JOURNAL OF COMBINATORIAL THEORY (A) 13, 155-161 (1972)

Idempotents in Symmetric Semigroups

JIN BAI KIM

Department of Mathematics, West Virginia University, Morgantown, West Virginia Communicated by G.-C. Rota Received September 19, 1969

We count the number of idempotent elements in a certain section of the symmetric semigroup S_n on *n* letters. As a corollary of our result we have that every maximal principal right ideal of S_n contains

$$\sum_{i=1}^{n-1} i^{n-i-1} \left(\binom{n-2}{i-1} + \binom{n-1}{i} \right)$$

idempotent elements. Let T_r $(1 \le r \le n-1)$ be the set of all elements of S_n of rank less than or equal to r, and let D_r denote the set of all elements of S_n of rank r. Then T_r is a semigroup generated by the idempotent elements of D_r . We shall obtain a maximal mutant of $T_{n-1} = S_n/D_n$.

1. INTRODUCTION

Harris and Schoenfeld [2] and Tainiter [10] have given different proofs of known formulas regarding the number of idempotents in subsets of the symmetric semigroup S_n on *n* letters. In Theorem 1, we shall get a counting formula for the number of idempotents in a certain section of the symmetric semigroup S_n . Any (known) counting formula for the number of idempotents in a subset of S_n can be obtained as a corollary of our result (Theorem 1). In Section 2, we shall explain the meaning of the term "section" which appeared in the abstract and the above. In Sections 3 and 4, we shall count the number of idempotents in a certain section of S_n and prove Theorem 1.

Howie [4] has proved that T_{n-1} is a semigroup generated by the idempotents of T_{n-1} . In Section 5, we shall state Theorem 2 and then observe that Howie's result [4, Theorem 1] is a particular case of Theorem 2. Kim [6] has proved that, if T is a topologic semigroup and $a \in T$ is not an idempotent, then there exists a maximal open mutant of T containing a. (This does not give any information about the actual form of a maximal

mutant of a semigroup.) In Section 6, we shall give (in Theorem 3) an explicit form of a maximal mutant of the semigroup T_{n-1} (n > 3).

2. NOTATION

Let $S = S_n = S_X$ be the symmetric (or full transformation) semigroup on *n* letters $\{u_i : i = 1, 2, ..., n\} = X$. The basic results on *S* can be found in [1, pp. 51–57]. If $X = \{u_1, u_2, ..., u_n\}$ and $\alpha \in S$, then we may use the (classical) notation

$$\alpha = \begin{pmatrix} u_1 & u_2 & \cdots & u_n \\ v_1 & v_2 & \cdots & v_n \end{pmatrix}$$

to mean that α is the mapping of X defined by $u_i \alpha = v_i$ (i = 1, 2, ..., n).

Let f_{α} be the equivalence relation on X defined by $uf_{\alpha}v(u, v \in X)$ iff $u\alpha = v\alpha$. Then with each element α in S we associate two sets: (1) the range $N(\alpha) = X\alpha$ of α , and (2) the partition $N(\alpha) = X/f_{\alpha}$, the equivalence classes of X mod f_{α} . $\varphi(\alpha)$ denotes the rank of α , that is, $\varphi(\alpha) = |M(\alpha)|$. If $M(\alpha) = \{v_i : i = 1, 2, ..., r\}$ and if we define

$$v_i \alpha^{-1} = V_i = \{ u \in X : u\alpha = v_i \}$$

then we may write $N(\alpha) = \{V_1, V_2, ..., V_r\} = \{V_i\}$, the partition on X corresponding to α ; we may use the notation

$$\alpha = \begin{pmatrix} V_1 & V_2 & \cdots & V_r \\ v_1 & v_2 & \cdots & v_r \end{pmatrix} = (V_1, V_2, ..., V_r; v_1, v_2, ..., v_r) \\ = (V_i, v_i; i = 1, 2, ..., r).$$

r is called the rank of the partition $N(\alpha)$.

DEFINITION 1. $\pi(X)$ denotes the collection of all partitions on X and $\pi_r(X) = \{N \in \pi(X) : \text{the rank of } N \text{ is } r\}.$

(i) Let $N \in \pi_r(X)$ and $N = \{U_1, U_2, ..., U_r\}$. U_i is called a block of N (see Rota [9]).

(ii) Let $N_1 = \{U_1, U_2, ..., U_r\}$ and $N_2 = \{V_1, V_2, ..., V_s\}$ be elements of $\pi(X)$. If, for every block U_i of N_1 , there is a block V_j in N_2 such that U_i is a subset of V_j , then we write $N_1 \subset N_2$.

(iii) p(X) denotes the collection of all non-empty subsets of X, and $p_r(X)$ denotes the collection of all subsets of X with r elements.

(iv) Let $N \in \pi(X)$ and $M \in p(X)$. Then a pair [N, M] is called a partitionrange. $\pi_r x p_s(X) = \{[N, M] : N \in \pi_r(X) \text{ and } M \in p_s(X)\}$. D_r denotes the set of all elements $\alpha \in S_n$ of rank r. (v) Let $[N, M] \in \pi_r x p_s(X)$. $[N, M](D_r) = \{\beta \in D_r : M(\beta) \subseteq M \text{ and } N(\beta) \supset N\}$ is called the *NM* section of D_r . (Now we can describe the meaning of the term "section" which appeared in the abstract.)

We shall count the number of idempotents in $[N, M](D_r)$, where $N \in \pi(X)$ and $M \in p(X)$.

3. Lemmas

Let $\alpha \in S$. By Lemmas 2.5, 2.6, and 2.7 in [1], if L_{α} , R_{α} , H_{α} , D_{α} denote, respectively, the *L*, *R*, *H*, *D*-class containing α , then we can write $N(\alpha) = N(H_{\alpha}) = N(R_{\alpha})$ and $M(\alpha) = M(H_{\alpha}) = M(L_{\alpha})$. We shall use the notation $NM(H_{\alpha}) = [N(\alpha), M(\alpha)]$ and $H_{\alpha} = (V_1, V_2, ..., V_r; v_1, v_2, ..., v_r)$, where $N(\alpha) = \{V_i : i = 1, 2, ..., r\}$ and $M(\alpha) = \{v_i : i = 1, 2, ..., r\}$. We rewrite Theorem 2.10-(i) of [1] in the following:

LEMMA 1. Let H be an H-class of rank r with $H = (V_1, V_2, ..., V_r; v_1, v_2, ..., v_r)$. Then H contains an idempotent iff $|V_i \cap M(H)| = 1$ for all blocks V_i (i = 1, 2, ..., r).

DEFINITION 2. (i) Let H be as in Lemma 1. N(H) is said to be a cross section of N(H) if $|V_i \cap M(H)| = 1$ for every i = 1, 2, ..., r (see [1, p. 54]). N # M means M is a cross section of N.

(ii) Let $N \in \pi_r(X)$ and $N = \{V_i\}$. Let $M \in p_s(X)$. Then an unordered arrangement $(m_1, m_2, ..., m_r)$ is called the section number of [N, M], where $m_i = |V_i \cap M|$ (i = 1, 2, ..., r).

(iii) Let $Y \in p_r(X)$. By the Y column of $[N, M](D_r)$ is meant the set of all elements β in $[N, M](D_r)$ such that $M(\beta) = Y$.

LEMMA 2. Let $\alpha, \beta \in S$ with $M = M(\alpha)$ and $N = N(\beta)$. Let $Y \in p_r(X)$. If the Y column of $[N, M](D_r)$ contains an idempotent, then the Y column of $[N, M](D_r)$ contains $r^{\varphi(\beta)-r}$ idempotents.

Proof. Letting $Y = \{a_i : i = 1, 2, ..., r\}$, assume that the Y column of $[N, M](D_r)$ contains an idempotent η . Then $M(\eta) = Y$ by Definition 2-(iii). Let $N = N(\beta) = \{B_i : i = 1, 2, ..., k\} \in \pi_k(X)$. Then there exists a subset I of the set $J = \{1, 2, ..., k\}$ with r elements such that $B_i(i \in I)$ contains just one element a_j of Y. Without loss of generality we may assume that $I = \{1, 2, ..., r\}$. Then we can see that $|B_j \cap Y| = 0$ for all j in $\{r + 1, r + 2, ..., k\}$. Taking a set union of two blocks B_i $(i \in I)$ and B_j (j = r + 1, r + 2, ..., k), we can construct r^{k-r} distinct partitions $\{N_i \in \pi_r(X) : i = 1, 2, ..., r^{k-r}\}$ such that Y is a cross section of N_i for all i.

By Lemma 1, every H-class $H = (N_i, Y)$ determined by N_i and Y contains an idempotent, and hence the lemma follows.

DEFINITION 3. (i) Let $A = \{N_i \in \pi_r(X) : i = 1, 2, ..., k\}$. $Cross\left(\left(\bigcup_{i=1}^k N_i\right)M\right)$

denotes the collection of subsets Y of M such that Y is a cross section of a member N_i of A. $Cross((\bigcap_{i=1}^k N_i)M)$ denotes the collection of all subsets Y of M such that Y is a cross section of all N_i of A.

(ii) Let $N \in \pi_r(X)$. We define $\pi_{r-k}(N) = \{N_i \in \pi_{r-k}(X) : N \subset N_i\}$ which will be called the k-th shadow of N. Let $M \in p(X)$. Cross $(NM) = \{Y \subset M : Y \notin N\}$. Cross(NM(k)) denotes the collection of all $Y \in p_{r-k}(X)$ such that $Y \subset M$ and Y is a cross section of a member of $\pi_{r-k}(N)$.

LEMMA 3. Let $[N, M] = [\{V_1, V_2, ..., V_r\}, M]$ be a partition-range with the section number $(m_1, m_2, ..., m_r)$. Assume that $m_i \neq 0$ (i = 1, 2, ..., r). $|\operatorname{Cross}(NM(k))| = f_{r-k}(m_i)$, the (r - k)-th elementary symmetric function in $m_1, m_2, ...,$ and m_r .

Proof. If $\{A_1, A_2, ..., A_{(r-k)}\}$ is a partition of the set $\{1, 2, ..., r\}$, then

$$\left\{igcup_{i\in A_1}V_i\,,\,igcup_{i\in A_2}V_i\,,...,\,igcup_{i\in A_{(r-k)}}V_i
ight\}=N'$$

s a partition of X of rank (r - k) with $N \subseteq N'$; hence

$$|\operatorname{Cross}(N' M)| = \prod_{j=1}^{(r-k)} \left(\sum_{i \in A_j} m_i \right).$$

This last expression may be written as a sum of products of (r - k) of the numbers $m_1, ..., m_r$ where no such product occurs more than once. Each such product corresponds to an unordered sequence of (r - k) distinct elements i(1), i(2), ..., i(r - k) of $\{1, 2, ..., r\}$ with $i(j) \in A_j$ for $1 \le j \le r - k$, and may be written as $m_{i(1)}m_{i(2)} \cdots m_{i(r-k)}$; this is just the number of cross sections $Y \subseteq M$ of N' such that $Y = \{u_1, u_2, ..., u_{(r-k)}\}$ with $u_j \in V_{i(j)}$ for $1 \le j \le r - k$. In other words,

$$Cross(NM(k)) = \{\{u_{i(1)}, ..., u_{i(r-k)}\} \mid i(1), ..., i(r-k)\}$$

is an unordered sequence of (r - k) distinct elements of $\{1, ..., r\}$ and $u_{i(j)} \in V_{i(j)}$ for $1 \leq j \leq r - k\}$, and hence

$$|\operatorname{Cross}(NM(k))| = f_{r-k}(m_1, m_2, ..., m_r),$$

the (r - k)-th elementary symmetric function in m_1 , m_2 ,..., m_r .

4. THEOREM 1

THEOREM 1. Let $N \in \pi_r(X)$ and $M \in p(X)$ with the section number $(m_1, m_2, ..., m_r)$. Assume that $m_i \neq 0$ for all i = 1, 2, ..., r. Then $[N, M](D_{r-k})$ contains t idempotent elements, where $t = (r - k)^k f_{r-k}(m_i)$ and $f_{r-k}(m_i)$ is the (r - k)-th elementary symmetric function in $m_1, m_2, ..., m_r$.

The proof of Theorem 1 follows from Lemmas 1, 2, and 3.

Remark. In Theorem 1, we can remove the condition $m_i \neq 0$.

COROLLARY 1. Every maximal principal right ideal of S_n contains

$$\sum_{i=1}^{n-1} i^{n-i-1} \left(\binom{n-2}{i-1} + \binom{n-1}{i} \right)$$

idempotents, where $\binom{m}{k}$ denotes a binominal coefficient.

Proof. For a proper maximal principal right ideal R of S_n , there is a unique N_{ij} in $\pi_{n-1}(X)$ such that $R = [N_{ij}, X](S_n) = \{\alpha \in S_n : M(\alpha) \subset X \text{ and } N_{ij} \subset N(\alpha)\}$. Then the section number of $[N_{ij}, X]$ is $(2, 1, ..., 1) = (m_1, m_2, ..., m_{n-1})$. By Theorem 1, $\bigcup_{k=0}^{n-2} [N_{ij}, X](D_{n-1-k})$ contains $\sum_{k=0}^{n-2} (n-1-k)^k f_{n-1-k}(m_i)$ idempotents, and the corollary follows.

COROLLARY 2. If H = (N, M) is an H-class of rank r containing an idempotent, then $\bigcup_{k=0}^{r-1} [N, M](D_{r-k})$ contains $\sum_{k=1}^{r} {r \choose k} k^{r-k}$ idempotents.

The proof is not difficult.

5. IDEMPOTENT GENERATED SEMIGROUPS

Howie [4] has defined an idempotent generated (IG) semigroup.

DEFINITION 4. A semigroup generated by idempotents will be called an IG semigroup.

Let $T_r = \{ \alpha \in S_n : \varphi(\alpha) \leq r \}$. We state two lemmas without proofs:

LEMMA 4. $D_r D_r \supset D_{r-1}$ for $r \leq n-1$.

LEMMA 5. Every element of D_r ($r \le n-1$) can be expressed as a product of idempotent elements in D_r .

By Lemmas 4 and 5, we have the following theorem:

THEOREM 2. T_r ($r \leq n-1$) is an IG semigroup generated by the idempotents of D_r .

6. MUTANTS IN THE SYMMETRIC SEMIGROUP S_n

We begin with a definition.

DEFINITION 5. A subset K of a semigroup T is said to be a mutant if $KK \subseteq T \setminus K$.

It is clear, by definition, that any mutant K of a semigroup T can not contain an idempotent. This indicates that mutants and the idempotents of a semigroup T have some kind of mutually exclusive relation. To give an explicit form of a maximal mutant of T_{n-1} ($4 \le n$), we introduce the following notation:

Notation. Define $M_i = X \setminus u_i$ (i = 1, 2, ..., n). $N_{ij} \in \pi_{n-1}(X)$ denotes a partition of rank n - 1 having one block consisting of two elements u_i and u_j $(i \neq j)$.

(i) (i, j) denotes a sequence from the set $\{1, 2, ..., n\}$ with j > i. Let (i, j) and (s, t) be two distinct sequences from the set $\{1, 2, ..., n\}$. We write (s, t) > (i, j) if either t > j or j = t and s > i. Letting $(m_1, m_2) > (n_1, n_2)$, define $[n_1n_2, m_1m_2] = \{N_{ij} \in \pi_{n-1}(X) : (n_1, n_2) \leq (i, j) \leq (m_1, m_2)\}$.

(ii) Let $t_2 > t_1$. Define $[t_1, t_2] = \{M_i \in p_{n-1}(X) : i = t_1, t_1 + 1, ..., t_2\}$.

(iii) $[n_1n_2, m_1m_2][t] = \{[N_{ij}, M_t] \in \pi_{n-1}xp_{n-1}(X) : N_{ij} \in [n_1n_2, m_1m_2]\}.$ $[n_1n_2][t_1, t_2] = \{[N_{n_1n_2}, M_t] : t = t_1, t_1 + 1, ..., t_2\}.$ $[n_1n_2, m_1m_2][t_1, t_2] = \{[N_{ij}, M_t] : N_{ij} \in [n_1n_2, m_1m_2] \text{ and } M_t \in [t_1, t_2]\}.$

(iv) $K_3 = \{[N_{12}, M_3], [N_{13}, M_2], [N_{23}, M_1]\}$. $K_4 = [12, 23][4] \cup [14, 24][3] \cup [34][1, 2]$.

(v) $K_5 = [12, 23][4, 5] \cup [14][2, 3] \cup [15][2, 3] \cup [24, 34][1] \cup [25, 45][1]. K_6 = [12, 34][5, 6] \cup [15, 25][3, 4] \cup [35, 16][2] \cup [26, 56][1]. K_7 = \cup A_i$, where $A_1 = [12, 45][6, 7], A_2 = [16, 36][4, 5], A_3 = [46, 17][2, 3], \text{ and } A_4 = [27, 67][1]. K_8 = \cup B_i$, where $B_1 = [12, 56][7, 8], B_2 = [17, 47][5, 6], B_3 = [57, 28][3, 4], \text{ and } B_4 = [38, 78][1, 2].$

(vi) $A(n) = [1 n - 3, n - 3 n - 2][n - 1, n] \cup [1 n - 1, n - 4 n - 1]$ $[n - 3, n - 2] \cup [n - 3 n - 1, n - 1 n][n - 5, n - 4] \cup [n - 5 n, n - 1 n]$ [n - 7, n - 6].

(vii) Let *n* be a positive integer of the form n = 4m + 4 + i for $1 \le i \le 4$. We define $K_n = A(n) \cup A(n-4) \cup \cdots \cup A(n-(m-1)4) \cup K_{4+i}$. If $A \in \pi_r x p_r(X)$, we define $A(D_r) = \{\alpha \in D_r : [N(\alpha), M(\alpha)] \in A\}$.

Now we can state:

THEOREM 3. Let $3 \le n$. Let S_n be the symmetric semigroup on n letters $u_1, u_2, ..., and u_n$.

(i) $K_n(D_{n-1})$ is a mutant in S_n .

(ii) $K_n(D_{n-1})$ is a maximal mutant of $T_{n-1} = S_n \setminus D_n$, that is, if $\alpha \in (T_{n-1} \setminus K_n(D_{n-1}))$, then $\{\alpha\} \cup K_n(D_{n-1})$ cannot be a mutant in T_{n-1} .

We omit the proof of Theorem 3.

Remark. To prove Theorem 3, we may need the following, which taken from a generalized Clifford and Miller's theorem for S_n [7]:

THEOREM. If H_1 and H_2 are two H-classes of S_n , then

$$H_1H_2 = \bigcup_{\substack{x \in H_1\\ y \in H_2}} H_{xy} \, .$$

References

- 1. A. H. CLIFFORD AND G. B. PRESTON, "The Algebraic Theory of Semigroups," Vols. I, II (Math. Surveys 7), American Mathematical Society, Providence, R.I., 1961, 1967.
- B. HARRIS AND L. SCHOENFELD, The number of idempotent elements in symmetric semigroups, J. Combinatorial Theory 3 (1967), 122-135.
- 3. E. HEWITT AND H. S. ZUCKERMAN, The irreducible representations of a semigroup related to the symmetric group, *Illinois J. Math.* (1957), 188–213.
- 4. J. M. HOWIE, The semigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc. 41 (1966), 707–716.
- 5. JIN BAI KIM, The rank of the product of two matrices, *Kyungpook Math. J.* 9 (1969), 27–30.
- 6. JIN BAI KIM, Mutants in semigroups, Czechoslovak Math. J. 19 (94) (1969), 86-90.
- 7. JIN BAI KIM, On full transformation semigroups, *Semigroup Forum* 1, No. 3 (1970), 236–242.
- G. B. PRESTON, Congruences on completely 0-simple semigroups, Proc. London Math. Soc. 11 (1961), 557-576.
- 9. G.-C. ROTA, The number of partitions of a set, Amer. Math. Monthly 71 (1964), 498-504.
- M. TAINITER, A characterization of idempotents in semigroups, J. Combinatorial Theory 5 (1968), 370–373.