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Abstract

We investigate the maximum size of a subset of the edges of the n-cube that does not contain a square, or 4-cycle. The size of
such a subset is trivially at most 3/4 of the total number of edges, but the proportion was conjectured by Erdős to be asymptotically
1/2. Following a computer investigation of the 4-cube and the 5-cube, we improve the known upper bound from 0.62284 . . . to
0.62256 . . . in the limit.
c© 2008 Elsevier B.V. All rights reserved.
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1. Square-free subgraphs of the hypercube

The n-dimensional hypercube, or n-cube for short, is the graph Qn whose vertex set is the set {0, 1}n of 0-1 strings
of length n, and whose edges join pairs of strings that differ in exactly one place (that is, at Hamming distance one).
Thus Qn has 2n vertices and n2n−1 edges.

In this note we are interested in what is the maximum size of a subset of the edges of the n-cube that does not
contain a 4-cycle, or Q2 — we shall sometimes refer to these 4-cycles as “squares”. It is trivial that the size of a
square-free subset is at most 3/4 of the total size, since every edge of the n-cube is in the same number of squares
(namely n − 1) and at most 3 out of the 4 edges of every square can be retained. However, Erdős [4] long ago
conjectured that the proportion drops to 1/2 as n→∞. The proportion is certainly never less than 1/2, since a simple
way to select a square-free subset of half the edges is to choose those of the form uv where u has an even number of
zeros and v has one less zero than u does.

Writing e(G) for the number of edges of a graph G, we define

dn = max
Q2 6⊂G⊂Qn

e(G)

e(Qn)
,

the maximum being taken over all square-free spanning subgraphs G of the n-cube. Then dn ≤ 3/4 for all n. Since
every edge of the n-cube lies in the same number of (n − 1)-cubes we have dn ≤ dn−1 and, in particular, the limit

d = lim
n→∞

dn = lim
n→∞

max
Q2 6⊂G⊂Qn

e(G)

e(Qn)

exists. Erdős’s conjecture then becomes that d = 1/2.
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It is not so immediate that d < 3/4; indeed, d2 = d3 = d4 = 3/4, but d5 = 7/10 (and d6 = 11/16; see Harborth
and Nienborg [5]). The best known lower bound for dn comes from a very elegant construction of Brass, Harborth and
Nienborg [2], which has density approximately (1 + 1/

√
n)/2. There are reasons for thinking that this construction

is best possible. In particular, it is known to have the following Ramsey-theoretical property: if we colour red the
edges of Qn that appear in this construction, and colour the remaining edges blue, then there is neither a red nor a
blue square, and the number of red edges is the maximum possible in such a colouring of Qn . For further discussion
of this, and for more information generally about the parameter dn , the reader is referred to [7]. The corresponding
density question for induced subgraphs G is discussed by Johnson and Entringer [6], and more recent Ramsey results
about cycles in the cube can be found in Alon, Radoičic, Sudakov and Vondrák [1].

The only published upper bounds on dn are due to Chung [3], who proved d ≤ 0.62996 . . . by means of a simple
observation (repeated below in Section 2) about the degrees in square-free subgraphs of the 3-cube, and then improved
this to d ≤ 0.62284 . . . by a much more elaborate and apparently ad hoc argument, but which nevertheless boils down
to an assertion about square-free subgraphs of the 3-cube. There are 99 such subgraphs (to within an automorphism
of the 3-cube) but it is quite feasible to check the assertion by hand.

Since the 3-cube is a subgraph of the 4-cube, these arguments could be viewed as ones involving square-free
subgraphs of the 4-cube, and it ought in principle to be possible to obtain better bounds by using different assertions.
Our purpose here is to investigate what bounds can be obtained either by using general information about square-free
subgraphs of the 4-cube, or by using information about the degrees in square-free subgraphs of the n-cube for n ≥ 4.
Arguments of varying complexity can be constructed, but the simplest argument we have that improves on the existing
bound, yields the following result.

Theorem 1. The limit d satisfies d ≤ β, where β = 0.62256280 . . . is a root of 3− 6β + 4β2
− 4β3

+ β4
= 0.

Investigations of this kind based on subgraphs of the n-cube for n ≥ 4 inevitably require computer assistance. For
the 4-cube, though, there are only about three million square-free subgraphs, and it is a very straightforward matter
to find these and then to check any given assertion about them, as we shall indicate. The best bound obtainable by an
argument involving just the degrees of subgraphs of the 4-cube is d ≤ 0.62581 . . ., better than the bound obtained
by considering degrees in the 3-cube but not as good as the more general 3-cube argument. We outline later a more
general 4-cube argument that appears to yield d ≤ 0.62083 . . .; this is better than the bound in Theorem 1 but the
argument would be noticeably more complex.

There are far more subgraphs of the 5-cube than could be listed even by computer, so it is not possible to take the
general argument further. But it is possible to list the degree sequences of these subgraphs, and thus to give a simple
argument based just on the degrees of subgraphs of the 5-cube. It is this argument that lies behind Theorem 1. In
particular, the only point where a computer is needed is to verify the very simple Lemma 2 below. However, even just
listing the degree sequences of subgraphs of the 5-cube is no longer a straightforward computational task, so we shall
be obliged to say a word or two about how it was done (in Section 4).

The improvements in the upper bounds for d obtained by making use of computer information are not dramatic,
though we shall suggest reasons (in Section 5) why the kinds of methods used here, even if fully developed
theoretically, cannot hope to yield Erdős’s conjecture itself.

2. Subgraphs and stars

Let k ≤ n. The number of copies of the k-cube Qk within Qn is readily seen to be 2n−k
( n

k

)
. In particular, there

are n2n−1 edges in Qn . Given a subgraph G ⊂ Qn and a vertex u of Qn , we define the number δu to be such that δun
is the degree of u in G. Let 1 ≤ ` ≤ k. An `-star in a subgraph G ⊂ Qn is a set of ` edges of G with a common

end-vertex. The number of `-stars with end-vertex u is therefore
(
δun
`

)
. Each k-star lies in precisely one k-cube of Qn

and, more generally, each `-star lies in precisely
(

n−`
k−`

)
k-cubes.

Given a square-free subgraph G of Qn and a 3-cube Q3 ⊂ Qn , the edges of G induce a square-free subgraph of Q3.
Now it is readily verified that this subgraph can contain at most two 3-stars. So, by counting on the one hand all 3-stars

in G, and by counting on the other hand all 3-stars induced in 3-cubes of Qn , it follows that
∑

u

(
δun
3

)
≤ 2×2n−3

( n
3

)
.

Writing δ for the average value of the δu , that is, δ = 2−n ∑
u δu , we then have

(
δn
3

)
≤ 2 × 2−3

( n
3

)
, or
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Table 1
The convex hull of the 64 935 5-tuples of stars in subgraphs of Q5

s0 0 0 0 0 0 s17 96 116 69 17 0
s1 32 0 0 0 0 s18 96 116 71 20 1
s2 36 40 40 20 4 s19 96 116 76 28 4
s3 48 40 40 20 4 s20 96 118 74 25 4
s4 48 52 40 20 4 s21 96 96 32 0 0
s5 58 64 56 24 4 s22 98 118 69 17 0
s6 60 60 40 20 4 s23 98 120 74 25 4
s7 60 64 56 24 4 s24 102 124 72 22 4
s8 64 32 0 0 0 s25 102 126 76 24 4
s9 64 68 44 20 4 s26 104 124 68 20 4
s10 76 68 40 20 4 s27 104 128 76 24 4
s11 80 96 64 16 0 s28 104 130 76 18 0
s12 84 100 68 24 4 s29 106 133 79 23 3
s13 84 100 72 28 4 s30 108 136 79 22 3
s14 90 110 76 28 4 s31 110 140 80 20 2
s15 92 108 72 28 4 s32 112 144 80 16 0
s16 96 112 64 16 0

δ ≤ 2−2/3
+ O(1/n). So, if G is maximal square-free, we have d ≤ dn = δ ≤ 0.62996 . . . + O(1/n). This is

the simple argument of Chung [3] referred to in Section 1. The more general argument referred to there comes down
to estimating the numbers of some other subgraphs of G, not stars, and counting their possible occurrences in square-
free subgraphs of the 3-cube. As already stated, we shall restrict our attention for the time being to just stars, and in
order to prove Theorem 1 we count their occurrences in subgraphs of the 5-cube.

Let H be a square-free subgraph of the 5-cube Q5. Thus H has 32 vertices and somewhere between 0 and
3e(Q5)/4 = 60 edges (in fact, it is known that 56 is the maximum number of edges — see [2], though this
will follow in any case from the computer results to be described soon). We associate with H a 5-tuple sH =

(sH (1), sH (2), sH (3), sH (4), sH (5)) of numbers, where sH (`) is the number of `-stars in H . Thus the empty graph
has s = (0, 0, 0, 0, 0). Note that a 1-star is just an edge with a distinguished end-vertex, so sH (1) is exactly twice
the number of edges. More generally, knowing the numbers in sH is equivalent to knowing the multiset of degrees of
vertices in H ; for example, the unique 56-edge square-free graph has s = (112, 144, 80, 16, 0), from which it can be
inferred, if desired, that this graph has 16 vertices of degree 3 and 16 of degree 4. But all that we need about these
5-tuples is expressed in the following lemma.

Lemma 2. Let H be a square-free subgraph of the 5-cube and let sH (`) be the number of `-stars in H. Then

3sH (1)− 3sH (2)+ 2sH (3)− 4sH (4)+ 5sH (5) ≥ 0.

It is necessary to employ a computer to show that this inequality holds for every 5-tuple sH that can arise from a
square-free graph H . It turns out that there are 64 935 such 5-tuples altogether. In fact, it would be enough to check
just 33 of these 5-tuples (listed in Table 1), because the others are convex combinations of these 33. Lemma 2 can
readily be verified by hand for these few 5-tuples, which implies its correctness for every H . Thus, if the reader is
willing to believe the accuracy of Table 1, no further appeal to a computer is necessary. But our proof does not rely on
Table 1.

3. The proof of Theorem 1

After this preamble, it is straightforward to prove the theorem.

Proof of Theorem 1. Let G be a square-free subgraph of Qn of maximal size. Then G has N = 2n vertices and
dnn2n−1

= dnnN/2 edges. Let the 64 935 5-tuples of stars discussed in Section 2 be labelled s j = (s j (1), s j (2),
s j (3), s j (4), s j (5)), 0 ≤ j < 64 935. There are q = 1

32

( n
5

)
N sub-cubes isomorphic to Q5 in Qn , and in each of these

G induces a square-free subgraph H with sH = s j for some j , 0 ≤ j < 64935. Let the number of H with sH = s j
be x j q , 0 ≤ j < 64935; so 0 ≤ x j ≤ 1 and

∑
0≤ j<64935 x j = 1.
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Recall from Section 2 that the degree of the vertex u is δun, and that each `-star appears in
(

n−`
5−`

)
5-cubes. Counting

appearances of `-stars in 5-cubes we therefore have∑
0≤ j<64935

x j qs j (`) =
∑

u

(
δun

`

)(
n − `

5− `

)
, for 1 ≤ ` ≤ 5.

Thus, on dividing through by q , we obtain the equations∑
0≤ j<64935

x j s j (`) = 32
(

5
`

)
1
N

∑
u
δ`u + o(1), for 1 ≤ ` ≤ 5,

where o(1) signifies a term tending to zero as n→∞.
We now define the 5-tuple t = (3,−3, 2,−4, 5) = (t (1), t (2), t (3), t (4), t (5)). If we write

L =
160α

N

∑
u
δu +

5∑
`=1

t (`)

[
32
(

5
`

)
1
N

∑
u
δ`u −

∑
0≤ j<64935

x j s j (`)

]
,

where α is some positive number (a function of β, to be specified later), then we see that L = 160αdn + o(1). We
shall now show that L ≤ 160αβ. This will imply that dn ≤ β + o(1), which in turn implies d ≤ β, and so the proof
of Theorem 1 will be complete.

Observe that

L =
160
N

∑
u

[
(α + 3)δu − 6δ2

u + 4δ3
u − 4δ4

u + δ
5
u

]
−

∑
0≤ j<64935

x j t · s j ,

where t · s j =
∑5
`=1 t (`)s j (`). But Lemma 2 shows that t · s j ≥ 0 for every j . So, if we write

f (z) = (α + 3)z − 6z2
+ 4z3

− 4z4
+ z5,

then to finish the proof it will suffice to verify that f (z) ≤ αβ for every real z with 0 ≤ z ≤ 1. Certainly f (β) = αβ,
by the definition of β. Moreover, f ′′(z) = −4(3(1 − z)2 + 5z2(1 − z) + 4z2) < 0 for 0 ≤ z ≤ 1. We have not yet
defined α; we choose α = −3 + 12β − 12β2

+ 16β3
− 5β4

= 2.92 . . ., so that f ′(β) = 0. Then f (z) ≤ f (β) for
0 ≤ z ≤ 1, and the theorem is proved. �

The proof of the theorem as written looks a bit like a rabbit pulled out of a hat, but the reader will readily recognize
that the method used is the natural one of maximizing 1

N

∑
u δu subject to the constraints imposed by the equations

for
∑

j x j s j (`), via the technique of Lagrange multipliers. The solution was discovered by first replacing the s j by
the extreme points of their convex hull, thus dramatically reducing the number of variables, and then experimenting
by computer to see which s j were important (that is, had x j > 0) in the maximizing solution. There were only six
such s j and, given the clue as to which they were, it was then straightforward to find the appropriate multipliers (that
is, to find the vector t). This in turn showed that the appropriate inequality to use in the proof of Theorem 1 is the one
expressed in Lemma 2.

4. Computing subgraphs of the 5-cube

This section provides a brief description of the manner in which the necessary computations were performed.
There are 32 edges in Q4 and so 232 spanning subgraphs, which can be labelled in a natural way by the integers

0, 1, . . . , 232
− 1. The automorphism group of Q4 has order 16 × 4! = 384. This group acts on the set of labelled

subgraphs, and we seek a representative from each orbit that contains square-free subgraphs. This is a relatively trivial
exercise that can be completed in a way similar to the sieve of Eratosthenes, by writing down a list of 232 ones and
setting to zero those corresponding to subgraphs isomorphic to subgraphs earlier in the list. The C-program we wrote
to do this job took about ten minutes on a standard computer to produce the 3212 821 square-free spanning subgraphs
of Q4, to within an automorphism of Q4.

It is entirely impractical, however, to perform the same computation to discover the square-free subgraphs of Q5,

which has 280 labelled subgraphs. But there are not so many possible 5-tuples of stars. Indeed,
(

37
5

)
= 435897 is an
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obvious upper bound, insofar as this is the number of multisets of 32 numbers chosen from the set {0, 1, 2, 3, 4, 5},
and so is a bound on the number of degree sequences (which determine the 5-tuples).

The procedure used to actually compute the possible 5-tuples was as follows. The 5-cube Q5 can be viewed as
two 4-cubes joined by a set of 16 edges; we think of these 4-cubes as the “left and right halves” QL and Q R of Q5.
Every spanning subgraph H of Q5 can therefore be formed in the following way: take a subset S of the vertices of
the 4-cube, take subgraphs HL of QL and HR of Q R , and join the sets SL and SR , which correspond in QL and Q R
to S, by a set of |S| edges. It is evident that H is square-free if and only if the following condition holds: both HL and
HR are square-free, and no edge of the 4-cube whose ends are both in S appears in both HL and HR . All square-free
subgraphs of the 5-cube can be constructed, in principle, by finding all triples (S, HL , HR) that satisfy the described
condition. Remember, though, that it is only the 5-tuples of stars that we want, not all the subgraphs.

The reason for constructing the 5-tuples in this way is that the calculations for the different sets S are independent,
and the calculation for any specific S is, if done carefully, feasible. There are 216 subsets of the vertices of Q4, but
since H can have at most 60 edges and since, by embedding H suitably in Q5, we can assume |S| ≤ e(H)/5, we need
only consider |S| ≤ 12. Under the 384 isomorphisms of Q4 there are then only 402 choices for S. Let such a choice
now be fixed.

Given S, there are 3212 821 × 384 choices for HL . For each of these we compute both the set DL of degrees
contributed to H by HL (after the edges in S have been taken into account), and also the set FL of edges of HL whose
ends both lie in S. It turns out that, for a fixed S, there are never more than 4000 different sets DL , and for each set
DL we store all possibilities for FL allowed by DL — that is, for which there is an HL realizing both DL and FL .
This turns out to be quite practicable. The possibilities for DR and FR are, of course identical.

To find all the possibilities for the 5-tuples, all that need be done now is to examine all pairs (DL , DR) to see
whether they are realizable by some square-free H , and this means precisely that there is a set FL allowed by DL
and a set FR allowed by DR for which FL ∩ FR = ∅. Given the information that has been saved, this too is readily
checked. In this way it is feasible to determine the list of all possible 5-tuples, and the final calculation took around 17
hours. The algorithm as laid out above proceeds in several distinct and relatively simple stages, and the program code
can be debugged in similar stages. The final program was further checked by using it to compute the corresponding
star-sequences for subgraphs of Q3 and Q4, since these numbers were already known by other means.

5. Final remarks

The argument of Chung that gave the bound 0.62284 . . . can readily be fitted into the framework of Section 3.
It involves looking at some subgraphs of Q3 other than stars, listing their occurrences in each of the 99 square-free
subgraphs of Q3, estimating the number of their occurrences in a square-free subgraph G of Qn , and then maximizing
1
N

∑
u δu subject to the implied constraints. This more general approach can be extended to subgraphs of Q4, since the

list of all 3212 821 square-free subgraphs of Q4 is available. Computer experiments suggest the bound 0.62083 . . . is
achievable in this way but we have not pursued the details. The nonstar subgraphs involved in the argument consist of,
for example, two or three squares with a common edge in Qn but having no edge in G. Variables would be introduced
such as, say, ζe for each edge e of Qn , counting the number of copies of Q2 containing e and having no edge in G.
The number of subgraphs of G comprising two or three such Q2’s with a common edge would then correspond to ζ 2

e
or ζ 3

e and so on. Appropriate Lagrange multipliers could be determined experimentally and then an argument along
the lines of the proof above could be constructed. The computational effort would be less but the theoretical argument
would be considerably more complicated, and we felt the simple proof given was the best compromise between the
difficulty and the strength of the result obtained.

It would seem that methods of this kind, using computer generated data, are unlikely to lead to dramatic
improvements in the bound on d. It could be wondered, though, whether it might not be possible to extend theoretically
the present argument, of using a bound on the number of stars in relatively small cubes to lever a stronger bound in
large cubes. More precisely, the principle behind the arguments in the main part of the paper, based on k-cubes where
k ≤ 5, is that it is necessary on the one hand for many of the Qk inside Qn to contain lots of vertices of large degree
(large stars), but that, on the other hand, a square-free subgraph of Qk of around the maximum possible density dk
is constrained in the number of large stars it can have (when k ≤ 5): thus dn , which is the average density of the
Qks, is significantly less than dk . Such an argument could be made to work more generally (with k growing large
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but remaining small relative to n), if it could be shown that large degrees in a square-free subgraph of Qk forced the
density down.

The following observation suggests that this approach too is unlikely to work. Suppose we have an almost dnn-
regular square-free subgraph G of Qn . Consider a randomly chosen sub-k-cube Qk of G and consider the degree
of a randomly chosen vertex of it; equivalently, choose randomly a vertex of Qn and choose k incident edges, and
consider the number of these edges that lie in G. This random number follows (approximately) a binomial distribution
Bin(k, dn), so this distribution is the distribution of degrees in sub-k-cubes of G. We will make progress only if it
is impossible for a square-free subgraph of Qk to have large degrees following this distribution whilst still having
density close to dk . But such subgraphs can exist as k grows large. To see this, take an almost dkk-regular square-free
subgraph H . Each vertex has at most k j other vertices within distance j in Qk . Pick a subset V of 2k/k2 vertices so
that vertices within V are pairwise distance at least three apart, and let W be the neighbours of V in Qk . Remove all
edges in H that meet V ∪ W , and then add k-stars at the vertices in V , to obtain a subgraph H ′. Then the density
of H ′ is still nearly dk , it is square-free, and it contains many stars, certainly more than required by the distribution
Bin(k, dn).
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