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INTRODUCTION

It is well known that Morse theory is a powerful tool for studying the
multiple solutions of differential equations which arise in the calculus of
variations. In applications, in order to apply Morse theory, the computa-
tions of the critical groups are essential. There are some results in the
computations of the critical groups: in the nondegenerate case, the critical
groups are determined by the Morse index completely; in the degenerate
case, we have the Spliting Lemma and Shifting Theorem, which reduce the
computing of the critical groups for an isolated critical point to a func-
tional which is defined on the kernel of the Hessian (a finite dimensional
space in many cases). More information about Morse theory may be found
in Chang [1]. Here, we would like to mention that a different approach
to this theory (based on the Conley index (see [2])) has been developed
by Benci [3]. On the other hand, some results are concerned with the crit-
ical groups of a critical point determined by standard minimax methods
(see [4, 5]).

Suppose that E is a real Hilbert space; for a functional f ∈ C1�E�R�
recall that (see [1]) the critical groups of an isolated critical point p of f
are defined by

Cq�f� p� = Hq�fa ∩U� fa ∩U − �p���
where a = f �p�� fa = �x ∈ E 	 f �x� ≤ a�, U is a closed neighborhood of p,
and Hq�·�·� is the qth (singular) homology group with coefficients in a field
F �Cq�f� p� is independent of U by the excision property of homology).
However, if f is a strongly indefinite functional, then Cq�f� p� = 0 for all q;
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this implies that the definition of the critical groups is of little use for
strongly indefinite functionals. Here, we use a different notion of critical
groups developed in [6], which is valuable for strongly indefinite functionals.

Recently, another kind of critical groups, the so-called critical groups at
infinity, was introduced; see, for example, [7] for the strong resonant prob-
lems, [8] for the resonant problems, [9] for the strongly indefinite problems,
and [10] for the Landesman–Lazer problems. Combined with the critical
groups at a real critical point, the critical groups at infinity play an impor-
tant role in dealing with the resonant problem of differential equations,
especially in the studying of the asymptotically linear problem. So, accurate
computations of the critical groups both at isolated critical points and at
infinity are very important.

In this paper, using a different Morse theory developed in [6], we investi-
gate the critical groups at degenerate critical points for a strongly indefinite
functional, and then a different notion for the critical groups at infinity is
given. By new computations of the critical groups at infinity and at the
origin, we obtain some abstract critical point theorems, which will be very
useful for studying the existence of nontrivial solutions to asymptotically
linear Hamiltonian systems and the boundary value problems of elliptic
systems.

Our paper is organized as follows. In Section 1, we recall some basic
results and concepts in [6, 12]; in Section 2, we deal with critical groups
at the origin; in Section 3, we deal with critical groups at infinity. Some
existence results for nontrivial critical points of asymptotically quadratic
strongly indefinite functions with Landsman–Lazer resonant problems are
presented in Section 4.

1. MORSE THEORY FOR STRONGLY
INDEFINITE FUNCTIONALS

Let H be a real Hilbert space with inner product ��  and norm�·�, and
H = ⊕∞i=1Hi with all subspaces Hi being mutually orthogonal and finite
dimensional. Set Hn = ⊕n

i=1Hi and assume

(1) f ∈ C2�H�R� with the form f �x� = 1
2 �Ax� x +G�x�,

(2) A is a bounded, linear, self-adjoint operator with a finite dimen-
sional kernel, and its zero eigenvalue is isolated in the spectrum of A,

(3) G′�x� 	= K�x� is compact and is globally Lipschitz continuous on
a bounded set.

The following key concepts are due to [10, 12].
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Definition 1.1. Let � = �Pn � n = 1� 2� � � �� be a sequence of orthogo-
nal projections. We call � an approximation scheme w.r.t. A if the following
properties hold:

(1) Hn = PnH is finite dimensional for ∀n,
(2) Pn → I as n→∞ (strongly),
(3) �Pn�A� = PnA−APn → 0 (in the operator norm).

Definition 1.2 (Gromoll–Meyer Pair). Let f be a C1-functional on a
C1-Finsler manifold M and S be a subset of the critical set K for f . A
pair of subsets �W�W−� is said to be a Gromoll–Meyer pair (for short G-M
pair) for S associated with a pseudo gradient field X for f if considering
the flow η generated by X the following conditions hold:

(1) W is a closed neighborhood of S, satisfying W ∩K = S and W ∩
fα = � for some α,

(2) W− is an exit set of W , i.e., ∀x0 ∈ W , if ∀t1 > 0 such that
η�x0� t1� �∈ W , there exists t0 ∈ �0� t1� such that η�x0� �0� t0�� ⊂ W and
η�x0� t0� ∈ W−,

(3) W− is closed and is a union of a finite number of submanifolds
that are transversal to the flow η.

Definition 1.3 (Dynamically Isolated Critical Sets). A subset S of the
critical set K for f is said to be a dynamically isolated critical set if there
exists a closed neighborhood O of S and regular values α < β of f such
that

O ⊂ f−1�α�β� and cl�Õ� ∩K ∩ f−1�α�β� = S�
we say that �O�α�β� is an isolating triplet for S, where Õ = ∪t∈Rη�O� t�, η
is the flow associated with f .

For an isolated critical set S of f , we define the critical groups C∗�f� S�
(see [6]) by

C∗�f� S� 	= H∗+m�Pn�A+P�Pn��Wn�Wn−��
where �Wn�Wn−� is a G-M pair for Sn, and Sn is the critical set of the restric-
tion functional fn = f �Hn , �Pn�n = 1� 2 � � �� is an approximation scheme
w.r.t. A�P is the orthogonal projection onto the kernel space of A, and
m�·� is the Morse index of the operator �·�. It has been shown in [6] that
the critical groups are independent of the choice of isolating triplet, G-M
pair, and approximation scheme.

In order to deal with the infinity of Morse indices of a strongly indef-
inite functional at its isolated critical points, Chang et al. [12] proved the
following theorem and introduced the notion of an abstract Maslov index.
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Theorem 1.1. Let B be a linear symmetric compact operator and suppose
that A+ B has a bounded inverse. Then the difference of Morse indices

m�Pn�A+ B�Pn� −m�Pn�A+ P�Pn�
eventually becomes a constant independent of n, where A is a bounded self-
adjoint operator with a finite dimensional kernel N , the restriction A �N⊥ is
invertible, P is the orthogonal projection from H to N , and �Pn�∞1 is an
approximation scheme w.r.t. A.

For the given invertible operator A + B with compact symmetric B, we
define an index

I�B� = lim
n→∞�m�Pn�A+ B�Pn� −m�Pn�A+ P�Pn���

Definition 1.4. For a given compact linear symmetric operator B, let
PB be the orthogonal projection onto the kernel space ker �A + B�. We
define

N�B� = dim ker�A+ B� and I−�B� = I�B + PB�
and call the pair �I−�B��N�B�� the abstract Maslov index of B w.r.t. A.

Remark 1.1. Let Hn be a sequence of invariant subsapces of �A + B�,
and Pn be a sequence of orthogonal projection operators onto Hn. Accord-
ing to the positive, zero, and negative eigenvalue of A+ B, we have Hn =
Hn+ ⊕ H0 ⊕ Hn−. Then, by direct computation, we have m�Pn�A + B +
PB�Pn� = m�Pn�A + B�Pn�; thus I−�B� = m�Pn�A + B�Pn� − m�Pn�A +
P�Pn� (for large n).

2. CRITICAL GROUPS AT THE ORIGIN

For the strongly indefinite functional f �x� = 1
2 �Ax� x + G�x�, we

assume that

(H1) A is a bounded self-adjoint operator defined on H.
(H2) θ is an isolated critical point of f and 0 is the isolated crit-

ical value. G′�x� is compact and globally Lipschitz continuous on any
bounded set.

(H±
3 ) There exists a linear symmetric compact operator B0, such that

�G′�x� − B0�x�� ≤ c��x0�α + �x+ + x−�β�

G�x0� − 1
2 �B0x0� x0

�x0�2α −→ ±∞� as �x0� → 0�

where x = x+ + x0 + x− ∈ H+ ⊕H0 ⊕H− is the orthogonal decomposition
corresponding to the spectrum of the operator �A+ B0�.
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Lemma 2.1. Let B be a compact linear operator. If � = �Pn � n =
1� 2� � � �� is an approximation scheme w.r.t. �A + B�, then it is also an
approximation scheme w.r.t. A.

Proof. Indeed, we need only to prove that

�Pn�A� = PnA−APn → 0 �n→∞� (in the operator norm).

Since �Pn�A+ B� → 0�n→∞� (in the operator norm) and B is compact,
by [12, Lemma 2.1], we have ��Pn − I�B� → 0 �n → ∞� and �B�Pn −
I�� → 0 �n→∞�. Thus

�Pn�A� = �Pn�A+ B� − ��Pn − I�� B� → 0 �n→∞��
Theorem 2.1. Under the assumptions (H1)–(H

±
3 ), we have

Cq�f� θ� =
{
F� if q = I−�B0� +N�B0�
0� otherwise

if �H−
3 � holds

Cq�f� θ� =
{
F� if q = I−�B0�
0� otherwise

if �H+
3 � holds�

where here and in the following, F denotes the coefficient field of the critical
groups.

Proof. (0) For the compact operator B0, let · · ·λ−2 ≤ λ−1 < 0 < λ1 ≤
λ2 · · · be the eigenvalues of A+B0, and �ej � j = ±1�±2� � � �� be the eigen-
vectors of A+ B0 corresponding to �λj � j = ±1�±2� � � ��. For any m ≥ 0,
set H0 = ker�A+B0�, Hm = H0⊕ span�e1� � � � � em�⊕ span�e−1� � � � � e−m�,
and let � = �Pm � m = 1� 2� � � �� be the orthogonal projections from H to
Hm. Then �A + B0�Pm = Pm�A + B0� and Pm → I� �m → ∞�(strongly).
Consequently, � = �Pm � m = 1� 2� � � �� is an approximation scheme w.r.t.
�A+ B0�, so it is w.r.t. A by Lemma 2.1.

�1� Case �H−
3 �. Set C 	= A + B0� g�x� 	= G�x� − 1

2 �B0x� x, and m =
inf���Cx±� x±� �x±� = 1� x± ∈ H±�. Then we have

f �x� = 1
2 ��A+ B0�x� x +G�x� − 1

2 �B0x� x�
= 1

2 �Cx� x + g�x��
satisfying

(i) g�θ� = 0, and g′ is compact and globally Lipschitz continuous on
a bounded set,

(ii) g′�θ� = θ and �g′�x�� ≤ c��x−�α + �x+ + x0�β�, for �x0� small
enough,

(iii) g�x0��x0�−2α →−∞ as �x0� → 0.
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Since θ is an isolated critical point and 0 is an isolated critical value, it
is easy to check that �θ� is a dynamically isolated critical set. Recall the
critical group

C∗�f� θ� = H∗+m�Pn�A+P�Pn��Wn�Wn−��
where �Wn�Wn−� is a G-M pair for the critical set Sn of the restriction
functional fn = f �Hn

in Hn, which is associated with the flow generated by
dfn = Pn�A+G′�Pn. Let �O�α�β� be an isolating triplet for �θ� satisfying
that �O ∩ Hn� α�β� is an isolating triplet for Sn (the existence of such a
triplet is proved in [6]). For large n, we take a neighborhood N of Sn in
O ∩Hn of the form

N = �x � �x+�2 − d�x−�2 − k�x0�2α ≤ εr2
0 � �x−�2 + �x0�2 ≤ r2

0��
where d� k� ε� r0 are to be determined later, x = x+ + x0 + x− ∈ Hn =
H+
n ⊕H0 ⊕H−

n . The boundary of N consists of two parts, namely

�1 = �x � �x+�2 − d�x−�2 − k�x0�2α = εr2
0 � �x−�2 + �x0�2 ≤ r2

0��
�2 = �x � �x+�2 − d�x−�2 − k�x0�2α ≤ εr2

0 � �x−�2 + �x0�2 = r2
0��

Since the normal vector on �1 is n = x+ − dx− − kα�x0�2α−2x0, we have

�dfn�x�� n� = �Pn�C + g′�Pn�x�� n�
= �PnCPnx+� x+� − d�PnCPnx−� x−� + �Png′Pn�x�� n�
≥ m�x+�2 + dm�x−�2 − c��x0�α + �x+ + x−�β�
· ��x+�2 + d�x−� + kα�x0�2α−1�

≥ m�x+�2 + dm�x−�2 − c�x0�α��x+� + d�x−�� − L�x�
≥ m

2 ��x+�2 − d�x−�2 − k�x0�2α�
= 1

2mεr
2
0 > 0� (2.1)

as k is large and r0 small, where L�x� consists of some higher terms
w.r.t. �x+�2� �x−�2, and �x0�α. Now we study the behavior of fn near the
boundary �2:

fn�x� = 1
2 �Cx+� x+ + 1

2 �Cx−� x− + g�x�
≤ 1

2�C��x+�2 − 1
2m�x−�2 + g�x0�

+ c��x0�α + �x+ + x−�β���x+� + �x−��
≤ �C��x+�2 − 1

4m�x−�2 + 1
2g�x0�

≤ �C�εr2
0 + ��C�d − 1

4m��x−�2 + 1
4g�x0�� (2.2)
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Take d satisfying �C�d − 1
4m < 0. For given r0 and ε small enough, we

choose constants r1� r2, and δ > 0� r1 < r2 < r0 such that

fn�x� ≥ − δ
2 if x ∈ N� �x0 + x−� ≤ r1

fn�x� < 0 if x ∈ N� �x0 + x−� > r1

fn�x� ≥ − 3
4δ if x ∈ N� �x0 + x−� ≤ r2

fn�x� < − δ
2 if x ∈ N� �x0 + x−� = r2

fn�x� < −δ if x ∈ N� �x0 + x−� = r0�

Let

N1 = �x ∈ N � �x0 + x−� ≤ r1�� N2 = �x ∈ N � �x0 + x−� ≤ r2��
�r1 = �x ∈ N � �x0 + x−� = r1�� �r2 = �x ∈ N � �x0 + x−� = r2��

Set

Wn =
{
ηn�t� u� � t ≥ 0� u ∈ N2� fn�ηn�t� u�� ≥ −

3
4
δ

}
Wn− = Wn ∩ f−1

n

(
−3

4
δ

)
�

where ηn is the negative gradient flow generated by dfn in Hn. Then
�Wn�Wn−� is a G-M pair for N ∩Kfn

associated with the flow ηn. Set

A1 =
{
ηn�t� u� � t ≥ 0� u ∈ �r2� f �ηn�t� u�� ≥ −

3
4
δ

}
�

Then Wn = N2 ∪ �A1 ∪ Wn−�. Since ηn�t� u� can not enter N1, whenever
u ∈ �r2 , it follows that if ηn�t� u� ∈ Wn, then there exists a unique t1 such
that ηn�t1� u� ∈ Wn−. Let t2 be the time of reaching �1, t = min�t1� t2�.
Then the mapping

σ�s� u� =
{
ηn�st� u�� u ∈ �r2
u� u ∈ Wn−

is a deformation retraction of �r2 ∪Wn− onto Wn−.
Similarly, we can deform A1 ∪Wn− to Wn−. So

H∗�Wn�Wn−� = H∗�N2 ∪ �A1 ∪Wn−��Wn−�
∼= H∗�N2 ∪Wn−�Wn−�
∼= H∗�N2 ∪Wn−� �r2 ∪Wn−�
= H∗�N2� �r2�

=
{
F� if ∗ = m�Pn�A+ B0�Pn� + dim�ker�A+ B0��
0� otherwise;
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therefore (for large n),

C∗�f� θ� = H∗+m�Pn�A+P�Pn��Wn�Wn−�

=
{
F� if ∗ = I−�B0� +N�B0�
0� otherwise.

�2� Case �H+
3 �. In this case, we define the neighborhood of Sn as

N = �x � −d�x+�2 + �x−�2 − k�x0�2α ≤ εr2
0 � �x+�2 + �x0�2 ≤ r2

0��
Then the boundary of N consists of the following two parts:

�r0 = �x � −d�x+�2 + �x−�2 − k�x0�2α = εr2
0 � �x+�2 + �x0�2 ≤ r2

0��
�̃r0 = �x � −d�x+�2 + �x−�2 − k�x0�2α ≤ εr2

0 � �x+�2 + �x0�2 = r2
0��

We define

�r = �x � −d�x+�2 + �x−�2 − k�x0�2α = εr2
0 � �x+�2 + �x0�2 ≤ r2��

Then the normal vector on �r0 is n = −dx+ + x− − kα�x0�2α−2x0. Similarly
to (1), we have

�dfn�x�� n� = �Pn�C + g′�Pn�x�� n�
≤ m

2 �d�x+�2 − �x−�2 + k�x0�2α�
= − 1

2mεr
2
0 < 0� (2.3)

This implies that the negative gradient of fn is outward on �r0 .
Since

fn�x� = 1
2 �Cx+� x+ + 1

2 �Cx−� x− + g�x�
≥ 1

2m�x+�2 − 1
2�C��x−�2 + g�x0�

− c��x0�α + �x+ + x−�β���x+� + �x−��
≥ −�C��x0�2 + 1

4m�x+�2 + 1
2g�x0�

≥ −�C�εr2
0 − ��C�d − 1

4m��x+�2 + 1
4g�x0�� (2.4)

choose d satisfying �C�d − 1
4m < 0, for given r0 and small enough ε, and

take positive constants r1� r2� δ > 0� r1 < r2 < r0 such that

fn�x� ≤ δ
2 if x ∈ N� �x0 + x+� ≤ r1

fn�x� > 0 if x ∈ N� �x0 + x+� ≥ r1
fn�x� ≥ δ if x ∈ N� �x0 + x+� ≥ r2�
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First, we deform N to �r0 ∪ N2 = �x ∈ N � �x0 + x+� ≤ r2� by a
geometric deformation σ2. Let

Wn = N2 ∩ fn� δ2 � ∪ �r0� Wn− = �r0 ∩ fn� δ2 ��
Then it is easy to check that �Wn�Wn−� is a G-M pair we need.

Second, we use the negative gradient flow ηn generated by dfn to make
a deformation. Let t1 be the time of reaching the level set fn�δ/2�, let t2 be
the time of reaching the boundary �r0 , take t = min�t1� t2�, and define

σ1�s� u� =
{
ηn�st� u�� u ∈ N2 ∪ �r0 , t > 0
u� u ∈ N2 ∪ �r0 , t = 0.

Then σ = σ2 ◦ σ1 is a deformation retraction of N2 ∪ �r0 onto Wn. Hence

H∗�Wn�Wn−� ∼= H∗�N2 ∪ �r0� �r0� =
{
F� if ∗ = m�Pn�A+ B0�Pn�
0� otherwise.

So (for large n),

C∗�f� θ� = H∗+m�Pn�A+P�Pn��Wn�Wn−�

=
{
F� if ∗ = m�Pn�A+ B0�Pn� −m�Pn�A+ P�Pn�
0� otherwise

=
{
F� if ∗ = I−�B0�
0� otherwise.

The theorem is proved.

3. CRITICAL GROUPS AT INFINITY

In this section, without loss of generality, we assume that f has finite
critical values. That is, if S is the set consisting of all the critical points of f ,
then S ⊂ f−1�a� b� for some a < b. Clearly, S is a dynamically isolated set.
We define the critical groups of infinity by C∗�f�∞� 	= C∗�f� S�.

Suppose that �I1�, �I2� are the same as �H1�, �H2� in Section 2.

�I±3 � There exists a linear compact operator B∞ such that

�G′�x� − B∞� ≤ c��x�α�� α ∈ �0� 1� c > 0

G�P0x� − �1/2��B∞�P0x�� P0x
�P0x�2α −→ ±∞� as �P0x� → ∞�

where P0 is the orthogonal projection from H to the kernel space of
�A+ B∞�.
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Theorem 3.1. Under the assumptions �I1�–�I±3 �, we have

Cq�f�∞� =
{
F� if q = I−�B∞� +N�B∞�
0� otherwise,

if �I−3 � holds

Cq�f�∞� =
{
F� if q = I−�B∞�
0� otherwise

if �I+3 � holds.

Proof. (0) For the compact operator B∞, let · · ·γ−2 ≤ γ−1 < 0 <
γ1 ≤ γ2 · · · be the eigenvalues of A + B∞, and �qj � j = ±1�±2� � � ��
be the eigenvectors of A + B∞ corresponding to �γj � j = ±1�±2� � � ��.
For any n ≥ 0, set H0 = ker�A + B∞�, Hn = H0 ⊕ span�q1� � � � � qn� ⊕
span�q−1� � � � � q−n�, and let � = �Pn � n = 1� 2� � � �� be the orthogonal pro-
jection from H to Hn. Then � = �Pm � m = 1� 2� � � �� is an approximation
scheme w.r.t. �A+ B0�, so it is w.r.t. A by Lemma 2.1.

(1) We deal with the case �I−3 �. Note that

f �x� = 1
2 ��A+ B∞�x� x +G�x� − 1

2 �B∞x� x
= 1

2 �Cx� x + g�x��

where C 	= A+ B∞.
Let m = inf���Cx±� x±� �x±� = 1� x± ∈ H±�. Then, we have

(i) g′ is compact and globally Lipschitz continuous on a bounded set,

(ii) �g′�x�� ≤ c��x�α + 1�� α ∈ �0� 1�� c > 0,

(iii) g�P0x��P0x�−2α →+∞ as �P0x� → ∞.

In order to compute C∗�f�∞�, we need to compute H∗+m�Pn�A+P�Pn�

�Wn�Wn−� only (for large n), where �Wn�Wn−� is a G-M pair for Sn asso-
ciated with the flow generated by dfn, and Sn is the set consisting of all
the critical points of the restriction function fn = f �Hn

. In the following, we
define a “cylinder” in Hn (for n large enough) by

C0 = �x � �x+�2 − d�x−�2 − kh��x0�� ≤M��

where d� k�M > 0 will be determined later and

h�t� =


�t�2α� α > 1

2

�t�2α� α ≤ 1
2 , �t� ≥ 2

�t�2� α ≤ 1
2 , �t� ≤ 1

smooth� α ≤ 1
2 , 1 ≤ �t� ≤ 2�

(3.1)
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Then the normal vector on ∂C0 is n = x+ − dx− − kh′��x0���x0/�x0��.
For n large enough, we have

�dfn�x�� n� = �PnCPnx+� x+� − d�PnCPnx−� x−� + �Png′Pn�x�� n�
≥ m�x+�2 − dm�x−�2 − c��x�α + 1�

·
(
�x+� + d�x−� + kh′��x0��

x0

�x0�
)

≥ m�x+�2 + dm�x−�2 − c�x0�α��x+� + d�x−�� − L�x� − c�
where L�x� consists of lower terms w.r.t. �x+�2� �x−�2, and �x0�2α.
Choosing k large enough, we have

�dfn�x�� n� ≥ m
2 ��x+�2 − d�x−�2 − k�x0�2α� − c

= m
2 M − c > 0� if M > 2c

m
�

So the negative gradient −dfn�x� points inward to C0 on ∂C0 and fn has
no critical points outside C0.

Now we prove that ∀x ∈ C0

fn�x� → −∞⇐⇒ �x− + P0x� → ∞� uniformly in x+� (3.2)

In fact, for ∀x ∈ C0

fn�x� = 1
2 �Cx+� x+� + 1

2 �Cx−� x−� + g�x�
≤ 1

2�C��x+�2 − 1
2m�x−�2 + g�x0�

+ c��x�α + 1���x+ + x−��
≤ �C��x+�2 − 1

4m�x−�2 + 1
2g�x0� + c

≤ �− 1
4m+ �C�d��x−�2 + 1

4g�x0� + c� (3.3)

Choose d satisfying − 1
4m+ �c�d < 0, then

fn�x� → −∞� as �x− + P0x� → ∞ uniformly in x+�

On the other hand, by �I−3 �
fn�x� = 1

2 �Cx+� x+� + 1
2 �Cx−� x−� + g�x�

≥ − 1
2�C��x−�2 + g�x0� − c��x�α + 1���x+ + x−��

≥ − 1
2�C��x−�2 + g�x0� − c�x0�2α − L�x� − c̄

≥ −�C��x−�2 + 2g�x0� − c̄� (3.4)

where L�x� consists of some lower terms with respect to �x+�2� �x−�2, and
�x0�2α� c� c̄ are constants. Combining by (3.3) and (3.4), (3.2) is proved.
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Take T > 0 large enough such that there are no critical points in f−T .
By (3.2), there exist α1 < α2 < −T�R1 > R2 > 0 such that

fn�x� ≥ α2� if x ∈ C0 �x− + x0� < R2

fn�x� < α2� if x ∈ C0 �x− + x0� > R1

fn�x� ≥ α1� if x ∈ C0 �x− + x0� < R1�

Set

Wn = �x ∈ C0 � fn�x� ≥ α1�� Wn− = �x ∈ C0 � fn�x� = α1��
Then it is easy to check that �Wn�Wn−� is a G-M pair for the critical set Sn
which includes all the critical points of fn.

Let

A1 = �x ∈ C0 � fn�x� ≥ α1 and �x− + x0� ≥ R2��
We define

µ�t�x�=
{
x� if �x−+P0x�≥R1
x++ x−+x0

�x−+x0� �tR1+�1−t��x−+x0�� if �x−+x0�≤R1�

Then σ1 = µ�1� ·� is a deformation retraction of C2 	= �x ∈ C0 � �x−+
x0� ≥ R2� onto C1 	= �x ∈ C0 � �x− + x0� ≥ R1�.

For x ∈ A1 we use the negative gradient flow ηn generated by dfn to
make a deformation. Let t be the time of reaching the level set fα1

. We
define a deformation retraction σ2 by

σ2�s� x� =
{
ηn�st� x�� t > 0
x� t = 0.

Then σ = σ2 ◦ σ1 is a deformation retraction of A1 onto Wn−
Set

D1 	= �x ∈ C0 � �x− + x0� ≤ R1��
D12 	= �x ∈ C0 � R2 ≤ �x− + x0� ≤ R1��

Then

H∗�Wn�Wn−� ∼= H∗�Wn�A1� ∼= H∗�D1�D12�

=
{
F� if ∗ = I−�B∞� +N�B∞�
0� otherwise.

�2� Case �I+3 �. In this case, we define

C0 = �x � �x−�2 − d�x+�2 − kh��x0�� ≤M��
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Then the normal vector on ∂C0 is n = x− − dx+ − kh′��x0���x0/�x0��.
Similarly to (1), we have

�dfn�x�� n� ≤ m
2 �d�x+�2 − �x−�2 + k�x0�2α� + c

≤ −m
2 M + c < 0�

Here we choose k�M large enough.
This implies that fn has no critical points outside C0, and the negative

gradient −dfn points outside on ∂C0.
Now we prove that ∀x ∈ C0

fn�x� → +∞⇐⇒ �x+ + x0� → ∞� uniformly in x−� (3.5)

In fact, for ∀x ∈ C0, by similar arguments as in (3.3) and (3.4), we have

fn�x� = 1
2 �Cx+� x+� + 1

2 �Cx−� x−� + g�x�
≥ 1

2m�x+�2 − 1
2�C��x−�2 + g�x0�

− c��x�α + 1���x+� + �x−��
≥ 1

4m�x+�2 − �C��x−�2 + 1
2g�x0� − c

≥ � 1
4m− �C�d��x+�2 + 1

4g�x0� − c� (3.6)

On the other hand,

fn�x� ≤ 1
2�C��x+�2 + g�x0� + c��x�α + 1���x+� + �x−��

≤ �C��x+�2 + 2g�x0� + c� (3.7)

and (3.6) and (3.7) imply (3.5).
So for ∀T > 0, ∃M2 > M1 > T and R2 > R1 > 0 such that

fn�x� ≤M1� if x ∈ C0 �x0 + x+� < R1

fn�x� > M1� if x ∈ C0 �x0 + x−� > R2

fn�x� ≤M2� if x ∈ C0 �x0 + x+� ≤ R2�

Set

Wn=�x∈C0 �fn�x�≤M1�� Wn−=�x∈C0 �fn�x�≤M1 and x∈∂C0��
Let

Ni=�x∈C0 ��x0+x+�≤Ri�� �i=�x∈∂C0 ��x0+x+�≤Ri�� i=1�2�

Similarly to (1), first we deform N2 to N1 ∪ �2 by a geometric deforma-
tion σ1. Second, let s1 be the time of reaching ∂C0 along the negative
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gradient flow, and let s2 be the time of reaching the level set f−1
n �M1�.

Take s = min�s1� s2� and define

σ2�t� x� =
{
η�ts� x�� s > 0
x� s = 0.

Then, σ = σ2 ◦ σ1 is a deformation retraction of Wn onto N1 ∪ �2. Thus

H∗�Wn�Wn−� ∼= H∗�N1 ∪ �2�Wn−�
∼= H∗�N1� �1�

=
{
F� if ∗ = m�Pn�A+ B∞�Pn�
0� otherwise;

hence

H∗+m�Pn�A+P�Pn��Wn�Wn−�

=
{
F� if ∗ +m�Pn�A+ P�Pn� = m�Pn�A+ B∞�Pn�
0� otherwise

=
{
F� if ∗ = m�Pn�A+ B∞�Pn� −m�Pn�A+ P�Pn�
0� otherwise.

So (for large n)

C∗�f�∞� 	= C∗�f� S� =
{
F� if ∗ = I−�B∞�
0� otherwise.

The theorem is proved.

4. CRITICAL POINT THEOREM FOR
ASYMPTOTICALLY QUADRATIC FUNCTIONALS

Asymptotically quadratic functionals have been studied by many authors;
see [1, 13] and the references therein. Applications can be found in semilin-
ear elliptic boundary value problems, Hamiltonian systems, and the nonlin-
ear wave equation. The corresponding functional is asymptotically quadratic
provided the equation is asymptotically linear.

In this section, we use the same notation as in Sections 2 and 3. Consider
the functional with the form f �x� = 1

2 �Ax�x +G�x�. Set G′�x� =	 K�x�.
Recall that the functional f is said to be asymptotically quadratic at infinity
and at the origin, respectively, if there exist self-adjoint bounded operators
B0 and B∞ such that

�B∞ −K�x��
�x� → 0 as �x� → ∞ (4.1)

�B0 −K�x��
�x� → 0 as �x� → 0� (4.2)
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Then it is easy to check that under the assumptions of �H±
3 � and �I±3 � in

Sections 2 and 3, the functional f is asymptotically quadratic.

Theorem 4.1. Let f ∈ C2�H�R�, �H1�, and �H2� hold, and N�B0� �= 0,
N�B∞� �= 0. If one of the following conditions holds,

(1) �H+
3 �� �I+3 � hold, I−�B0� �= I−�B∞�

(2) �H−
3 �� �I+3 � hold, N�B0� + I−�B0� �= I−�B∞�

(3) �H+
3 �� �I−3 � hold, I−�B0� �= I−�B∞� +N�B∞�

(4) �H−
3 �� �I−3 � hold, N�B0� + I�B0� �= I�B∞� +N�B∞�,

then f has at least one nontrivial critical point.

Proof. We prove case (1) only; the others are similar. By Theorem 2.1
�H+

3 � and Theorem 3.1 �I+3 �, we have

Cq�f� θ� =
{
F� if q = I−�B0�
0� otherwise

Cq�f�∞� =
{
F� if q = I−�B∞�
0� otherwise.

By (1), we have Cq�f� θ� �= Cq�f�∞�. By the I−�B∞�th Morse inequality,
f has at least one nontrivial critical point x1 satisfying CI−�B∞��f� x1� �= 0.

The proof is complete.

Theorem 4.2. In addition to the assumptions of Theorem 4.1, suppose
that x0 �= θ is a nondegenerate critical point. Then f has another critical point
x1 �= θ� x0, if one of the cases of Theorem 4.1 holds.

Proof. If f only has the critical point θ� x0, then

Cq�f� x0� =
{
F� if q = µ
0� otherwise,

where µ is the Morse index of x0, and

Cq�f� θ� =
{
F� if q = r0
0� otherwise,

where

r0 =
{
I−�B0�� if (H+

3 ) holds
I−�B0� +N�B0�� if (H−

3 ) holds.

By the last Morse equality

�−1�r̄=�−1�r0+�−1�µ� where r̄=
{
I−�B∞�� if (I+3 � holds
I−�B∞�+N�B∞�� if (I−3 � holds,

a contradiction! The proof is finished.
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