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Abstract

A summation formula is given for 3Fa(a,b,¢; 2(a + b + i+ 1),2¢ + j; 1) with fixed j and arbitrary i (i,j €Z). This
result generalizes the classical Watson’s theorem which deals with the case i=j=0.

Extensions to the cases of 3Fa(a,1 +i+j—a,c;e,1 +i+2¢c —e; 1), and 3F2(a,b,c;1 +i+a—-b1+i+j+a—c1)
are given. Notice that the case i = j =0 corresponds to the classical theorems due to Whipple and Dixon, respectively.
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1. Introduction

The classical Watson’s summation theorem may be written as

) <a,b,c 1> — pa+b=2 rGarGhIrdyr(c—d+HI(c+ ;)
d,2¢ F(O(@T () (c - ta+ DIrc— 16+ 1)

(d=Ya+b+1)), (1.1)

provided R(2c —a—b) > —1 (see, ¢.g., [3, Section 4.4], or [9, Section 5.2.4], where the duplication
formula for the I' function should be used). Wimp [14] has shown that Watson’s formula cannot
be generalized in the sense that ;F,(a,b,c;d,2c; 1) for unrestricted a,b,c,d cannot be expressed as
a general ratio of I' functions. (Later, Zeilberger [15] gave a short proof of Wimp’s theorem.)

In several recent papers (see [4—6, 12]) functions of the type

’b, . -
filab,c)i=3F, (d+“%l.,2cc+j|1> (RQ2c—a—b)>—i—2j—1) (1.2)
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were studied for various values of the parameters / and j; [6] contains extensive tables of components
of 25 formulae obtained for i,j€{-2,—1,0,1,2}, by repeated use of relations linking contiguous
hypergeometric functions (see [1]; or [11, pp. 80-85]).

In this paper we show that an analytical formula can be given for f;, with fixed j and arbitrary
i€Z (cf. Theorem 2.4).

Also, we show that the recently studied problem of evaluation of

al+i+j—ac
gij(a,c,e):=3F, (e 1 +l.+]26_e 1) (1.3)
and
h boe) = F ab,c 1 (1.4)
i,j(aa ,C).—}z 1+l+a—b,1+l+j+a—c .

(see [7, 8]) may be reduced to the evaluation of a function of the type (1.2) (see Sections 3 and
4, respectively). Notice that gy, and 4y may be evaluated by the classical Whipple’s and Dixon’s
theorems, respectively.

2. Main result
Lemma 2.1. For any i,j€Z we have
li]
fi = fifabc)=Y vicfola+kb+ il — ko), 2.1)

k=0

where the coefficients v, = vi(a,b) (k=0,1,...,|i|]) are either given by

() a2,
or are defined recursively by

vir(a,b)=Cla,b)yiie-1(a+ 1,b) + Clb,a)yini(ab+1) (i <05 poo=1) (2.3)
with

Ciab) = aa—b+i+1)

T (a-bYa+b+i+1)
(We adopt the convention that y;, = 0 for ¢ <0 or q > |i|). Here
m—1
(=T (a+m)/T'(a)= H((X +k) (mz=D0)
k=0
Proof. The first part of the result (for i = 0) is obtained by iterating the formula
(a - b),fi,j(aib,c)zaﬁ—l,j(a + l,b,C) - b.fi—l.j(aab + I,C) (l = 0: 1,' ces JGZ),

which is a disguised form of a contiguity relation for ;F, given in [11, Section 48, Eq. (14)].
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The second part (for i < 0) is obtained by iterating the contiguity relation

ﬁ,j(aa b,C) - Ci(a’b)ﬁ+1,j(a + 19b7c) + Ci(b’a)ﬁ-H,j(a,b + I,C)
(i=0,—1,-2,...: j€Z),

377

which follows from another result of Rainville’s monograph (see [11, Section 48, Eq. (15)]). O

Lemma 2.2. For any i€Z we have

ab,c

fulab.y=aFs (4565 [ 1) =POEPEY - X000 R@e—a-b)>-i-1. @4
2 b

where p = |i|mod2, and

I(d + 3|iDI(e + (e —d — 3li| + 1)

Pi EPi(a’b’c)::2<1+b+|i|—2(_1)|_|i|/2J ,
rG)r(a)r(b)

Fda+iDrGb+ iu+ i
Fc—ia+il+Drc-1b-1p+1i+1

X" =Xx"a,b,c):= (1=0,1),

[(i)—n/2]

(a —c+m), N
o .= 2 tamei Bl (1=0,1).
mZ:O (%b+%|l|“"2'—m)[ 2+1B, ( )
Here
oy = Yik
I (a)k(b)lil‘k’

Bin = (a+ 3Dn(za = 51+ 5 =)
(30 + i+ 3Dy -m(Gh + 3= 31+ 3 = O —m
Proof. Using notations (2.5) and (2.6), we may write Watson’s formula (1.1) as
foola,b,c)=Py(a,b,c)X,"(a, b, c).

Now, it can be checked that

Po(a+k,b+ |i| — k,c)=Py(a,b )(_l)mm

a+ ) + l - ,C - ias ,C N s~

’ (@)(B )y
(Ga—c+m)

Xa+ kb + |i| - k,c) = (=1l

n
Do T T my Pt @b
2 2 2

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

where w:=|ilmod 2, m:= |k/2], I :=k mod 2. Using the above forms in the r.h.s. of (2.1) with j =0,

we obtain the result. O
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Lemma 2.3. For any i€Z, we have

fiula,b,c) = F, ( a,b,c |1) :E(X;")S;“’—X;”S}”) (R(2c —a—b) > —i—3)

d+3i,2c+1
(2.12)
with
sD =" 4+ R (1=0,1), (2.13)
where we use the notation (2.5)—(2.7) and
i|-0/2
R .= m,g/ | (b + %(lflaj%m_)]c—m); Samiifin” (1=0.1), 19

Proof. A result in [4] may be written as
Jo(a,b,¢)=Po(X," ~ X5").

Observe that

1
JLli2)+1 (za+ m):
Gb+3lij—3—c—

where p:=|i|mod2, m:=|k/2|, /:=kmod2. Using this and (2.10), (2.11) in the r.hs. of (2.1)
with j =1, we obtain the result. O

Xsa+kb+ i —keo)=(-1 ﬁf' Dx"(a,b,c),

Now, we are able to prove the main result of this paper. We have the following:

Theorem 2.4. For any i,jE€Z we have

3 _ a,b,c OO _ xOrih —a— -2 —
fia,b,c) = 3F; (d+%i,20+l} ) P (XOTY Ty (RQ2c—a—b)>—i—2j— 1),
(2.15)
where = i|mod2,
170 =4,0" +B R (1=0,1) (2.16)

and where A;; and Bj; are particular solutions of the difference equation in j (i being a parameter)
(J+2¢c—a)(j+2c—b)j+c)Ejn
=(j+20)(j+2c—d)2j+2c—d)+ 3i(j+2c— 1) — (a — d,]E;
—(j+2c=1n(j+c—d+30E;_ (JEZ), (2.17)

obtained for the initial values Ey=1, E; =1, and E, =0, E| =1, respectively.
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Proof. The main tool used in the proof is the recurrence relation in j
(J+2¢c—a)(j+2c—b)j+c)fijm
=(j+2)N(+2c—d)2j+2c—d)+ Li(j+2c— 1) = (a—d)]f:;
—(j+2c—13(j+e—d+iDfim (JEZ), (2.18)

which follows from a result given by Bailey [1] for contiguous functions of the type 3;F,(1).
Putting (2.15) into the above equation it is easy to observe that T,-f? (I=0,1) are also solutions of
Eq. (2.17) with the initial values (cf. Lemmata 2.2 and 2.3)

() _ H) () _ o)
mo=0", 1H=5"

i 1

Also, it is easy to observe that we can write

(—)'TH =400" + BOR'D (1=0,1), (2.19)

i,j N

where the rational coefficients Ai’} and Bg’l} are solutions of the recurrence relation (2.17) with the
initial conditions

0y _ 40) _ () _ 4 _
Ai,O —Ai,l - 1’ Ai,O '_Ai,l =-1

2

and
BY =0, BY=1. Bj=0, BY=-1,

respectively. Now, it is a simple observation that solutions Aﬁf’} and Bﬁ?j) are linearly independent and
that
() ©)
A =4

ije

(1) _ (0) ¢ -
Bi,j ——Bl,] (JEZ).

Thus, the formula (2.19) can be written as (2.16) with 4, ; :Aﬁ,oj), and B, ; =B,(-g-). O
Remark 1. A collection of forms for 4,; and B;; with i€Z and -2 < j <3 is given in the
appendix.

Remark 2. The recurrence relation (2.18) can also be obtained using Zeilberger algorithm (see, e.g.,
[10, Ch. 6]).

Remark 3. Note that the Eq. (2.18) may be used to compute f;; recursively. However, in the
present approach we are using this recursion only to produce rational expressions for 4,; and B; ,
which results in a remarkable efficiency of the algorithm.

Using Theorem 2.4 with j=2, and the formulae (A.6) given in the appendix, we obtain the
following:
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Corollary 2.5. For any i€Z, we have

ff,z(a,b,C)Est< Ghe 11) =P (X0 + X{"T})) (2 —a—b) > =i = 5),

d+ %i,Zc +2
(2.20)
where p=|ilmod2, and
T = 20%:“—11{[1 —2c—d+ 1e]0" +[1 +ielr! "} (1=0,1). (2.21)

Here e:=c/[(2c —a+ 1)(2c — b + 1)], and the notation used is that of (2.5)—(2.7) and (2.14).

Example 2.6. In particular, Theorem 2.4 and the formulae of the appendix imply the following
results:

Jro=3F2 (‘ I \1> _ o [Gat 5b+ (e + PI(e— ja—3b—-2)
: sa+3b+3,2¢ @ b= D (OT @)

T(3a+ HI(3b)
I'(c—3b+ DI(c - 1a)

rGa)yrp+1)
(c—ia+3I(c—3b)

X {Wi()(a,b) - w5,0(b,a)r } , (222)

where

x(e—3a=2),(a=b-4)+5b(3a+3)(c—3b—3)(c—3a-1)

x(@a—b—4n(a—b+1)a—b+4).

foi=F < a,b,c ‘1> :2a+b_zf(%a+%b+2)l"(c+%)F(c-%a—%b-—1)
T \la+1b+2,2¢+ 1 (a—b—2); T(HI(@)I(b)

rGoria+i)
(c—ta+1)I'(c—3b+3)

rdards+i)
Ic—1a+I(c-1b+1)

X {wll(a,b)r —ws (b, a) }, (2.23)

where
wi(a,by=(a+ 1)2c—aYa—b—-2)(a—b—1)2c—a—-2)+3ba—-b+1)]

+b(a—b+2Y2c—b—D[(b+2¥a-b+1)+3(a—b—1)2c —a)l,

1 1 3 1,1
f13=3F2<] [ Bbie M _ e TGt 3b+ DIe + DI —3a — 30)
, 5a+5b+1,26+3 (a—b)(c+2)1’(5)1"(a)1"(b)

F(%a+%)F(%b)
I'(c—1a+2)[(c—1b+2)

rGaras+iy
(c—la+ DI (c—1b+2)

X {wl,3(aab) —wis(ba) } (2.24)
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where
wia(a,b):= 2(2c* + ab)(c —a+ b+ 1) — 24
+2(b — a)(5¢ — 2a — 2b +2) + c(8¢c + a* — 3b* + 8).

1 1p 1 —lg 1
Sos1=3F (1 1Z’b’f2 1 ’1) :2”+b_4r(2a+2b 1){(C+2)F(C 24 = 3b)
24+ 30— L2e+ rG;)ra)r)

y (4ac — )T Ga)F(3b+ 1) (4bc — w)I(a + I (3b) (2.25)
FNc-ta+Dr(c—1ib+1) Tc-la+DI(c—3b+H |’ '
where w:=(a+ b —2)a+ b—2c).
Farmits (1 08 1) = GO DI D da—4p
TR g4 b - 1,20 43 (c +2)[(HT (@) (b)
r(ta)r(ip) rda+Hrép+ 4
" {W“‘*3p I LOLN N PAPpLEC Lk 1A% Chk LR GE 1
(c—s3a+3)(c—3b+3) I'(c—3a+2)(c—3b+2)
where
w_g3:=(c+2)(a+b)Ya+b—4)+3]—2abla+ b —2c —3),
z43:=8c%*(a+b—1)—c[3(a+b)a+b—8)+4ab +29]
—(4a +4b —2ab)a+ b —5)+ 4(ab - 6).
Note that the above results are obtained with the aid of a program written in Maple [2].
2.1. Special case
Corollary 2.7. For n=0,1,...; p=0,1, and i,j€Z, we have
F (—Zn — p,a+2n+ p,c l>
342 . 1 .
Ta+1i43.2c+
= 2|[\(%°‘)u(l~p)(%°‘ + %P + 1)y
(%O( + %,Lt + %)U”/ZJ(%)""'P(%O( + %'u + % _ c)" (p) (2 27)

X i s
G+ s+ 5 = pile + DnepGr+ 30+ 57— 3l —pDa

where p=|i|mod2, and T? is defined as in Theorem 2.4, for a:=—2n— p, and b:=u+2n+ p.
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Proof. First observe that using the duplication formula for the I' function we can write (cf. (2.5)
and (2.6))

(D)l (DI (e + 3)
I'Ga—-Lt1+ Hhrédv+1-Hu-1)

P,-lel) :2li|(_1)L|iI/2J

y rd+iprc—d—ili|+1)
Ic—ia+il+DHrc-1b-tu+ 1+ 1

(1=0,1).

Letting a:=-2n — p, and b:=a + 2n+ p, where p equals 0 or 1, and » is non-negative integer,
we observe that P.X lsl—p) =0, and (—l)PP,»Xlﬁl’) can be written in the form given in the right-hand

side of (2.27) for the coefficient of Tifj’ ). Now, the result follows from Theorem 2.4. O

3. Generalization of Whipple’s theorem

The classical Whipple’s theorem is (see [3, Section 4.4]; or [13, Eq. (2.3.3.14)])

al_ s
F (ea a,c 1>

1 +2c—e

al(e)[(1 4 2c —e)

= , 3.1
22%-1T(te+1a)(3 + te — 3a)[(c — je+ ja+ I(1 + ¢ — je — ja) Sa
where R(c) > 0.
In [7], a collection of 39 analytic expressions is given for
al+i+j—a,c
gi,j(aac,e)::?:FZ (e 1+l—+—]2C—'e 1)9 (32)

where R(c) > j, for a selection of i, such that |i],|j| <3, using a connection between the above
functions and the functions (4.2).

The following theorem shows that the problem of computing (3.2) for any integer i and j can be
reduced to the evaluation of f;;, discussed in Section 2.

Theorem 3.1. For any i,j€Z, we have

F(e)I(1+i+2c—e)(c)
IF'aIr(1+i—a+c)l(2c—j)

where f;; is defined by (1.2).

gia,ce)= file—al+i+2c—a—ec—j), (3.3)

Proof. The result is a simple consequence of a familiar transformation ([13, Eq. (2.3.3.7)])

a,b,c __ IEerNHre) e—a, f—a,s
o+ (e,f 1) —F(G)F(S+b)F(s+c)3F2 ( s+bs+c

where s:=e+ f—a—b—c. O

1) , (3.4)
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Example 3.2. In particular, Theorems 2.4 and 3.1 imply the following formula:

)

 A—3-2a I'e)(2c —e—3)
h (c— D (e—a)[(2c—a—e—3)

y {u_4,1 Fde—1a)r(c—la—1le—3)

F(%a+%e+1)1’(c+%a—%e—%

a,—a—2,c

941 =3F2 <e,2c —e-3

—U.a

I'Ge—ja+I(c—1a—le~1)
F'Ga+le+)I(c+ia—3e) |’
where

uU_g1:=ala+1)a+3)—acla+c)+ce(2c —e—5)+e(e+3),

U_44 =a(@®+2a—1)+acla—c+4)—ce(c—e —5)—2c(c —2) — (e + 1)(e +2).

4. Generalization of Dixon’s theorem

The classical Dixon’s theorem is (see [3, Section 4.4]; or [13, Eq. (2.3.3.5)])

F( a,b,c >_F(l+%a)F(l+a*b)1"(1+a—c)1“(1+%a_b_c)
P\ ta-blta—c|' ) TA+a)(1+la—bI0+la—c)Q0+a—b-c)

(4.1)

where R(a — 2b — 2¢) > -2.
In [8], a collection of 39 analytic expressions is given for

a,b,c

hi,j(aab’c)::3F2 (1+1+a—b,1+1+]+a—c

1) , (4.2)

where R(a — 2b — 2¢) > —2i — j — 2, for a selection of 7, such that |i|,|j] < 3.
The following theorem shows that the problem of computing (4.2) for any integer i and j can be
reduced to the evaluation of f; ;, discussed in Section 2.

Theorem 4.1. For any i,j€Z, we have

Irl+i+j+a—c)l(o)
Irl+i+j—c)y(oc+a)
where 6 :=2+2i+j+a—2b—2c, and f;; is defined by (1.2).

hi,j(aa ba C) =

fual+ita-2b1+ita—b-c), (4.3)

Proof. Consider the following well-known transformation, obtained by reapplying formula (3.4) on

itself,
JFy (“””C I 1),

e f

>__ L(AHI(s) F <a,e—b,e—c
TI(f-al(s+a) '\ esta
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where s:=e+ f —a — b — c. Hence, with e=1+i+a—b, and f=14+i+j+ a—c,
follows (4.3). O

Example 4.2. Theorem 4.1 and (2.23) imply

)

FNa-b+4)(a—c+50(+9N(a~b—c+?2)
(2b — 6)s(c — 4) T ()I(@)[(B + 4)[(a + o+ 9)

y F(%,B+2)F(%a+%)_z ria)rp+3)
P TGa+ iy +3) ' TEa+ Hriy+3) [

ab,c

CARSELE <4+a—b,5+a—c

— 2oc+li+3

where

ya=(a+ 1)b—3)o+8)[(2b—5) o+ 6)+32b—3)p+4)]
+(b— DB+ + 326 —-3)P+6)+3(2b - 5)(o + 8)],
z3:=(b—-1D(B+5)y+4)[(2b-3)y+2)+3a(2b-5)]
+a(b —3)a+ 7)(a+2)2b—5)+3(2b = 3)(y +4)],

and where oc:=a — 2b -~ 2¢, f:=a—2b, y:=a— 2c.

5. Concluding remarks

A general method is proposed for producing the analytical form of the generalized hypergeometric
series of unit argument (1.2) for any #,j & Z, including classical Watson’s result.

In contrast to the earlier approach of Lavoie et al. (see [4—8]), the obtained formula is natural,
and does not require storing many coefficients.

The new method can be easily implemented in a computer algebra system programming language,
like Maple or MATHEMATICA.

Appendix

In this section, we give a collection of forms for 4;; and B;; (i€Z, and —2 < j < 3) which are
ingredients of the formula (2.16).

We have

T =4,,0" +B,R'"™" (I=0,1; i€Z, -2<j<3), (A1)
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where
4 6D+ (= DIIG(=D) + @e— D] G(-1)
bl 22c —2)y(c—d + Li— 1) Qc—1)c—d+li—1y
B . G(0)[G(-2) + (c — 1)i]
b2 2Q2c = (e —d + Li— 1))
W _ GED 4@ o G(0)
T (2 - D)(Q2c - 2d + i) T 2= 1)2c—2d + i)’

Ao=1, Biy=0,

A1 =B =1,

A =Hy(2d — 2¢ - 2), B> =H,(i),

A3 =H3(2d — 2¢ - 2), B; 3y = Hs(i).
Here G(m):=(2¢ —a+ m)(2c — b+ m), and

_2c+1
Hy(W):= P [1+cW/G(1)],
2c+ 1) .
Hs(W):Z(C(—J:m;ﬁ {I1 +cW/GJ[A(c — 3d + 1)y — (a —d)y +i(c + 3)]
—(c+)(c—d+1i+2)}
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