Idempotents in Symmetric Semigroups

Jin Bai Kim

Department of Mathematics, West Virginia University, Morgantown, West Virginia

Communicated by G.-C. Rota

Received September 19, 1969

We count the number of idempotent elements in a certain section of the symmetric semigroup S_n on n letters. As a corollary of our result we have that every maximal principal right ideal of S_n contains

$$
\sum_{i=1}^{n-1} i^{n-i-1} \binom{n-2}{i-1} \binom{n-1}{i}
$$

idempotent elements. Let T_r $(1 \leq r \leq n-1)$ be the set of all elements of S_n of rank less than or equal to r, and let D_r denote the set of all elements of S_n of rank r. Then T_r is a semigroup generated by the idempotent elements of D_r. We shall obtain a maximal mutant of $T_{n-1} = S_n/D_n$.

1. INTRODUCTION

Harris and Schoenfeld [2] and Tainiter [10] have given different proofs of known formulas regarding the number of idempotents in subsets of the symmetric semigroup S_n on n letters. In Theorem 1, we shall get a counting formula for the number of idempotents in a certain section of the symmetric semigroup S_n. Any (known) counting formula for the number of idempotents in a subset of S_n can be obtained as a corollary of our result (Theorem 1). In Section 2, we shall explain the meaning of the term "section" which appeared in the abstract and the above. In Sections 3 and 4, we shall count the number of idempotents in a certain section of S_n and prove Theorem 1.

Howie [4] has proved that T_{n-1} is a semigroup generated by the idempotents of T_{n-1}. In Section 5, we shall state Theorem 2 and then observe that Howie's result [4, Theorem 1] is a particular case of Theorem 2. Kim [6] has proved that, if T is a topologic semigroup and $a \in T$ is not an idempotent, then there exists a maximal open mutant of T containing a. (This does not give any information about the actual form of a maximal
mutant of a semigroup.) In Section 6, we shall give (in Theorem 3) an explicit form of a maximal mutant of the semigroup \(T_{n-1} \) \((n > 3)\).

2. NOTATION

Let \(S = S_n = S_X \) be the symmetric (or full transformation) semigroup on \(n \) letters \(\{u_i : i = 1, 2, ..., n\} = X \). The basic results on \(S \) can be found in [1, pp. 51–57]. If \(X = \{u_1, u_2, ..., u_n\} \) and \(\alpha \in S \), then we may use the (classical) notation

\[
\alpha = \begin{pmatrix}
 u_1 & u_2 & \cdots & u_n \\
v_1 & v_2 & \cdots & v_n
\end{pmatrix}
\]

to mean that \(\alpha \) is the mapping of \(X \) defined by \(u_i \alpha = v_i \) \((i = 1, 2, ..., n)\).

Let \(f_\alpha \) be the equivalence relation on \(X \) defined by \(uf_\alpha v(u, v \in X) \) iff \(u\alpha = v\alpha \). Then with each element \(\alpha \) in \(S \) we associate two sets: (1) the range \(N(\alpha) = X_{o\alpha} \) of \(\alpha \), and (2) the partition \(N(\alpha) = X/f_\alpha \), the equivalence classes of \(X \) mod \(f_\alpha \). \(\varphi(\alpha) \) denotes the rank of \(\alpha \), that is, \(\varphi(\alpha) = |M(\alpha)| \).

If \(M(\alpha) = \{v_i : i = 1, 2, ..., r\} \) and if we define

\[
v_i\alpha^{-1} = V_i = \{u \in X : u\alpha = v_i\}
\]

then we may write \(N(\alpha) = \{V_1, V_2, ..., V_r\} = \{V_i\} \), the partition on \(X \) corresponding to \(\alpha \); we may use the notation

\[
\alpha = \begin{pmatrix}
 V_1 & V_2 & \cdots & V_r \\
v_1 & v_2 & \cdots & v_r
\end{pmatrix} = (V_1, V_2, ..., V_r ; v_1, v_2, ..., v_r) = (V_i, v_i : i = 1, 2, ..., r).
\]

\(r \) is called the rank of the partition \(N(\alpha) \).

DEFINITION 1. \(\pi(X) \) denotes the collection of all partitions on \(X \) and \(\pi_r(X) = \{N \in \pi(X) : \text{the rank of } N \text{ is } r\} \).

(i) Let \(N \in \pi_r(X) \) and \(N = \{U_1, U_2, ..., U_r\} \). \(U_i \) is called a block of \(N \) (see Rota [9]).

(ii) Let \(N_1 = \{U_1, U_2, ..., U_r\} \) and \(N_2 = \{V_1, V_2, ..., V_s\} \) be elements of \(\pi(X) \). If, for every block \(U_i \) of \(N_1 \), there is a block \(V_j \) in \(N_2 \) such that \(U_i \) is a subset of \(V_j \), then we write \(N_1 \subset N_2 \).

(iii) \(p(X) \) denotes the collection of all non-empty subsets of \(X \), and \(p_r(X) \) denotes the collection of all subsets of \(X \) with \(r \) elements.

(iv) Let \(N \in \pi(X) \) and \(M \in p(X) \). Then a pair \([N, M]\) is called a partition-range. \(\pi_rxp_r(X) = \{[N, M] : N \in \pi_r(X) \text{ and } M \in p_r(X)\} \). \(D_r \) denotes the set of all elements \(\alpha \in S_n \) of rank \(r \).
Let \([N, M] \in \pi_r \times p_s(X)\). \([N, M](D_r) = \{\beta \in D_r : M(\beta) \subseteq M\} \text{ and } N(\beta) \supseteq N\}\) is called the \(NM\) section of \(D_r\). (Now we can describe the meaning of the term "section" which appeared in the abstract.)

We shall count the number of idempotents in \([N, M](D_r)\), where \(N \in \pi(X)\) and \(M \in p(X)\).

3. LEMMAS

Let \(\alpha \in S\). By Lemmas 2.5, 2.6, and 2.7 in [1], if \(L_\alpha, R_\alpha, H_\alpha, D_\alpha\) denote, respectively, the \(L, R, H, D\)-class containing \(\alpha\), then we can write \(N(\alpha) = N(H_\alpha) = N(R_\alpha)\) and \(M(\alpha) = M(H_\alpha) = M(L_\alpha)\). We shall use the notation \(NM(H_\alpha) = [N(\alpha), M(\alpha)]\) and \(H_\alpha = (V_1, V_2, ..., V_r; v_1, v_2, ..., v_r)\), where \(N(\alpha) = \{V_i : i = 1, 2, ..., r\}\) and \(M(\alpha) = \{v_i : i = 1, 2, ..., r\}\). We rewrite Theorem 2.10-(i) of [1] in the following:

Lemma 1. Let \(H\) be an \(H\)-class of rank \(r\) with \(H = (V_1, V_2, ..., V_r; v_1, v_2, ..., v_r)\). Then \(H\) contains an idempotent iff \(|V_i \cap M(H)| = 1\) for all blocks \(V_i\) \((i = 1, 2, ..., r)\).

Definition 2. (i) Let \(H\) be as in Lemma 1. \(N(H)\) is said to be a cross section of \(N(H)\) if \(|V_i \cap M(H)| = 1\) for every \(i = 1, 2, ..., r\) (see [1, p. 54]). \(N \# M\) means \(M\) is a cross section of \(N\).

(ii) Let \(N \in \pi_r(X)\) and \(N = \{V_i\}\). Let \(M \in p_r(X)\). Then an unordered arrangement \((m_1, m_2, ..., m_r)\) is called the section number of \([N, M]\), where \(m_i = |V_i \cap M| (i = 1, 2, ..., r)\).

(iii) Let \(Y \in p_r(X)\). By the \(Y\) column of \([N, M](D_r)\) is meant the set of all elements \(\beta\) in \([N, M](D_r)\) such that \(M(\beta) = Y\).

Lemma 2. Let \(\alpha, \beta \in S\) with \(M = M(\alpha)\) and \(N = N(\beta)\). Let \(Y \in p_r(X)\). If the \(Y\) column of \([N, M](D_r)\) contains an idempotent \(\eta\), then the \(Y\) column of \([N, M](D_r)\) contains \(r^{\phi(\beta)-r}\) idempotents.

Proof. Letting \(Y = \{a_i : i = 1, 2, ..., r\}\), assume that the \(Y\) column of \([N, M](D_r)\) contains an idempotent \(\eta\). Then \(M(\eta) = Y\) by Definition 2-(iii). Let \(N = N(\beta) = \{B_i : i = 1, 2, ..., k\} \in p_k(X)\). Then there exists a subset \(I\) of the set \(J = \{1, 2, ..., k\}\) with \(r\) elements such that \(B_i (i \in I)\) contains just one element \(a_i\) of \(Y\). Without loss of generality we may assume that \(I = \{1, 2, ..., r\}\). Then we can see that \(|B_j \cap Y| = 0\) for all \(j\) in \(\{r + 1, r + 2, ..., k\}\). Taking a set union of two blocks \(B_i (i \in I)\) and \(B_j (j = r + 1, r + 2, ..., k)\), we can construct \(r^{k-r}\) distinct partitions \(\{N_i \in \pi_r(X) : i = 1, 2, ..., r^{k-r}\}\) such that \(Y\) is a cross section of \(N_i\) for all \(i\).
By Lemma 1, every H-class $H = (N_i, Y)$ determined by N_i and Y contains an idempotent, and hence the lemma follows.

Definition 3. (i) Let $A = \{N_i \in \pi_r(X) : i = 1, 2, \ldots, k\}$.

$$\text{Cross}\left(\bigcup_{i=1}^{k} N_i \right)$$

denotes the collection of subsets Y of M such that Y is a cross section of a member N_i of A. $\text{Cross}\left(\bigcap_{i=1}^{k} N_i \right)M$ denotes the collection of all subsets Y of M such that Y is a cross section of all N_i of A.

(ii) Let $N \in \pi_r(X)$. We define $\pi_{r-k}(N) = \{N_i \in \pi_{r-k}(X) : N \subset N_i\}$ which will be called the k-th shadow of N. Let $M \in p(X)$. $\text{Cross}(NM) = \{Y \subset M : Y \neq N\}$. $\text{Cross}(NM(k))$ denotes the collection of all $Y \subset p_{r-k}(X)$ such that $Y \subset M$ and Y is a cross section of a member of $\pi_{r-k}(N)$.

Lemma 3. Let $[N, M] = [\{V_1, V_2, \ldots, V_r\}, M]$ be a partition-range with the section number (m_1, m_2, \ldots, m_r). Assume that $m_i \neq 0$ $(i = 1, 2, \ldots, r)$. $|\text{Cross}(NM(k))| = f_{r-k}(m_i)$, the $(r - k)$-th elementary symmetric function in m_1, m_2, \ldots, m_r.

Proof. If $\{A_1, A_2, \ldots, A_{(r-k)}\}$ is a partition of the set $\{1, 2, \ldots, r\}$, then

$$\bigcup_{i \in A_1} V_i, \bigcup_{i \in A_2} V_i, \ldots, \bigcup_{i \in A_{(r-k)}} V_i = N'$$

is a partition of X of rank $(r - k)$ with $N \subset N'$; hence

$$|\text{Cross}(N'M)| = \left(\sum_{i \in A_j} m_i\right)^{(r-k)}.$$

This last expression may be written as a sum of products of $(r - k)$ of the numbers m_1, \ldots, m_r where no such product occurs more than once. Each such product corresponds to an unordered sequence of $(r - k)$ distinct elements $i(1), i(2), \ldots, i(r - k)$ of $\{1, 2, \ldots, r\}$ with $i(j) \in A_j$ for $1 \leq j \leq r - k$, and may be written as $m_{i(1)}m_{i(2)} \cdots m_{i(r-k)}$; this is just the number of cross sections $Y \subset M$ of N' such that $Y = \{u_1, u_2, \ldots, u_{(r-k)}\}$ with $u_j \in V_{i(j)}$ for $1 \leq j \leq r - k$. In other words,

$$\text{Cross}(NM(k)) = \{\{u_{i(1)}, \ldots, u_{i(r-k)}\} : i(1), \ldots, i(r - k)$$

is an unordered sequence of $(r - k)$ distinct elements of $\{1, \ldots, r\}$ and $u_{i(j)} \in V_{i(j)}$ for $1 \leq j \leq r - k$, and hence

$$|\text{Cross}(NM(k))| = f_{r-k}(m_1, m_2, \ldots, m_r),$$

the $(r - k)$-th elementary symmetric function in m_1, m_2, \ldots, m_r.

THEOREM 1. Let \(N \in \pi_r(X) \) and \(M \in p(X) \) with the section number \((m_1, m_2, \ldots, m_r) \). Assume that \(m_i \neq 0 \) for all \(i = 1, 2, \ldots, r \). Then \([N, M](D_{r-k}) \) contains \(t \) idempotent elements, where \(t = (r - k)^k f_{r-k}(m_i) \) and \(f_{r-k}(m_i) \) is the \((r - k)\)-th elementary symmetric function in \(m_1, m_2, \ldots, m_r \).

The proof of Theorem 1 follows from Lemmas 1, 2, and 3.

Remark. In Theorem 1, we can remove the condition \(m_i \neq 0 \).

COROLLARY 1. Every maximal principal right ideal of \(S_n \) contains
\[
\sum_{i=1}^{n-1} i^{n-i-1} \left(\binom{n-2}{i-1} + \binom{n-1}{i} \right)
\]
idempotents, where \(\binom{m}{k} \) denotes a binomial coefficient.

Proof. For a proper maximal principal right ideal \(R \) of \(S_n \), there is a unique \(N_{ij} \) in \(\pi_{n-1}(X) \) such that \(R = [N_{ij}, X](S_n) = \{ \alpha \in S_n : M(\alpha) \subseteq X \) and \(N_{ij} \subseteq N(\alpha) \}. \) Then the section number of \([N_{ij}, X] \) is \((2, 1, \ldots, 1) = (m_1, m_2, \ldots, m_{n-1}) \). By Theorem 1, \(\bigcup_{k=0}^{n-2} [N_{ij}, X](D_{n-1-k}) \) contains \(\sum_{k=0}^{n-2} (n - 1 - k)^k f_{n-1-k}(m_i) \) idempotents, and the corollary follows.

COROLLARY 2. If \(H = (N, M) \) is an \(H \)-class of rank \(r \) containing an idempotent, then \(\bigcup_{k=0}^{r-1} [N, M](D_{r-k}) \) contains \(\sum_{k=1}^{r} \binom{r}{k} k^{r-k} \) idempotents.

The proof is not difficult.

5. IDEMPOTENT GENERATED SEMIGROUPS

Howie [4] has defined an idempotent generated (IG) semigroup.

Definition 4. A semigroup generated by idempotents will be called an IG semigroup.

Let \(T_r = \{ \alpha \in S_n : q_r(\alpha) \leq r \} \). We state two lemmas without proofs:

Lemma 4. \(D_r \cup D_{r-1} \) for \(r \leq n - 1 \).

Lemma 5. Every element of \(D_r \) (\(r \leq n - 1 \)) can be expressed as a product of idempotent elements in \(D_r \).

By Lemmas 4 and 5, we have the following theorem:
Theorem 2. \(T_r \ (r \leq n - 1) \) is an IG semigroup generated by the idempotents of \(D_r \).

6. MUTANTS IN THE SYMMETRIC SEMIGROUP \(S_n \)

We begin with a definition.

Definition 5. A subset \(K \) of a semigroup \(T \) is said to be a mutant if \(KK \subseteq T \setminus K \).

It is clear, by definition, that any mutant \(K \) of a semigroup \(T \) can not contain an idempotent. This indicates that mutants and the idempotents of a semigroup \(T \) have some kind of mutually exclusive relation. To give an explicit form of a maximal mutant of \(T_{n-1} \ (4 \leq n) \), we introduce the following notation:

Notation. Define \(M_i = X \setminus U_i \ (i = 1, 2, \ldots, n) \). \(N_{ij} \in \pi_{n-1}(X) \) denotes a partition of rank \(n - 1 \) having one block consisting of two elements \(u_i \) and \(u_j \ (i \neq j) \).

(i) \((i, j)\) denotes a sequence from the set \(\{1, 2, \ldots, n\} \) with \(j > i \). Let \((i, j)\) and \((s, t)\) be two distinct sequences from the set \(\{1, 2, \ldots, n\} \). We write \((s, t) > (i, j)\) if either \(t > j \) or \(t = j \) and \(s > i \). Letting \((m_1, m_2) > (n_1, n_2)\), define \([n_1 n_2, m_1 m_2] = \{N_{ij} \in \pi_{n-1}(X) : (n_1, n_2) \leq (i, j) \leq (m_1, m_2)\} \).

(ii) Let \(t_2 > t_1 \). Define \([t_1, t_2] = \{M_i \in p_{n-1}(X) : i = t_1, t_1 + 1, \ldots, t_2\} \).

(iii) \([n_1 n_2, m_1 m_2][t] = \{[N_{ij}, M_i] \in \pi_{n-1}xp_{n-1}(X) : N_{ij} \in [n_1 n_2, m_1 m_2]\} \).

(iv) \(K_3 = \{[N_{12}, M_3], [N_{13}, M_2], [N_{23}, M_1]\} \). \(K_3 = [12, 23][4] \cup [14, 24][3] \cup [34][1, 2] \).

(v) \(K_5 = [12, 23][4, 5] \cup [14][2, 3] \cup [15][2, 3] \cup [24, 34][1] \cup [25, 45][1] \). \(K_8 = [12, 34][5, 6] \cup [15, 25][3, 4] \cup [35, 16][2] \cup [26, 56][1] \).

(vi) \(K_4 = \cup A_i \), where \(A_1 = [12, 45][6, 7], A_2 = [16, 36][4, 5], A_3 = [46, 17][2, 3], \) and \(A_4 = [27, 67][1] \). \(K_8 = \cup B_i \), where \(B_1 = [12, 56][7, 8], B_2 = [17, 47][5, 6], B_3 = [57, 28][3, 4], \) and \(B_4 = [38, 78][1, 2] \).

(vii) Let \(n \) be a positive integer of the form \(n = 4m + 4 + i \) for \(1 \leq i \leq 4 \). We define \(K_n = A(n) \cup A(n - 4) \cup \cdots \cup A(n - (m - 1)4) \cup K_{4+i} \). If \(A \in \pi_{n}xp_{n}(X) \), we define \(A(D_r) = \{\alpha \in D_r : [N(\alpha), M(\alpha)] \in A\} \).
Now we can state:

Theorem 3. Let $3 \leq n$. Let S_n be the symmetric semigroup on n letters u_1, u_2, \ldots, u_n.

(i) $K_n(D_{n-1})$ is a mutant in S_n.

(ii) $K_n(D_{n-1})$ is a maximal mutant of $T_{n-1} = S_n \setminus D_n$, that is, if $\alpha \in (T_{n-1} \setminus K_n(D_{n-1}))$, then $\{\alpha\} \cup K_n(D_{n-1})$ cannot be a mutant in T_{n-1}.

We omit the proof of Theorem 3.

Remark. To prove Theorem 3, we may need the following, which taken from a generalized Clifford and Miller's theorem for S_n [7]:

Theorem. If H_1 and H_2 are two H-classes of S_n, then

$$H_1H_2 = \bigcup_{x \in H_1, y \in H_2} H_{xy}.$$

References