 
requirements for the observed drug activity. 

This is directly analogous to the lock smith problem. Each molecule is like a key 

chain. The different shapes that it can adopt (the conformations) are like individual 

keys. The goal is to infer the most general shape required for binding to the binding 
site (opening the lock). 

Drug activity can be measured in many ways. In some settings, a laboratory assay can 

measure the kinetics of the binding reaction and determine the binding strength directly. 
In other settings, activity is measured by its observed biological effect. For example, in 

the musk odor prediction task described below, activity is measured by human subjects 
who characterize a chemical compound as “active” or “inactive”. 

The availability of “inactive” molecules is one aspect of the drug activity problem 

that extends beyond the lock smith problem. For an inactive molecule, we know that 
none of its possible conformations (shapes) can bind to the binding site. In the lock 
smith problem, this would be analogous to having some key chains from people in other 

businesses where we know that none of the keys on their key chains opens the supply 
room door. 
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In this paper, we will let M be the set of possible objects mi. Each object mi has an 
observed result, f( mi). Because our musk data is labeled as “active” or “inactive”, we 

will treat f(mi) as a binary quantity: f(m;) = 1 for “active” molecules, and f(mi) = 0 
for “inactive” molecules. The function f_represents the unknown process. The goal of 

learning is to find a good approximation f to f by analyzing a set of training examples 

drawn from M and labeled by f. 

In ordinary supervised learning, we would usually represent each object mi t M 
by a vector of n real-valued features, V(m,) t JR”. Indeed, most machine learning 

papers make no distinction between the objects and their feature vectors because of this 

one-to-one correspondence. A labeled training example thus has the form 

(V(W), f(d). 

However, in the setting of Fig. 1 (b), each object mi may have Vi variant instances 

denoted mi,i, mi.2, . . . , mi,“,. Each of these variants will be represented by a (usually) 
distinct feature vector V(mi,,j). A complete training example is therefore written as 

({V(?%,I), V(m,,2), . . . I V(mi,,,>}, f(W)). 

In other words, the representation for each training example is ambiguous, and a machine 

learning algorithm must overcome this ambiguity. We will assume that the complete set 
of variants is finite and known to the learning algorithm. 

It is a property of all of the domains described above that if the observed result is 

“positive” (e.g., “active” in drug design, “present” in mass spectrometry), then at least 
one of the variant instances must have produced that positive result. Furthermore, if the 

observed result is “negative”, then none of the variant instances could have produced 
a positive result. We can model this by introducing a second function g( V( mi,,i)) that 
takes a single variant instance and produces a result. The externally observed result, 

f(nz;), can then be defined as follows: 

f (mi> = 
1, if3jg(V(mi,,;)) = 1, 

0, otherwise. 

In short, object rni is predicted to be a positive example if and only if there exists at 
least one feature vector for m; (one variant instance) that is predicted to be positive 
according to g. This definition allows for the possibility that more than one variant is 

predicted positive by g. 
We will refer to all of the variants of positive examples as positive instances, even 

though only one of them may have produced the positive result. Similarly, we will refer 

to all of the variants of a negative example as negative instances. 
In the remainder of the paper, the goal of the machine learning algorithm will be to 

construct an approximation g to the internal function g. An hypothesis 2 is consistent 
with a set of training examples if it classifies every feature vector of every negative 

example as negative and if it classifies at least one feature vector of every positive 

example as positive. 
We call this learning problem the “multiple instance problem”, because each training 

example is represented by multiple instances (or feature vectors). The goal of this 



T.G. Dietterich et al./ArtiJicial Intelligence 89 (1997) 31-71 35 

paper is to demonstrate that the multiple instance problem is an important problem and 
to compare the effectiveness of three general approaches to solving the problem in the 

case where an axis-parallel rectangle bias is appropriate. 
The paper begins by describing an application domain-drug activity prediction-in 

which the multiple instance problem arises. We then describe a feature representation for 

this application for which a good bias would appear to be axis-parallel hyper-rectangles 
( APRs) We consider three general designs for APR learning algorithms: 

l A noise-tolerant “standard” algorithm. The naive APR algorithm just forms the 

smallest APR that bounds the positive examples. We explore a noise-tolerant version 

of this algorithm that ignores the multiple instance problem. 
l An “outside-in” algorithm. This algorithm is a variation on the “standard” algorithm. 

It constructs the smallest APR that bounds all of the positive examples and then 
shrinks this APR to exclude false positives. The “shrinking process” addresses the 

multiple instance problem. 
l An “inside-out” algorithm. This algorithm starts with a seed point in feature space 

and “grows” a rectangle with the goal of finding the smallest rectangle that covers 

at least one instance of each positive example and no instances of any negative 
example. We found it necessary to expand the resulting APR (via a statistical 

technique) in order to get good performance. 

Our results show that the “inside-out” algorithm performs much better than either 
of the others. We will present evidence that this is because the “inside-out” algorithm 

can identify the relevant features better than the “outside-in” algorithm. The results will 
also demonstrate that the “standard” algorithm performs much worse than either of the 

others-this will argue that the multiple instance problem cannot be ignored but instead 

must be considered during the design of learning algorithms. 

To conduct this research and obtain these results, we found it extremely valuable to 
develop an artificial data set that mimics the behavior of the real data. This was valuable 

for several reasons: 
l The two real data sets under study contained only 92 and 102 examples each. Hence, 

there was a great danger of overfitting on these data sets. Overfitting could occur 

during a single run. An even greater risk was that the entire algorithm development 

process would overfit the data as we attempted to improve cross-validated accuracy. 
l An artificial data set allowed us to develop and debug our algorthms with data for 

which the “right answer” was known. This substantially improved the efficiency of 
our research. 

l To construct the artificial data set, we were forced to carefully analyze our real 
data sets in order to understand how they might have been generated. This provided 
many ideas for new algorithms. 

The remainder of the paper is therefore organized as follows. After describing the 
application domain, we present an analysis of the data sets under study. Based on this 
analysis, we then describe our artificial data set. 

Next, we present each of the three algorithm designs and compare their performance 
on the artificial data. Runs on the artificial data help determine parameter values for the 

learning algorithms. Finally, we run the learning algorithms on our two real-world data 
sets and summarize the results. 
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2. Drug activity prediction 

The algorithms described in this paper were motivated by the task of drug activity 

prediction. 

2.1. Background 

Most drugs are small molecules that work by binding to much larger protein molecules 

such as enzymes and cell-surface receptors. The potency of a drug is determined by the 

degree to which it binds to the larger, target molecule. Drug molecules typically do not 
bind covalently to target molecules. Instead, they exploit a variety of weak interactions 

including (a) hydrogen bonds, (b) van der Waals attractions, (c) electrostatic (charge) 
interactions, and (d) hydrophobic interactions. The “right” molecular shape conforms 

closely to the shape of the binding site (which enables van der Waals attractions and 
hydrophobic interactions over large surface areas) and presents electronically active 

surface atoms near complementary binding site atoms (which enables electrostatic and 
hydrogen bond interactions). An analogy is often drawn to a lock and key: a key will 

operate a lock only if its shape is complementary to the shape of the lock. 

The goal of drug activity prediction is to predict the activity of new (not yet synthe- 

sized) molecules by analyzing a collection of training examples consisting of previously 

synthesized molecules and their observed activities when binding to a binding site of 
medical interest. By focusing the expensive and time-consuming efforts of chemists on 
synthesizing the most promising candidate molecules, accurate drug activity predictions 

could yield large savings in time and money for pharmaceutical companies. 
An even greater benefit of applying machine learning to drug activity prediction would 

be to guide the process of drug design. If chemists could obtain a three-dimensional 

model of the requirements for drug activity, they would be able to design better drugs. 
Sometimes the shape of the binding site can be inferred from X-ray crystallography 

and used to guide drug design [26]. In many practical cases, however, the shape of 
the binding site is unknown, and machine learning methods might be able to provide a 
three-dimensional shape hypothesis to support drug design. Such “rational” drug design 

could cut years off the time required to discover new drugs. It could also result in drugs 

with higher potency and fewer side-effects. 

2.2. The multiple instance problem 

The multiple instance problem arises in drug activity prediction because of our choice 
of representation for the drug molecules. Hence, we must describe why we selected a 
representation that creates the multiple instance problem. 

Because binding strength is largely determined by the shape of drug molecules, a 
good representation must capture the shape of each molecule. Unfortunately, molecules 
can adopt multiple shapes by rotating some of their internal bonds as shown in Fig. 2. 
Hence, any representation that captures the shape of a molecule will produce multiple 
feature vectors as the shape changes. 
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Fig. 2. The shape of a molecule changes as it rotates internal bonds. (Thin lines indicate molecular surface.) 

Every combination of angles of the rotatable bonds of a molecule defines a “confor- 
mation”. Each conformation has a potential energy that is determined by the interactions 
between the atoms making up the molecule. (This is analogous to the gravitational 
potential energy between two objects separated by a specified distance.) At ordinary 

temperatures, the conformation of a molecule in solution is rapidly changing. The prob- 
ability that the molecule will adopt a particular conformation depends exponentially on 
the potential energy of that conformation according to the Boltzmann distribution-low 

energy conformations are much more probable than high energy conformations. Hence, 

in practice, the only conformations in which the molecule is likely to bind to the binding 

site are conformations of low energy (i.e., within 5 kcals of the lowest possible energy 

for any conformation of the molecule). 
We make the (standard) assumption that only conformations that correspond to local 

energy minima are possible candidates for binding. For a molecule with n rotatable 

bonds, one can usually expect to find O( 3”) local minimum conformations. Fortunately, 
only a fraction of these will be of sufficiently low energy. These low energy conforma- 

tions can be computed by several methods including Monte Carlo search of bond-angle 

space, systematic bond-angle search, and molecular dynamics (which simulates the mo- 
tions of the atoms using Newtonian mechanics). In the remainder of this paper, we 
will restrict our attention to these low energy conformations. Each low energy local 

minimum conformation will create a distinct feature vector for input to the learning 

algorithm. 

There are some approaches to drug activity prediction that avoid the multiple instance 
problem. One approach is to employ a representation that is invariant to changes in 
bond angles. Previous research in drug activity prediction has attempted to use such 
representations (e.g., notably methods derived from the work of Hansch [ 18,191, and 

some success has been reported for simple molecules or for families of molecules having 
large amounts of shared structure [ 331). For diverse molecules of the type studied in 

this paper, these methods have not been very successful [4]. 

Another approach is to employ a shape-oriented representation, but to attempt to 
guess in advance which conformation of each molecule is the biologically active one. 

The CoMFA method [81 has shown the promise of shape-based representation, but it 

has difficulty picking the right conformations. Other methods that employ some form 
of shape representation include Koehler, Rowberg-Schaefer and Hopfinger [25], Good, 

So, and Richards [ 161, and Vedani, Zginden and Snyder [ 361. 
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Fig. 3. A schematic diagram of the ray-based representation (only 8 rays are shown). Thick curve indicates 

molecular surface. 

A method that confronts the multiple instance problem directly is the elegant dis- 

tance geometry approach of Crippen [ 91. Unfortunately, combinatorial explosions in the 

search space of their approach limit the complexity of their binding site hypotheses to 
constraints on the positions of four or five key atoms. The approach that we describe 

can learn detailed constraints on the position of the entire molecular surface. 

2.3. A ray-based representation for molecular shape 

Fig. 3 shows the representation that we employed to capture the shape of molecules. 

We constructed a set of 162 rays emanating from the origin so that they sample space 

approximately uniformly. To extract features from a molecule, the molecule is placed in 

a standard position and orientation so that the origin lies inside it. From these 162 rays, 
162 feature values are measured. Each feature value is the distance from the origin to the 

molecule surface. We computed the molecular surface by Connolly’s [7] method with a 
probe radius of 1.5A. In addition to these 162 “shape” features, we also computed four 

domain-specific features that represented the position of a designated atom (an oxygen 

atom) on the molecular surface (see below). 
To determine the standard position and orientation of each molecule, all of the 

molecules were aligned to one another via translation and rotation. These alignments 
were carried out by an ad hoc algorithm that superimposed the atoms in the benzene 

rings of the molecules ’ and then attempted to place the designated oxygen atom at one 

of two positions that could support the formation of a hydrogen bond. 

’ A benzene ring is a planar 6.member ring of carbon atoms with a very strong de-localized bonding structure. 

It is denoted by a hexagon with alternating single and double bonds. Every one of our molecules contains at 

least one benzene ring. 
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Fig. 4. A schematic diagram of a binding hypothesis represented as bounds along the rays. If the molecular 

surface satisfies the bounds, then the molecule is predicted to be active. Rays xl and xg have two-sided 

bounds; x2 has an upper bound only; xx has a lower bound only; and rays XI, x3, and x7 are unconstrained 

(irrelevant for binding). 

This ray-based representation is sufficient for molecules that have a compact, 
spheroidal shape. Similar representations could easily be constructed for molecules with 
other shapes such as long columns, curved segments, or even loops. This representation 

was sufficient for the molecules studied in this paper. 
Note that as the shape of a molecule changes from one conformation to another, 

the distances measured along the rays will change. Hence, different conformations will 

be represented by distinct feature vectors. Also note that the measured feature values 

are locally correlated: values measured along adjacent rays will be quite similar. This 

suggests that the actual number of features required to characterize active molecules-the 

number of relevant features-will probably be substantially less than 162. 

The ray-based representation immediately suggests a representation for hypotheses. 

Let us suppose that the binding site requires that the surface of the molecule be in certain 
locations. Then, by placing an upper and lower bound along each ray, we can describe 
the allowed positions of the molecular surface along each ray. For well-separated rays, 
it is likely that the allowed positions along each ray are independent, because each 
surface patch of the molecule interacts with a different surface patch on the binding 
site. Hence, the bounds along the rays correspond to an axis-parallel hyper-rectangle 
in the 162-dimensional feature space. Fig. 4 shows that these bounds can be two sided 
or one sided: they can require that the molecule “stick out” beyond a certain distance 

(via a lower bound on the ray); they can require that the molecule not “stick out” too 

far (via an upper bound on the ray). Both of these conditions reflect important domain 
interactions. A lower bound may require the molecule to extend far enough to make 
critical van der Waals or hydrophobic interactions with the binding site. An upper bound 
may prohibit the molecule from colliding with the wall of the binding site. 
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Table 1 
The musk data sets 

Data set Musks Non-musks Total Low energy conformations 

1 47 45 92 476 

2 39 63 102 6598 

2.4. Predicting musk strength 

To develop our learning methods for drug activity prediction, we chose to study 
the problem of predicting the strength of synthetic musk molecules. This problem had 

several attractive aspects: 
(a) it is non-proprietary, 

(b) a large number of musk compounds and similar non-musk compounds have been 
published in the open literature, 

(c) the identity and shape of the binding site or sites is unknown, and 
(d) the molecules are similar in size and composition to orally active drug molecules. 

The only aspect of the musk problem that is substantially different from typical phar- 

maceutical problems is that musk strength is measured qualitatively by expert human 
judges, whereas drug activity is usually measured quantitatively through biochemical 

assays. This makes the musk problem somewhat more difficult. 
We surveyed the literature on musk compounds [ 2,3,14,17,29,35] and selected two 

(overlapping) data sets of musk molecules. Because of the subjective nature of the 
test for musk strength, there is quite a bit of variation from one paper to another. We 
considered only compounds that appeared in at least two publications and for which 

all published musk judgements agreed. Data set 1 contains 47 musk molecules and 45 

similar non-musk molecules. Data set 2 contains 39 musks and 63 non-musks. 72 of the 
molecules are shared between the two data sets. 

Once the molecules had been identified and their bond graphs entered into the com- 

puter, it was necessary to search the space of possible conformations of each molecule 

to find low energy minima. For both data sets, we employed the Monte Carlo search 
algorithm implemented in the MacroModel program [ 6,341 to minimize the AMBER 

force field [ 37,381. For data set 1, a subset of the resulting low energy conformations 
for each molecule was chosen to maximize the pairwise root-mean-square distances be- 

tween the atom positions of each pair of conformations. The goal was to obtain a small 

set of diverse low energy conformations for each molecule. 
For data set 2, we selected the molecules more carefully. We are more certain that the 

molecules have been properly classified, and the conformational searching was much 
more thorough. All conformations produced by MacroModel were retained. Despite the 
larger number of molecules, this second data set has been more difficult for learning 
algorithms because it contains many more conformations. This is indirect evidence of 
the difficulties created by the multiple instance problem. Table 1 summarizes the two 

data sets. 
Fig. 5 shows four molecules from our training data set. The molecules are made 

up entirely of carbon and hydrogen atoms with the exception of one oxygen. Previous 
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Fig. 5. Four musk molecules. 

authors have concluded that the oxygen is critical for musk strength. Hence, we added 

four oxygen features to the 162 shape features. Three of these features measure the 

X-, Y-, and Z-displacements of the oxygen atom from a designated point in space. 

The fourth feature measures the Euclidean distance between the oxygen atom and the 

designated point. These features were chosen so that the axis-parallel rectangle method 

of representing binding requirements could still be employed. 

2.5. Related work 

The research reported in this paper grew out of initial efforts at Arris Pharmaceutical 
Corporation to apply machine learning to drug activity prediction. Subsequent work at 
Arris has produced an APR-like neural network algorithm, called COMPASS [ 22-241, 

that improves upon the algorithms reported here. One advantage of COMPASS is that 

it is more robust to errors in the initial alignment of the molecules-during the learning 

process, COMPASS automatically optimizes the relative alignment of the molecules. 
Another advantage is that COMPASS can handle activity prediction tasks in which 
the activities are continuous quantities, while the work reported here can make only 

active/inactive classifications. 

The primary contribution of the work reported here is that it demonstrates the critical 
importance of solving the multiple instance problem, and it shows how to solve this 

problem for hypotheses represented as axis-parallel rectangles. Axis-parallel rectangles 

are generally easier to interpret than neural networks, and we expect that there will be 
new applications for the algorithms described in this paper. 

3. Data analysis of musk data set 1 

In any application problem, it is important to analyze the data to assess what biases 
might be appropriate and to gain other insights that can help guide the choice of learning 

algorithms. Hence, we performed a fairly detailed analysis of the first musk data set, 
which is presented in this section. 

An additional motive for data analysis was to help us design an artificial data set with 
properties similar to the musk data, but where we could specify the “right answer”. This 

has been extremely helpful during algorithm debugging and sensitivity testing. It also 
was critical in helping us reduce “overfitting” to the real musk data set. Artificial data 

sets have also proven useful in the development of DNA sequence assembly algorithms 
[ 13,321 and in the comparison of learning algorithms [ 11. 

We began by constructing a hyper-rectangle that tightly contains all of the data. 
We then computed the width of the bounds along each ray and plotted the histogram 
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Fig. 6. Histogram of the width of the bounds of an APR that tightly contains all feature vectors in musk data 

set I. 

shown in Fig. 6. All feature values are measured in hundredths of angstroms (A)- 
centiangstroms (CA). Note that there is substantial variation (e.g., at least 2w and 
typically 3.5A) along nearly every ray. Only a few rays have tight bounds, and many 

of these correspond to regions of the musk molecule above and below the benzene ring 
where there is essentially no variation in the data set. 

Fig. 7 shows the actual lower and upper bounds for an APR enclosing all of the 

data and an APR enclosing only the positive feature vectors. All variant instances of 

each molecule are included. The features are sorted in ascending order of the width of 

the positive-only APR bounds. Note that there is only a small separation between the 
positive-only APR and the all-data APR. This suggests that bounds on any single ray 
will not eliminate very many negative molecules. 

Fig. 8 shows an enlarged view of the left end of Fig. 7 where the positive-only 
bounds are tight. Notice that the positive-only upper bounds give better separation from 
the all-data upper bounds in this region. This suggests that features with narrow bounds 
are better at discriminating between positive and negative examples than features that 

have wide bounds. 
Fig. 9 shows a kernel density estimate of the positive and negative feature vectors 

along feature 12, which is typical of other features. A kernel density estimate is con- 
structed by placing a small gaussian at each observed feature value and then summing 

those gaussians to construct a probability distribution [ 301. We used gaussians with a 
standard deviation of lock%. 
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Fig. 9. Kernel density estimate for positive and negative feature vectors along feature 12 in musk data set 1. 

From Fig. 9 we can see that the distribution of positive and negative examples is very 

similar. It appears that we could separate a few negatives from the positives by placing a 

bound at 330. Note also that there is a large central peak. Most features have one, two, 
or at most three such central peaks, and the peaks of the positive and negative densities 
nearly always coincide. Hence, we can see that this is a very difficult learning problem. 

To get a crude idea of how hard it will be to exclude all of the negative instances, we 
can compute the number of bounds along which each negative instance lies outside the 

positive-only APR. Fig. 10 shows a histogram of the number of bounds that can exclude 

each negative. Note that several negative instances cannot be excluded at all by the 
positive-only APR. However, for those that can be excluded, the number of excluding 

bounds is distributed roughly exponentially with mean 8.6. 
In our analysis so far, we have ignored the multiple instance problem. Fig. 11 is a 

display that helps us visualize the multiple instances of each molecule along one ray. 
From this display, we can see that most molecules exhibit a wide range of feature values 
(e.g., molecules 9 and 13). Furthermore, we can see that bounds in the neighborhood of 
480 and 560 would cover at least one instance of every positive molecule and exclude all 
instances of several negative molecules. More precisely, we can guarantee that at least 

one instance of every positive molecule will be included in the bounds along dimension 
d if we set the lower bound lbd and the upper bound ubd to be 
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Fig. 10. Histogram of the number of bounds along which a negative instance is excluded by an APR that 

covers all positive instances. 

where j ranges over the variant instances of molecule m, and Vd(rni,~) is the value of 

feature d for variant instance mi,.i. We will call these bounds the minimax bounds for 

dimension d. If we construct minimax bounds along all dimensions for either musk 
data set, the resulting “minimax API%” does not include any positive molecules, unfor- 
tunately. This is because different instances of each molecule are chosen along different 

dimensions. However, we can prove the following lemma: 

Lemma 1. Any APR that covers at least one instance of all positive molecules must 

contain the minimax APR. 

Proof. Suppose there was an APR that covered at least one instance of all positive 
molecules, but whose upper bound was less than the minimax bound along feature d. 

This is impossible, because by definition, there exists at least one positive molecule m 

for which the minimax upper bound is equal to the smallest value of feature d for any 
instance of that molecule. Any smaller value would not cover any instances of molecule 
m. The same argument applies to lower bounds. 0 
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Fig. 11. Display of multiple instances along feature 12, musk data set 1. The horizontal axis shows the value 
of feature 12 for each instance. The vertical axis is an arbitrary numbering of the molecules such that all 

positive molecules appear below all negative molecules. Each molecule is represented by a horizontal line 

with vertical ticks. The ticks mark the feature values for each of the multiple feature vectors representing a 

single molecule. The horizontal line joins these ticks. The horizontal dashed line separates the negatives from 

the positives. 
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We can summarize this data analysis as follows. The distributions of positive and 
negative feature values are very similar, and they are (very) approximately gaussian 

with rather long tails. However, if we explicitly consider the multiple instance problem, 
we can construct fairly tight bounds that exclude many negative instances. If we take the 

positive-only APR as a crude approximation to the true APR, we can conclude (from 

Fig. 10) that most negative instances are excluded along relatively few dimensions 
(mean 8.6). 

4. An artificial data set 

Based on the data analysis of the preceding section, we constructed an artificial data 

set as follows. First, we chose the artificial “correct” APR by forcing the first 40 features 
to have two-sided bounds and forcing the remaining 126 features to be irrelevant. We 

then applied this APR to generate random feature values, which were used to replace the 

feature values of musk data set 1. Hence, the number of molecules and feature vectors 

in the artificial data set is the same as in musk data set I. 
More precisely, the artificial APR, denoted fakeAPR, was constructed as follows. Let 

allAPR be the all-data APR that exactly includes all of the feature vectors in musk data 

set 1. To set the bounds for feature d (on each of the first 40 features), we first chose 

the width of the bounds by taking a random fraction (uniformly between 0.15 and 0.35) 
of the width of allAPR along feature d. We then positioned an interval of this width 

uniformly randomly within the bounds of allAPR along feature d. 

The process of constructing artificial feature vectors involved first constructing two 

gaussian probability distributions for each feature d-one for positive feature vectors 

and one for negative feature vectors. The two distributions had identical means, but the 
standard deviation of the negative gaussian was 10% larger than the standard deviation 
of the positive gaussian. The standard deviation of the positive gaussian was chosen to 

be 0.25 times the width of fakeAPR (along the first 40 features) and 0.25 times the 
width of allAPR (along the remaining 126 features). The mean was chosen (uniformly 

randomly) to lie at least one standard deviation inside fakeAPR (along the first 40 

features) or allAPR (along the remaining 126 features). 
Note that because the gaussian distribution has non-zero probability everywhere, it 

is possible for a positive feature vector generated at random by this procedure to lie 
outsidefakeAPR and for a negative feature vector to lie insidefakeAPR. Hence, additional 
steps were taken to ensure that the artificial data was consistent with fakeAPR. When 
generating the feature vectors for a positive molecule mi, we repeatedly generated 
features for the first feature vector of mi until all generated feature values lay within the 
bounds of fakeAPR. This ensured that at least one instance of every positive molecule 
satisfied fakeAPR. When generating feature vectors for a negative molecule mi, we first 

determined which bounds of fakeAPR would be violated (by sampling at random from 
an exponential distribution fitted to the data in Fig. 10). We then ensured (by repeated 
random generation) that the feature values generated along those violated bounds did in 
fact lie outside fakeAPR. 
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Fig. 12. Artificial data set. Positive and negative probability densities along feature 12. 

Fig. 12 shows a gaussian kernel density estimate of the positive and negative probabil- 

ity densities along feature 12 in the artificial data set. Note that there is a small amount 
of negative density beyond the positive density and that the estimated distributions have 

nearly identical means. It is not surprising that from data like this it is quite difficult to 
discriminate the positive molecules from the negative molecules. 

After constructing this artificial data set, we used it to guide the development and 

testing of a large variety of learning algorithms, some of which are described below. 

Since the artificial data set was developed from musk data set 1, what is the risk that 

we have overfitted the musk data sets by using this artificial data set? The answer can 

be determined by examining the ways in which the artificial data set is an accurate 
replication of the musk data sets. Certainly, the number of features, the range of feature 
values, and the number of conformations of each molecule are faithfully reproduced by 

the artificial data set. Hence, there might be some opportunities here for overfitting to 
musk data set 1. However, for musk data set 2, the range of feature values and the 
number of conformations of each molecule are very different, so there is little chance 
of overfitting to that data set. 

The feature values in the artificial data set are entirely different from either musk data 
set. In particular, the correlations among features are not captured at all by the artificial 

data set. In the real data set, the features are highly redundant, because the molecular 
surface does not change too much between adjacent rays. In the artificial data set, each 

feature value is chosen independently, so there is no correlation. Furthermore, in the 
musk data sets, four of the features describe the important oxygen atom, whereas in 
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Fig. 13. Relationships among the various axis-parallel rectangle algorithms described in this paper. Boxes with 

heavier lines mark the best algorithm of each type. 

the artificial data set, there are no special features relating to the oxygen atom. For the 
artificial data set, we know that there exists a low-dimensional axis-parallel rectangle 

consistent with the data; for the real musk data sets, there could very well be no such 
APR. 

We believe, therefore, that there is little risk of overfitting (particularly for musk data 

set 2) from doing too many experiments with the artificial data set. 

5. Three learning algorithms 

We now present three learning algorithms and compare their performance on the 

artificial data set. Each algorithm illustrates a general approach to constructing APRs 
in the presence of the multiple instance problem. To help the reader keep track of the 

various algorithms presented in this section, Fig. 13 gives a derivation tree that shows 

how the algorithms are related to one another. 
Fig. 14 is a schematic diagram of the multiple instance problem in two dimensions. 

The two coordinate axes represent the measured values of two features (i.e., measured 

at the point where each ray intersects the molecular surface as in Fig. 3). The un- 
filled shapes represent feature vectors of active molecules. The filled shapes represent 

feature vectors of inactive molecules. All points with the same shape (e.g., all dia- 
monds) denote feature vectors (variant instances) of the same molecule. The goal of 
the learning algorithms described in this section is to find a rectangle that includes at 

least one unfilled point of each shape (i.e., at least one feature vector of each positive 

molecule) and does not include any filled points (i.e., no feature vectors of any negative 
molecule). 

It should be noted that in addition to the algorithms described here, we have exper- 
imented with a large number of variations of these methods. Each method shown here 
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Fig. 14. A multiple instance learning problem. Unfilled shapes represent feature vectors of active molecules; 

filled shapes represent feature vectors of inactive molecules. All points of the same shape denote feature 

vectors of the same molecule. 

was the best representative chosen from several algorithms having the same fundamental 

approach. 

5. I. “Standard” APR algorithms 

An axis-parallel hyper-rectangle can be viewed as a conjunction of tests on the feature 
values. A simple algorithm can be designed by analogy with the standard algorithm for 
learning boolean conjunctions [ 121. We simply construct the APR that exactly covers all 
of the positive feature vectors (the “all-positive” APR). This is the maximally specific 

conjunctive generalization of the positive instances. We will call this algorithm the “all- 
positive APR” algorithm. Fig. 15 shows the resulting all-positive APR as a solid line 
bounding box of the unfilled points. 

However, this APR treats every feature as relevant. This is unlikely to be a good 
hypothesis in this domain, because feature values from nearby rays are highly correlated 
and because not all parts of the molecular surface are likely to be involved in binding. 
The obvious next step is to choose a subset of the bounds of this APR that are sufficient 

to exclude all of the negative instances. This is analogous to the method described by 
Haussler [20,21]. The process of removing bounds from the APR is best organized as 
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Fig. IS. The elim-count procedure for identifying the negative instance that is easiest to exclude. The solid 

rectangle is the smallest rectangle that includes all unfilled points (the all-positive APR). The line next to 

each included filled point indicates which side of the solid box will be tightened to exclude that point. The 

number indicates how many unfilled points will also be excluded when the box is tightened. The dashed box 

indicates the final APR produced by elim-count. 

a process of adding bounds to an APR that covers the entire feature space. A greedy 
algorithm considers each bound from the all-positive APR and chooses the bound that 

eliminates the most negative instances. This bound is then added to the solution, the 

negative instances are eliminated, and the process repeated until no negatives remain to 
be eliminated. We will call this the “GFS all-positive APR” algorithm, since it performs 

greedy feature selection. 

One difficulty with this algorithm is that the all-positive APR may contain several 
negative examples. Fig. 15 shows the all-positive APR as a solid line bounding box 
of the unfilled points. Note that 8 filled shapes (8 negative instances) are included 
in this APR. Greedy feature selection to choose a subset of the bounds cannot elim- 
inate any negative examples that were already covered by the all-positive APR. To 
eliminate these negative instances, we can apply the following greedy algorithm prior 
to selecting relevant features. For each negative instance, count the minimum number 

of positive instances that must be excluded from the APR in order to exclude the 
negative instance. In the figure, these counts are shown next to small lines that in- 
dicate which “side” of the APR would be tightened in order to exclude the negative 
instance. For example, to eliminate the black circle at the top of the APR, we would 



52 T.G. Dietterich et al. /Artificial Intelligence 89 (1997) 31-71 

also need to eliminate the one white diamond in the upper right corner of the APR. 
The greedy algorithm iteratively chooses to eliminate the negative instance that is eas- 

iest to eliminate (i.e., requires eliminating the fewest covered positive instances) until 
all negatives are eliminated. The resulting APR is the inner, dashed, box in Fig. 15. 

Note that in this example, the resulting APR covers at least one instance of each pos- 
itive example, but in general, this need not be the case. All instances of a positive 
example might be excluded by this greedy algorithm. After constructing this APR, we 
can apply the greedy feature selection algorithm described above to obtain an APR 

that is guaranteed to have no false positives. We will call this the “GFS elim-count 

APR” algorithm, because it eliminates negative instances based on counting the number 

of positive instances that also need to be eliminated (and it performs greedy feature 

selection). 

5.2. An “outside-in” multiple instance APR algorithm 

We can modify the GFS elim-count algorithm to address the multiple instance prob- 
lem. Instead of merely counting the number of positive instances that must be excluded 

in order to exclude a negative instance, we can consider excluding positive instances that 

are “expendable” in the sense that every positive molecule still has at least one positive 
instance covered by the APR. We implement this by defining a “cost” of excluding each 

positive instance and choosing to exclude cheap positive instances, as necessary, in order 
to exclude a covered negative instance. 

The cost of excluding a positive instance mi,,; of molecule m; must therefore depend 
on the other not yet excluded positive instances of molecule m,. If there are many other 

such surviving positive instances, then the cost of excluding m;,,i can be small, because 
it is less likely that subsequent decisions will end up excluding all instances of mi. 

Furthermore, if the other surviving positive instances have feature values that are 
frequently observed among the positive molecules, then it is likely that those survivors 
are the most relevant instances and that instance rn;,.i should be eliminated. 

Finally, if variant instance rni,i is very isolated so that few other positive instances 

have feature values similar to it, then it is probably not an instance that should be 

included in the APR. 
To develop a cost function that incorporates these properties, we employed an estimate 

of the probability density Dd of all surviving positive instances along feature d. As 
before, we applied gaussian kernel density estimation to estimate this density. A small 
gaussian kernel is centered at each value Vd(mi,,j) of feature d for each surviving 
instance mi.j of each positive molecule i. These gaussians are then summed to obtain 
the probability density function Dd. The notation Dd(mi,,,) indicates the probability 

(according to Dd) of observing the value Vd(m,J) of feature d. 

Let Ini, 1, . . . , WZi+, be the surviving variant instances of positive molecule mi. The cost 

of eliminating instance m,,.j along feature d is defined as 

(1) 
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The first term gives a very low cost if there are many other instances (indexed by I) 
of the same molecule and they have high probability according to the density estimate 
Dd. The final term c~Dd(rni,~) measures the degree to which instance j is isolated from 

the other positive instances. If Dd(mi,.i) is small, instance j is very isolated. In our 
experiments, we used (Y = 10.0. If an instance is the only remaining instance of a 
molecule, then it receives a cost of 10.0, which is very high. (We experimented with a 
few other cost functions, but this one worked slightly better than the others.) 

We can now apply the same algorithm as “elim-count”, except that at each point 

we choose the negative instance that is cheapest to eliminate (because it eliminates 

inexpensive positive instances). The algorithm will avoid eliminating the last covered 

instance of a positive molecule unless the alternative would be even more expensive. 

We call this algorithm “GFS elim-kde”, because it eliminates negative instances based 
on a kernel density estimate (kde) of the positive instances. 

One drawback of GFS elim-kde is that it is quite expensive to compute all of the 

required kernel density estimates. Let IZ be the number of features, Y be the number of 
instances of each positive molecule, N+ and N- be the total number of positive and 
negative instances (respectively), and p be the number of times we must compute the 
cost with Eq. ( 1). Then the computational cost is bounded by O(pvN+), because we 
must compute v kernel density estimates, and each such estimate must process each 

positive instance, However, p can be quite large itself, since each negative instance 

may exclude several positive instances along each of the II dimensions. On average in 

musk data set 1, 0.53 positive instances are excluded along each dimension; in musk 
data set 2, 0.28 positive instances are excluded along each dimension (these numbers 

reflect the application of a heuristic to avoid wasting effort on “bad” features). In either 

case, this means p is still 0( N-n), so the overall computational cost is approximately 
O(nvN- N+), which is immense. For musk data set 1, this is approximately 2.0 x 107. 
For musk data set 2, this is 9.0 x IO*. 

5.3. An “inside-out” multiple instance APR algorithm 

An alternative to the “outside-in” approach is to construct an APR by starting with 

a single positive instance and “growing” the APR by expanding it to cover additional 
positive instances. We have constructed a somewhat complex algorithm based on this 
approach. We call it the “iterated discrimination” algorithm, and it has three basic 
procedures: 

l Grow. An algorithm for growing an APR with “tight” bounds along a specified set 

of features. 
l Discrim. An algorithm for choosing a set of discriminating features by analyzing 

an APR. 
l Expand. An algorithm for expanding the bounds of an APR to improve its gener- 

alization ability. 
The algorithm works in two phases. In the first phase, the grow and discrim procedures 

are iteratively applied to simultaneously choose a set of discriminating features and 
construct an APR that has “tight” bounds along those features. In the second phase, the 
expand procedure is applied to expand these tight bounds. 
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We describe each of these procedures in turn. 

5.3. I. An algorithm for growing a tight APR 

The goal of this algorithm is to find the smallest APR that covers at least one instance 

of every positive molecule. Let us define the size of an APR as the sum of the widths 

of all of its bounds: 

Size(APR) = c ubd - lbd. 

Many different optimization methods can be applied to this problem, and we have 

tested simulated annealing, a greedy algorithm, and a backfitting algorithm. We describe 

the greedy and backfitting procedures here. 
We begin the optimization by choosing an initial “seed” positive instance. The greedy 

procedure then grows the APR by a series of greedy steps. In each greedy step, it 
identifies the positive instance (of a not yet covered positive molecule) that when added 

to the APR would least increase its size. The APR is then expanded to include that 

positive instance. This procedure is continued until at least one instance of each positive 
molecule is covered. Surprisingly, in all of our experiments, the resulting APR was 
consistent (i.e., it covered no instances of any negative molecules), although this is not 

required for any of our algorithms. 

The backfitting algorithm, which is an extension of the greedy procedure, was first 
employed in the projection pursuit method [ 151. It begins like the greedy algorithm by 

choosing a seed positive instance and then taking a series of greedy steps. However, 
after each greedy step, it revisits all previous decisions to consider whether they would 

be made differently. 
Suppose the algorithm has just taken a greedy step to make the Ith decision. Let 

Id be the positive instance chosen in step t. The backfitting procedure revisits each 
of the previous decisions 1, . , 1. When previous decision t is revisited, the algorithm 
constructs the APR that covers {It,. . , It_,, I,+, , . . . , II}. We will call this APR A-‘. 

It then considers all instances of the same molecule as I, and identifies the instance 

that would least increase the size of A-‘. This chosen instance replaces Ir in the list of 

choices made by the algorithm. 
The backfitting algorithm then reconsiders choice t + 1 and so on. It makes repeated 

passes through the first 1 choices until progress ceases (i.e., no decisions are changed). 

It then makes a greedy step to choose the (I+ 1 )st positive instance. 
To choose the initial positive instance, we select the positive instance that is closest 

(in Euclidean distance) to the minimax APR defined earlier. 
Experiments with musk data set 1 and the artificial data set showed that the backfitting 

procedure always found smaller, tighter APRs than either the greedy procedure or a 
simulated annealing method. Hence, we have applied the backfitting procedure in all of 

the experiments reported in this paper. 

5.3.2. An algorithm for selecting discriminating features 
Once a tight APR has been constructed, it can be applied to select discriminating 

features. We employed the following greedy algorithm. Let us say that feature d of the 
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tight APR strongly discriminates against a negative instance if either (a) that instance 
lies more than 1A outside the bounds of the APR along feature d or (b) that instance 
lies beyond the bounds of the APR, and it lies further outside the bounds along feature 

d than along any other feature. 

With this definition of “strongly discriminate”, we then choose features iteratively 

by selecting in each step the feature that strongly discriminates against the largest 
number of negative instances. Those negative instances are then removed from further 
consideration, and the process is repeated until enough bounds have been selected so 

that all negative instances are excluded. 

The rationale for the 1A “margin” beyond the APR is that in our experiments with 
the artificial data set, irrelevant features were found to discriminate many training set 

negative instances, but by only small margins. Hence, small values for the margin do 
not robustly identify the relevant features. Various other margins were considered, and 

the results are relatively insensitive to this parameter, as long as it is larger than 0.5& 

5.3.3. Iterative selection of positive instances and discriminating features 

The iterated discrimination algorithm alternates the application of these first two 
algorithms as follows. First, the backfitting algorithm is applied to construct a tight APR 
with bounds on all features. Then a subset of those features is selected as discriminating 

features. The backfitting algorithm is applied again to construct a tight APR, but this 

time, it only measures the size of the APR along the discriminating features. This 
can cause it to choose different positive instances (and hence, different bounds). The 
feature selection procedure is again invoked to further narrow the set of discriminating 

features. This back-and-forth loop continues until it converges (which typically requires 

3-4 iterations). 

It is interesting to compare the behavior of the backfitting algorithm on the first 
iteration with its behavior in subsequent iterations. During the first iteration, more than 
half of the features are irrelevant, and yet the backfitting algorithm is trying to minimize 
the total size of the APR. The APR bounds tend to be wider along the irrelevant 

features than along the relevant ones (because the surface of the positive molecules 
is more variable along those rays). Hence, when the irrelevant features are discarded, 

the backfitting algorithm can alter its choices quite substantially. During subsequent 

iterations, the choice of relevant features hardly changes at all. As a result, the choice of 
positive instances does not change much either, so that the algorithm converges rapidly, 
We expect this to be generally true for this kind of algorithm (more details are given 
below in Section 6.2). 

5.3.4. Expanding the APR to improve generalization 

Experiments on the artificial data set showed that using the tight APR resulting from 
the previous two methods does not generalize well. It is typically so tight that it excludes 
most positive instances in the test set (as well as all negative instances). The problem 

is that the APR was constructed to be exactly big enough to cover at least one positive 
instance of each molecule in the training set, but no bigger. 

To overcome this problem, we once more turned to kernel density estimation. For 
each relevant feature of the tight APR, we apply kernel density estimation to estimate 
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Fig. 16. Expanding APR bounds via kernel density estimation (musk data set I ) Small vertical lines mark the 

value of one feature for each positive feature vector. The curve shows an estimate of the probability density 

of these values. Tall vertical lines show bounds of initial, tight APR. Thicker medium vertical lines show the 

expandedbounds. 

the probability that a positive instance will satisfy the bounds on that feature. Our goal 

is to expand the bounds so that with high probability, new positive instances will fall 
inside the APR. 

This algorithm is controlled by two user-specified parameters: E and 7. The F param- 

eter specifies the amount of probability that should lie outside the expanded bounds of 
the APR along each feature dimension. The r parameter determines the width of the 

gaussian kernel. The width of the kernel is set so that if all of the positive instances 
were centered between the APR bounds, the kernel density estimator would conclude 
that r of the probability lay within the bounds. Hence, if the positive instances were 

normally distributed, E + r = 1. 
For each relevant dimension d of the APR, the algorithm first computes the width 

of the kernel using 7. It then expands the lower and upper bounds of the APR along 
d so that c/2 probability lies below the lower bound (according to the kernel density 
estimate) and c/2 probability lies above the upper bound. If the tail of the kernel density 
estimate contains less than e/2 probability, then that bound is not changed. 

This is illustrated in Fig. 16. Here, the tall vertical lines show the initial, tight bounds 
of the APR. The medium-height vertical lines show the expanded bounds-they have 

moved outward so that the probability under each tail of the density estimate is exactly 
e/2 = 0.01. Note that the lower bound has expanded considerably, because there are 



TG. Dietterich et al./Artificial Intelligence 89 (1997) 31-71 

Table 2 

Artificial data set performance; 92 training set molecules, 500 test set molecules 

51 

Algorithm True False 

positives negatives 

False 

positives 

True 

negatives 

Errors % correct 

iterated discrim APR” 231 22 45 196 61 86.6 

backpropagationh 248 II 120 121 131 73.8 

GFS elim-count APR 244 I5 126 IIS 141 71.8 

C4.S (pruned) 249 10 132 109 142 71.6 

GFS elim-kde APR 239 20 124 117 144 7 1.2 

all-positive APR 187 72 7s 166 147 70.6 

GFS all-positive APR 258 I IS7 84 158 68.4 

il r = 0.999, 0.002. E = 

h 127 hidden units, learning rate 0.1, momentum 0.6, 600 epochs. 

many positive instances very close to the tight lower bound (and consequently a larger 
tail). The upper bound has hardly expanded at all, because the positive instances were 
already quite sparse near the tight bound. 

6. Experimental results 

6.1. Results on the artijkial data set 

Table 2 shows the results of running each of these APR algorithms on the artificial 

data set. In addition, we show the results of the C4.5 decision tree algorithm and the 
backpropagation neural network algorithm, both of which ignored the multiple instance 

problem and treated all of the positive instances as positive examples. 
To evaluate the generalization performance, we constructed 500 additional molecules. 

Each new molecule was generated by randomly choosing (with replacement) a molecule 

from musk data set 1 and replacing its feature vectors with artificial feature vectors. 
Hence, the proportion of positive and negative molecules, and the number of feature 

vectors per molecule are the same in the artificial test set as in the artificial training set. 
For algorithms that require the user to specify various parameters, we chose the 

parameters that gave the best test set performance. For iterated discrimination, the best 
parameter values were r = 0.999 and E = 0.002. For backpropagation, we conducted 
a systematic search for good parameters using an adaptive solutions CNAPS computer 

with 128 processors (in 32-bit mode). The best parameters employed a single hidden 
layer of 127 sigmoid units, learning rate 0.1, momentum 0.6 (with weight updates 
applied once every 16 patterns), and trained for 600 epochs. 

The results clearly show that the iterated discrimination algorithm is far superior to all 

of the other algorithms tested. The performance of iterated discrimination is statistically 
significantly different from all of the other algorithms (p < 0.001, binomial test for 
the difference of two proportions). None of the other algorithms can be distinguished 
statistically from each other (at p < 0.05). 
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Table 3 

Artificial data set; success in identifying the correct relevant features 

Algorithm True False False True Errors % correct 
relevants irrelevants relevants irrelevants 

iterated discrim APR 38 2 18 108 20 88.0 

GFS all-positive APR 18 22 12 I I4 34 79.5 

GFS elim-kde APR 23 I7 43 83 60 63.9 

GFS elim-count APR 24 16 37 89 s3 68.1 

all-positive APR 40 0 126 0 126 24.1 
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Fig. 17. Bound widths for the all-positives APR on the artificial data set. The vertical bar separates the relevant 

features (O-39) from the irrelevant features (40-165). 

It is not surprising that the “all-positive APR” and the “GFS elim-count APR” al- 
gorithms did poorly, since neither of these addresses the multiple instance problem. 
However, it is somewhat surprising that the “GFS elim-kde APR” algorithm did so 

badly, since it does explicitly consider the multiple instance problem in deciding which 
positive instances to remove from its APR. We experimented with many variations of 
the “GFS elim-kde APR” algorithm. For example, one variation required that each neg- 

ative instance be discriminated from the positive instances by a “margin of safety”. This 
hurt performance (false negatives increased without decreasing false positives). Another 

variation we explored was to employ various methods of expanding or shrinking the 
APR both before and after feature selection. None of these worked as well as the GFS 
elim-kde algorithm described above. 
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Fig, 18. Bound widths for the backfitted APR on the artificial data set. The vertical bar separates the relevant 

features (O-39) from the irrelevant features (40- 165). 

An advantage of artificial data is that we can measure more than generalization 

performance. Table 3 shows how well each algorithm did at choosing the 40 correct 

features. We can see that the iterated discrimination algorithm was the most successful 
at identifying relevant features. All of the other algorithms (except the all-positive 
APR) , could only correctly identify about half of the relevant features, whereas iterated 

discrimination found 38 of the 40 features. 
From this data we conclude that the superior performance of “iterated discrimination 

APR” is primarily explained by its ability to find the relevant features. This in turn 

appears to be the result of its approach of first finding a very tight APR that covers 
at least one positive instance of every positive molecule. Along the relevant features, 

this tight APR is much tighter than along the irrelevant dimensions. In contrast, the 

bounding box of all of the positive examples-which is the starting point for all of the 
other algorithms-has wide bounds along both the relevant and irrelevant dimensions. 
Fig. 17 shows the widths of the bounds for the all-positive APR (as a percentage of 
the widths of the bounds of all the feature vectors). The first 40 features are the true 

relevant features. Some of them clearly have tighter bounds than the irrelevant features, 
but most of them have wide bounds indistinguishable from the irrelevant features. 

In contrast, Fig. 18 shows the widths of the bounds for the tight APR constructed by 
the backfitting algorithm during the first iteration of iterated discrimination. The relevant 
features are clearly identified. It should be noted, however, that on the real musk data 
sets, the analogous plot does not separate the features nearly so clearly. 
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Fig. 19. Performance of iterated discrimination on the artificial data set as a function of its parameters E and T. 

A drawback of the iterated discrimination algorithm is the need to choose values for 

r and E. Fig. 19 shows how performance on the artificial data set varies as a function 

of these two parameters. In general, as r increases, the best choice for E decreases. This 
is what we would expect: large values of r mean that the gaussian kernel is smaller, 

and hence, the probability under the tails of the distribution decreases. To sufficiently 
widen the APR bounds, the desired probability under the tails (E) must decrease too. 

The peak performance of iterated discrimination on the artificial data was obtained with 

r = 0.999 and E = 0.002. 
Unfortunately, these parameter values cannot be confidently extrapolated to musk data 

set 1, because the artificial data were generated using gaussian distributions, and these 
match the gaussian kernel density estimator very well. Hence, we need to look at musk 

data set 1 to choose the best parameters. 
We can summarize our analysis of the artificial data set as follows: 
l The artificial data pose a difficult learning problem. Neither backpropagation nor 

C4.5 can perform well on this data set. 

l Algorithms that ignore the multiple instance problem do not perform well. 
l The “inside-out” approach to constructing APRs performs best. This is a result of 

its superior ability to identify discriminating features. 

6.2. Results on musk data set 1 

We now turn to the first of the two musk data sets. Table 4 summarizes the perfor- 
mance of the algorithms on this data as measured by lo-fold cross-validation. A 95% 
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Table 4 
lo-fold cross-validation performance on musk data set 1 (92 molecules) 

Algorithm True False True False Errors 
positives negatives positives negatives 

61 

% correct 

iterated discrim APR” 42 5 2 43 I 92.4 187.0-97.8 I 
GFS elim-kde APR 46 1 7 38 8 91.3 [85.5-97.1 1 
GFS elim-count APR 46 I 8 37 9 90.2 [ 84.2-96.3 I 
GFS all-positive APR 47 0 15 30 I.5 83.7 [ 76.2-91.21 

all-positive APR 36 11 7 38 18 80.4 [ 72.3-88.5 1 
backpropagationh 4s 2 21 24 23 75.0 [ 66.2-83.8 1 
C4.S (pruned) 42 5 24 21 29 68.5 140.9-61.31 

il 0.0 1, 0.999 E = T = or E = 0.02 and 7 = 0.995. 

h 127 hidden units, learning rate 0.001, no momentum, 950 epochs. 

confidence interval is shown in the last column. From this, we can see that the top three 
methods are statistically indistinguishable. This probably reflects the difference between 
the artificial data set, where features are either relevant or irrelevant, and the musk 

data sets, where more features are (probably) measuring relevant parts of the molecular 

surface, but where these measurements are redundant. 
As with the artificial data set, we have chosen parameter values for iterated discrim- 

ination and backpropagation to optimize cross-validated accuracy. For backpropagation, 
we found that it was exceedingly difficult to train a network. Parameters that worked 
for the artificial data set did not work for musk data set 1. We believe this primarily 

reflects the fact that the bias of standard multi-layer sigmoid units is not appropriate 
for learning axis-parallel rectangles. Note that all of the APR methods performed better 

than the non-APR methods. 
The real musk data in Table 4 demonstrate even more clearly than the artificial 

data in Table 2 the importance of not ignoring the multiple instance problem. The top 
two algorithms in the table are the two methods that explicitly attempt to solve the 

multiple instance problem. As with the artificial data set, the best algorithm is iterated 
discrimination, which makes only 7 errors on test molecules. Note that all of the non- 

multiple instance algorithms (except the all-positive APR) have high false positive rates. 

This is to be expected, since if they mistakenly classify any feature vector of a molecule 
as positive, then the molecule is classified as positive. 

This partly explains the particularly poor performance of backpropagation and C4.5. 

Additionally, those algorithms do not have the advantage of knowing that good hypothe- 

ses should take the form of axis-parallel rectangles. Hence, even though both C4.5 and 
backpropagation can represent APRs, they choose other, less appropriate, hypotheses in 
this domain. 

Table 5 gives some insight into the behavior of the iterated discrimination algorithm. 
For each fold of the lo-fold cross-validation, this table shows how the number of 

relevant dimensions and the set of selected positive instances changes. First note that 

only two or three iterations are performed by the algorithm in each fold. The choice 
of relevant dimensions is essentially unchanged after the first iteration. This shows the 
critical importance of the heuristic for selecting relevant dimensions. The choice of 
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Musk data set I; IO-fold cross-validation; for each fold, the left half of the table indicates the change in 

the number of relevant dimensions (starting with 166) with each iteration of the iterated discrimination 

algorithm; the right half of the table indicates how many of the instances selected by backfitting changed in 

each iteration; the values for iteration I show the number of positive molecules in the training set (and hence, 

the total number of selected instances) 

Change in relevant dimensions Change in selected instances 

Iteration Iteration 

Fold 1 2 3 I 2 3 

8 

9 

-142 -I 0 42 6 I 

-145 0 42 IO 

-141 0 42 2 

-140 0 42 7 

-143 0 42 8 

-143 0 42 8 

-142 0 42 6 

-142 -1 0 43 7 2 

-144 0 43 6 

-141 0 43 8 

relevant dimensions has a big influence on which positive instances are chosen by the 
backfitting algorithm to be the “active” variants. In the second iteration, the algorithm 

changes its choice for 15-25% of the positive molecules. 

Fig. 20 shows the sensitivity of iterated discrimination to the choice of parameter 

values. There are several things to note. First, larger values of r give better performance. 
Second, the values of E giving peak performance are quite wide, especially for 7 = 0.999. 
When we compare this figure to Fig. 19, we see that unfortunately, the artificial data set 
does not accurately predict the point of peak generalization-it suggests much smaller 
values for F (which correspond to much wider APR bounds). Similarly, we will see 
below that musk data set 1 does not accurately predict the point of peak generalization 

for musk data set 2. 
What values of r and F shall we choose for musk data set 2? Based on the wide 

plateau for r = 0.999, it is an obvious choice. However, with the wide plateau, it isn’t 

clear what value of E to choose. One thing to consider is that musk data set 2 has only 
39 positive molecules instead of the 47 positive molecules in musk data set 1. This will 

mean that the tight APR produced by backfitting will have narrower bonds on musk 
data set 2 than on musk data set 1. This suggests that we choose smaller values of E, 
because those will produce wider APR bounds. Hence, we will choose E = 0.01, since 
it is the smallest value giving peak performance on musk data set 1. 

Note that any method of choosing parameters for musk data set 2 based on experiments 

with musk data set 1 risks some overfitting, because the two data sets share many 
molecules. However, because musk data set 2 has many more conformations and, as we 
shall see below, because the best parameters turn out not to be those that worked best 
for musk data set 1, we believe the degree of “contamination” is small. 
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Fig. 20. Performance of iterated discrimination on musk data set 1 as a function of r and e. 

Table 6 

IO-fold cross-validation performance on musk data set 2 ( 102 molecules) 

Algorithm 

iterated discrim APR” 30 9 2 61 II 89.2 [ 83.2-95.21 

GFS elim-kde APR 32 I 13 50 20 80.4 [72.7-88.1 I 

GFS elim-count APR 31 8 17 46 25 75.5 [67.1-83.81 

all-positive APR 34 5 23 40 28 72.6 [63.9-81.21 

backpropagationb 16 23 IO 53 33 67.7 [58.6-76.7 I 
GFS all-positive APR 31 2 32 31 34 66.7 157.5-75.8 I 
most frequent class 0 39 0 63 39 61.8 [52.3-71.21 

C4.5 (pruned) 32 7 35 28 42 58.8 149.3-68.41 

True False True False 

positives negatives positives negatives 

Errors % correct 

‘I 7 = 0.999, 0.01. E = 

h 127 hidden units, learning rate 0.20, no momentum, 60 epochs. 

6.3. Results on musk data set 2 

Table 6 shows the final results for running all algorithms on the very large musk 
data set 2. Again we have shown a 95% confidence interval for the percentage of 
correct classification by each algorithm. Once again we encountered extreme difficulty 



64 ZG. Dietterich et ~1. /Arti&iul Intelligence 89 (1997) 31-71 

tau=0.999 

63 ' I I I I I I I I I I 
0 0.004 0.006 0.012 0.016 0.020 0.024 0.026 0.032 0.036 0.040 

epsilon 

Fig. 21. Performance of iterated discrimination on musk data set 2 as a function of 7 and E. 

in training a multi-layer sigmoid net on this data set. None of the parameter values that 

worked for either musk data set 1 or the artificial data set resulted in any effective training 
for this data set (e.g., squared error did not decrease or else behaved chaotically). 

The parameters employed here (127 hidden units, 60 epochs, learning rate 0.2, no 
momentum) were chosen by performing a cross-validation within the training set of the 
first fold of the lo-fold cross-validation. This is not strictly fair, since the parameter 

choice should have been repeated within the training set of each fold of the cross- 

validation. In any case, however, the performance is very poor. 

The relative ranking of the algorithms is almost the same as with musk data set 

1 (the “GFS all-positive APR” has dropped below “backpropagation”). However, the 
gap between iterated discrimination and the other algorithms has increased so that 
it is now statistically significant (p < 0.10). All of the APR algorithms except for 

“GFS all-positive APR” outperform the non-APR algorithms (C4.5 and backpropaga- 
tion). C4.5 even performed worse (on percent correct basis) than the trivial strategy 
of guessing the most frequent class, although the difference is not statistically signifi- 
cant. 

Fig. 21 shows the cross-validated performance of iterated discrimination for various 
values of the e and r parameters. Note that the values of E = 0.01 and r = 0.999 chosen 
on the basis of musk data set 1 do not give the peak performance. Peak performance 

of 91.2% is attained for any of the following parameter values: (7 = 0.99, E = 0.012), 
(r = 0.99, E = 0.014), and (7 = 0.995, E = 0.008). This matches the best performance 
reported for an APR-like neural network algorithm on this same data set [22], where 
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Fig. 22. The musk data set 2 APR binding hypothesis applied to classify conformation 18 of molecule “256” 

(a true musk). Dashed lines depict the Connolly surface of the molecule. The heavily shaded area at the 

bottom is the surface of the oxygen atom. Line segments depict the APR bounds along selected rays, and the 

index number of each ray is given. The upper two frames give a stereo pair showing a “front view”; the lower 

two frames show the “back view” of the same molecule. All APR bounds are satisfied. 

parameter values were also chosen after cross-validation. Performance of at least 89.2% 
is robust over a wide range of parameter values. 

Fig. 22 shows a visualization of the binding hypothesis learned from the entire musk 
data set 2 applied to classify conformation 18 of a molecule named “256” (a true musk; 
the molecule names are drawn from Bersuker et al. [ 31). Each of the two stereo pairs 

in the figure can provide a three-dimensional picture if viewed through a stereo viewer 
or by converging your eyes at a point beyond the page so that the two images fuse 
and come into focus. All of the bounds in Fig. 22 are satisfied, so “256” is correctly 
classified as a musk molecule. 
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253_1++- .t I.5 rm_l*- at t.5 

Fig. 23. The musk data set 2 APR binding hypothesis applied to classify conformation 4 of molecule “253” 

(a non-musk). The upper two frames give a “front view”; the lower two frames give a “back view” of the 

same molecule. Note that bounds 59 (in the “front view”) and 29 (in the “back view”) are violated. 

Fig. 23 shows the same APR applied to classify conformation 4 of a molecule named 
“253”, which is a non-musk. Here, all but two bounds (59 and 29) are satisfied. The 
two violated bounds both identify a region of the molecule that does not “stick out” far 
enough. All other conformations of molecule “253” are also classified as non-musk, so 
“2.53” is correctly classified as a non-musk. 

Fig. 24 shows the APR surrounding a bond graph (structure diagram) of conformation 
18 of molecule “2.56”. This helps us visualize which regions of the molecule were more 
important for musk activity. We can see that the preponderance of the bounds are testing 
the shape of the end of the molecule opposite the oxygen atom. This is a region of 
hydrophobic “bulk”, and previous chemical studies had also emphasized the importance 
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Fig. 24. The musk data set 2 APR and a structure diagram (bond graph) for conformation I8 of molecule 

“2%“. All APR bounds are shown in this single stereo pair. The oxygen atom is at the bottom on the image. 

of this region for musk activity [ 141. There is also a notable absence of any APR 
bounds on the middle left side of the molecule, which suggests that the molecules have 

some shape freedom in this area. Finally, note that only a few, tight bounds are needed 

to test the position of the rings along the axis orthogonal to the plane of the paper. 

This probably reflects the fact that all conformations are aligned so that their aromatic 
rings are superimposed, so there is very little variation between musk and non-musk 
molecules along this axis. 

Displays such as these could be employed by chemists to suggest changes in the 
molecules to improve binding. For example, molecule “253” could be made to satisfy 
the APR by adding an ethyl (C2H5) group to the molecule in the region of bounds 
29 and 59. This would change it from a non-musk into a musk. In fact, it becomes 
molecule “2X?‘! 

7. Discussion 

In a standard problem of learning axis-parallel rectangles, the learning algorithm must 

solve two problems: select the relevant features and set bounds along those features. 
The multiple instance problem adds a third difficulty: the algorithm must choose which 
positive instances to treat as genuine positives. 

From the experiments presented above, we can see that setting the bounds along the 
features is the easiest of these three problems. In iterated discrimination, we postponed 
setting the exact bound values until we had already determined the relevant features and 
the genuine positive instances. 

On the other hand, we found it essential to coordinate the choice of relevant features 
and positive instances. For example, in data not shown, we stopped iterated discrimina- 
tion after one iteration, and the resulting performance was substantially worse. 
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The artificial data set was critical to helping us debug and understand our algorithms. 

In particular, note that while the performance of the “GFS elim-kde APR” algorithm 

on musk data set 1 was indistinguishable from iterated discrimination, the artificial data 

revealed it to be much worse, because it was not selecting relevant features very well. 
This was borne out in the musk data set 2 experiments, where GFS elim-kde performed 
much worse. Similar behavior was observed for the “GFS elim-count APR” algorithm. 

We strongly recommend the artificial data set approach to algorithm development and 
evaluation. 

The significance of these results for drug design is limited by three factors. First, 

the algorithms in this paper address only two-class qualitative data. While the effect of 

some drugs can only be measured by qualitative response, there are usually quantitative 
measures of drug efficacy in human subjects and in laboratory assays. Hence, medicinal 
chemists are primarily interested in algorithms for predicting real-valued activities. As 

we mentioned above, Jain, Dietterich, Lathrop et al. [22] and Jain, Koile, Bauer and 

Chapman [ 241 describe an APR-like neural network-based method, called COMPASS, 
that can make quantitative activity predictions. 

Second, the algorithms in this paper assume that a conjunction of conditions must 
be satisfied for binding. This is not always the case. For example, many drugs of 

medical importance are “antagonist” drugs-their job is to prevent the natural com- 

pound from binding (e.g., by blocking access to the binding site). Different antag- 

onist drugs may operate by fitting in different binding sites or by binding in differ- 
ent modes to the same general binding site. It is easy to conceive of extensions to 
the algorithms reported here that could handle multiple binding modes, and hence, 
have broader applicability in drug design. This is an important direction for further 

research. 
The third limitation of the algorithms discussed here is that they are based on placing 

each molecule in a standard position and orientation with respect to the 162 rays. 

For many classes of molecules, it is not difficult to choose a standard position and 
orientation. However, for highly flexible molecules or very diverse sets of molecules, 

it can be much more difficult. Dietterich, Jain, Lathrop and Lozano-Perez [ 111 and 

Jain, Dietterich, Lathrop et al. [22] describe a method called dynamic reposing that 

permits the relative orientations of the molecules to change slightly during learning. 

In comparisons with other state-of-the-art methods, Jain, Koile, Bauer and Chapman 
[ 241 show that dynamic reposing permits more accurate and robust activity predictions. 

We have conducted initial experiments with dynamic reposing using APRs, but because 
the APR gives only a yes/no response, it does not provide the quantitative signal 

needed to control reposing. Attempts to define such a signal for APRs have not yet 

succeeded. 
The need for dynamic reposing raises another interesting direction for research. In this 

paper, we have considered what might be called the discrete multiple instance problem: 
each input object can be represented as a finite set of possible instances. While there are 
many applications that exhibit this problem, there are other applications where the space 
of possible instances is continuous and infinite. The alternative positions and orientations 

of molecules provide an example of this continuous multiple instance problem. Related 

problems arise in optical character recognition [ 3 1 I. 
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8. Conclusions 

The multiple instance problem is an important problem that arises in real-world tasks 

where the training examples are ambiguous: a single example object may have many 
alternative feature vectors that describe it, and yet only one of those feature vectors may 
be responsible for the observed classification of the object. In particular, the problem 
arises in drug activity prediction, where each training example is a molecule (and its 

observed binding strength), but where each feature vector describes a possible shape 
(conformation) of the molecule. Because binding strength is most likely the result of a 

single shape fitting into a binding site, usually only one of the feature vectors properly 

represents the active molecular shape. 

We presented a representation for molecular shape and a representation for binding 
hypotheses. In feature space, each hypothesis corresponds to an axis-parallel rectangle 

( APR) . We presented three general approaches to designing APR algorithms: 
(a) ignore the multiple instance problem, 

(b) start with the bounding APR of all positive examples and shrink it while attending 
to multiple instances (the “outside-in” approach), and 

(c) start with a single-point APR and grow it while considering multiple instances 
(the “inside-out” approach). 

Experiments clearly show that the “inside-out” approach is the best. Ignoring the multiple 
instance problem-either with APR algorithms, neural networks, or decision trees- 

gives quite poor performance. The “outside-in” approach has great difficulty identifying 
relevant features of the APR. 

Even when the multiple instance problem is ignored, APR algorithms generally outper- 

form neural networks and decision trees on this task even though in principle networks 

and trees can both represent APRs. This is a good illustration of the importance of 
choosing an appropriate bias for inductive learning algorithms. 

Drug activity prediction and the multiple instance problem are both important subjects 
for future research. A particularly interesting issue is how to design multiple instance 
modifications for decision trees, neural networks, and other popular machine learning 
algorithms. 
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