Idempotents in Symmetric Semigroups

Jin Bai Kim
Department of Mathematics, West Virginia University, Morgantown, West Virginia

Communicated by G.-C. Rota
Received September 19, 1969

We count the number of idempotent elements in a certain section of the symmetric semigroup S_{n} on n letters. As a corollary of our result we have that every maximal principal right ideal of S_{n} contains

$$
\sum_{i=1}^{n-1} i^{n-i-1}\left(\binom{n-2}{i-1}+\binom{n-1}{i}\right)
$$

idempotent elements. Let $T_{r}(1 \leqslant r \leqslant n-1)$ be the set of all elements of S_{n} of rank less than or equal to r, and let D_{r} denote the set of all elements of S_{n} of rank r. Then T_{r} is a semigroup generated by the idempotent elements of D_{r}. We shall obtain a maximal mutant of $T_{n-1}=S_{n} / D_{n}$.

1. Introduction

Harris and Schoenfeld [2] and Tainiter [10] have given different proofs of known formulas regarding the number of idempotents in subsets of the symmetric semigroup S_{n} on n letters. In Theorem 1 , we shall get a counting formula for the number of idempotents in a certain section of the symmetric semigroup S_{n}. Any (known) counting formula for the number of idempotents in a subset of S_{n} can be obtained as a corollary of our result (Theorem 1). In Section 2, we shall explain the meaning of the term "section" which appeared in the abstract and the above. In Sections 3 and 4 , we shall count the number of idempotents in a certain section of S_{n} and prove Theorem 1.

Howie [4] has proved that T_{n-1} is a semigroup generated by the idempotents of T_{n-1}. In Section 5, we shall state Theorem 2 and then observe that Howie's result [4, Theorem 1] is a particular case of Theorem 2. Kim [6] has proved that, if T is a topologic semigroup and $a \in T$ is not an idempotent, then there exists a maximal open mutant of T containing a. (This does not give any information about the actual form of a maximal
mutant of a scmigroup.) In Section 6, we shall give (in Theorem 3) an explicit form of a maximal mutant of the semigroup $T_{n-1}(n>3)$.

2. Notation

Let $S=S_{n}=S_{X}$ be the symmetric (or full transformation) semigroup on n letters $\left\{u_{i}: i=1,2, \ldots, n\right\}=X$. The basic results on S can be found in [1, pp. 51-57]. If $X=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\alpha \in S$, then we may use the (classical) notation

$$
\alpha=\left(\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n} \\
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right)
$$

to mean that α is the mapping of X defined by $u_{i} \alpha=v_{i}(i=1,2, \ldots, n)$.
Let f_{α} be the equivalence relation on X defined by $u f_{\alpha} v(u, v \in X)$ iff $u \alpha=v \alpha$. Then with each element α in S we associate two sets: (1) the range $N(\alpha)=X \alpha$ of α, and (2) the partition $N(\alpha)=X \mid f_{\alpha}$, the equivalence classes of $X \bmod f_{\alpha} \cdot \varphi(\alpha)$ denotes the rank of α, that is, $\varphi(\alpha)=|M(\alpha)|$. If $M(\alpha)=\left\{v_{i}: i=1,2, \ldots, r\right\}$ and if we define

$$
v_{i} \alpha^{-1}=V_{i}=\left\{u \in X: u \alpha=v_{i}\right\}
$$

then we may write $N(\alpha)=\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}=\left\{V_{i}\right\}$, the partition on X corresponding to α; we may use the notation

$$
\begin{gathered}
\alpha=\left(\begin{array}{llll}
V_{1} & V_{2} & \cdots & V_{r} \\
v_{1} & v_{2} & \cdots & v_{r}
\end{array}\right)=\left(V_{1}, V_{2}, \ldots, V_{r} ; v_{1}, v_{2}, \ldots, v_{r}\right) \\
=\left(V_{i}, v_{i}: i=1,2, \ldots, r\right) .
\end{gathered}
$$

r is called the rank of the partition $N(\alpha)$.
Definition 1. $\pi(X)$ denotes the collection of all partitions on X and $\pi_{r}(X)=\{N \in \pi(X):$ the rank of N is $r\}$.
(i) Let $N \in \pi_{r}(X)$ and $N=\left\{U_{1}, U_{2}, \ldots, U_{r}\right\} . U_{i}$ is called a block of N (see Rota [9]).
(ii) Let $N_{1}=\left\{U_{1}, U_{2}, \ldots, U_{r}\right\}$ and $N_{2}=\left\{V_{1}, V_{2}, \ldots, V_{s}\right\}$ be elements of $\pi(X)$. If, for every block U_{i} of N_{1}, there is a block V_{j} in N_{2} such that U_{i} is a subset of V_{j}, then we write $N_{1} \subset N_{2}$.
(iii) $p(X)$ denotes the collection of all non-empty subsets of X, and $p_{r}(X)$ denotes the collection of all subsets of X with r elements.
(iv) Let $N \in \pi(X)$ and $M \in p(X)$. Then a pair [N, M] is called a partitionrange. $\pi_{r} x p_{s}(X)=\left\{[N, M]: N \in \pi_{r}(X)\right.$ and $\left.M \in p_{s}(X)\right\}$. D_{r} denotes the set of all elements $\alpha \in S_{n}$ of rank r.
(v) Let $\quad[N, M] \in \pi_{r} x p_{s}(X) . \quad[N, M]\left(D_{r}\right)=\left\{\beta \in D_{r}: M(\beta) \subset M \quad\right.$ and $N(\beta) \supset N\}$ is called the $N M$ section of D_{r}. (Now we can describe the meaning of the term "section" which appeared in the abstract.)

We shall count the number of idempotents in $[N, M]\left(D_{r}\right)$, where $N \in \pi(X)$ and $M \in p(X)$.

3. Lemmas

Let $\alpha \in S$. By Lemmas $2.5,2.6$, and 2.7 in [1], if $L_{\alpha}, R_{\alpha}, H_{\alpha}, D_{\alpha}$ denote, respectively, the L, R, H, D-class containing α, then we can write $N(\alpha)=N\left(H_{\alpha}\right)=N\left(R_{\alpha}\right)$ and $M(\alpha)=M\left(H_{\alpha}\right)=M\left(L_{\alpha}\right)$. We shall use the notation $N M\left(H_{\alpha}\right)=[N(\alpha), M(\alpha)]$ and $H_{\alpha}=\left(V_{1}, V_{2}, \ldots, V_{r} ; v_{1}, v_{2}, \ldots, v_{r}\right)$, where $N(\alpha)=\left\{V_{i}: i=1,2, \ldots, r\right\}$ and $M(\alpha)=\left\{v_{i}: i=1,2, \ldots, r\right\}$. We rewrite Theorem 2.10 -(i) of [1] in the following:

Lemma 1. Let H be an H-class of rank r with $H=\left(V_{1}, V_{2}, \ldots, V_{r} ; v_{1}\right.$, $\left.v_{2}, \ldots, v_{r}\right)$. Then H contains an idempotent iff $\left|V_{i} \cap M(H)\right|=1$ for all blocks $V_{i}(i=1,2, \ldots, r)$.

Definition 2. (i) Let H be as in Lemma 1. $N(H)$ is said to be a cross section of $N(H)$ if $\left|V_{i} \cap M(H)\right|=1$ for every $i=1,2, \ldots, r$ (see [1, p. 54]). $N \# M$ means M is a cross section of N.
(ii) Let $N \in \pi_{r}(X)$ and $N=\left\{V_{i}\right\}$. Let $M \in p_{s}(X)$. Then an unordered arrangement ($m_{1}, m_{2}, \ldots, m_{r}$) is called the section number of [N, M], where $m_{i}=\left|V_{i} \cap M\right|(i=1,2, \ldots, r)$.
(iii) Let $Y \in p_{r}(X)$. By the Y column of $[N, M]\left(D_{r}\right)$ is meant the set of all elements β in $[N, M]\left(D_{r}\right)$ such that $M(\beta)=Y$.

Lemma 2. Let $\alpha, \beta \in S$ with $M=M(\alpha)$ and $N=N(\beta)$. Let $Y \in p_{r}(X)$. If the Y column of $[N, M]\left(D_{r}\right)$ contains an idempotent, then the Y column of $[N, M]\left(D_{r}\right)$ contains $r^{q(\beta)-r}$ idempotents.

Proof. Letting $Y=\left\{a_{i}: i=1,2, \ldots, r\right\}$, assume that the Y column of [$N, M]\left(D_{r}\right)$ contains an idempotent η. Then $M(\eta)=Y$ by Definition 2 -(iii). Let $N=N(\beta)=\left\{B_{i}: i=1,2, \ldots, k\right\} \in \pi_{k}(X)$. Then there exists a subset I of the set $J=\{1,2, \ldots, k\}$ with r elements such that $B_{i}(i \in I)$ contains just one element a_{j} of Y. Without loss of generality we may assume that $I=\{1,2, \ldots, r\}$. Then we can see that $\left|B_{j} \cap Y\right|=0$ for all j in $\{r+1, r+2, \ldots, k\}$. Taking a set union of two blocks $B_{i}(i \in I)$ and $B_{j}(j=r+1, r+2, \ldots, k)$, we can construct r^{k-r} distinct partitions $\left\{N_{i} \in \pi_{r}(X): i=1,2, \ldots, r^{k-r}\right\}$ such that Y is a cross section of N_{i} for all i.

By Lemma 1, every H-class $H=\left(N_{i}, Y\right)$ determined by N_{i} and Y contains an idempotent, and hence the lemma follows.

Definition 3. (i) Let $A=\left\{N_{i} \in \pi_{r}(X): i=1,2, \ldots, k\right\}$.

$$
\operatorname{Cross}\left(\left(\bigcup_{i=1}^{k} N_{i}\right) M\right)
$$

denotes the collection of subsets Y of M such that Y is a cross section of a member N_{i} of A. $\operatorname{Cross}\left(\left(\cap_{i=1}^{k} N_{i}\right) M\right)$ denotes the collection of all subsets Y of M such that Y is a cross section of all N_{i} of A.
(ii) Let $N \in \pi_{r}(X)$. We define $\pi_{r-k}(N)=\left\{N_{i} \in \pi_{r-k}(X): N \subset N_{i}\right\}$ which will be called the k-th shadow of N. Let $M \in p(X) . \operatorname{Cross}(N M)=$ $\{Y \subset M: Y \# N\}$. Cross $(N M(k))$ denotes the collection of all $Y \subset p_{r-k}(X)$ such that $Y \subset M$ and Y is a cross section of a member of $\pi_{r-k}(N)$.

Lemma 3. Let $[N, M]=\left[\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}, M\right]$ be a partition-range with the section number $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. Assume that $m_{i} \neq 0(i=1,2, \ldots, r)$. $|\operatorname{Cross}(N M(k))|=f_{r-k}\left(m_{i}\right)$, the $(r-k)$-th elementary symmetric function in m_{1}, m_{2}, \ldots, and m_{r}.

Proof. If $\left\{A_{1}, A_{2}, \ldots, A_{(r-k)}\right\}$ is a partition of the set $\{1,2, \ldots, r\}$, then

$$
\left\{\bigcup_{i \in A_{1}} V_{i}, \bigcup_{i \in A_{2}} V_{i}, \ldots, \bigcup_{i \in A_{(r-k)}} V_{i}\right\}=N^{\prime}
$$

s a partition of X of $\operatorname{rank}(r-k)$ with $N \subset N^{\prime}$; hence

$$
\left|\operatorname{Cross}\left(N^{\prime} M\right)\right|=\prod_{j=1}^{(r-k)}\left(\sum_{i \in \mathcal{A}_{j}} m_{i}\right) .
$$

This last expression may be written as a sum of products of $(r-k)$ of the numbers m_{1}, \ldots, m_{r} where no such product occurs more than once. Each such product corresponds to an unordered sequence of $(r-k)$ distinct elements $i(1), i(2), \ldots, i(r-k)$ of $\{1,2, \ldots, r\}$ with $i(j) \in A_{j}$ for $1 \leqslant j \leqslant r-k$, and may be written as $m_{i(1)} m_{i(2)} \cdots m_{i(r-k)}$; this is just the number of cross sections $Y \subseteq M$ of N^{\prime} such that $Y=\left\{u_{1}, u_{2}, \ldots, u_{(r-k)}\right\}$ with $u_{j} \in V_{i(j)}$ for $1 \leqslant j \leqslant r-k$. In other words,

$$
\operatorname{Cross}(N M(k))=\left\{\left\{u_{i(1)}, \ldots, u_{i(r-k)}\right\} \mid i(1), \ldots, i(r-k)\right.
$$

is an unordered sequence of $(r-k)$ distinct elements of $\{1, \ldots, r\}$ and $u_{i(j)} \in V_{i(j)}$ for $\left.1 \leqslant j \leqslant r-k\right\}$, and hence

$$
|\operatorname{Cross}(N M(k))|=f_{r-k}\left(m_{1}, m_{2}, \ldots, m_{r}\right)
$$

the $(r-k)$-th elementary symmetric function in $m_{1}, m_{2}, \ldots, m_{r}$.

4. Theorem 1

Theorem 1. Let $N \in \pi_{r}(X)$ and $M \in p(X)$ with the section number $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. Assume that $m_{i} \neq 0$ for all $i=1,2, \ldots, r$. Then $[N, M]\left(D_{r-k}\right)$ contains t idempotent elements, where $t=(r-k)^{k} f_{r-k}\left(m_{i}\right)$ and $f_{r-k}\left(m_{i}\right)$ is the $(r-k)$-th elementary symmetric function in $m_{1}, m_{2}, \ldots, m_{r}$.

The proof of Theorem 1 follows from Lemmas 1, 2, and 3.
Remark. In Theorem 1, we can remove the condition $m_{i} \neq 0$.
Corollary 1. Every maximal principal right ideal of S_{n} contains

$$
\sum_{i=1}^{n-1} i^{n \cdots i-1}\left(\binom{n-2}{i-1}+\binom{n-1}{i}\right)
$$

idempotents, where $\binom{m}{k}$ denotes a binominal coefficient.
Proof. For a proper maximal principal right ideal R of S_{n}, there is a unique $N_{i j}$ in $\pi_{n-1}(X)$ such that $R=\left[N_{i j}, X\right]\left(S_{n}\right)=\left\{\alpha \in S_{n}: M(\alpha) \subset X\right.$ and $\left.N_{i j} \subset N(\alpha)\right\}$. Then the section number of $\left[N_{i j}, X\right]$ is $(2,1, \ldots, 1)=$ $\left(m_{1}, m_{2}, \ldots, m_{n-1}\right) . \quad$ By Theorem 1, $\bigcup_{k=0}^{n-2}\left[N_{i j}, X\right]\left(D_{n-1-k}\right) \quad$ contains $\sum_{k=0}^{n-2}(n-1-k)^{k} f_{n-1-k}\left(m_{i}\right)$ idempotents, and the corollary follows.

Corollary 2. If $H=(N, M)$ is an H-class of rank r containing an idempotent, then $\bigcup_{k=0}^{r-1}[N, M]\left(D_{r-k}\right)$ contains $\sum_{k=1}^{r}\binom{r}{k} k^{r-k}$ idempotents.

The proof is not difficult.

5. Idempotent Generated Semigroups

Howie [4] has defined an idempotent generated (IG) semigroup.
Definition 4. A semigroup generated by idempotents will be called an IG semigroup.

Let $T_{r}-\left\{\alpha \in S_{n}: \varphi(\alpha) \leqslant r\right\}$. We state two lemmas without proofs:
Lemma 4. $D_{r} D_{r} \supset D_{r-1}$ for $r \leqslant n-1$.

Lemma 5. Every element of $D_{r}(r \leqslant n-1)$ can be expressed as a product of idempotent elements in D_{r}.

By Lemmas 4 and 5, we have the following theorem:

Theorem 2. $T_{r}(r \leqslant n-1)$ is an IG semigroup generated by the idempotents of D_{r}.

6. Mutants in the Symmetric Semigroup S_{n}

We begin with a definition.
Definition 5. A subset K of a semigroup T is said to be a mutant if $K K \subset T \backslash K$.

It is clear, by definition, that any mutant K of a semigroup T can not contain an idempotent. This indicates that mutants and the idempotents of a semigroup T have some kind of mutually exclusive relation. To give an explicit form of a maximal mutant of $T_{n-1}(4 \leqslant n)$, we introduce the following notation:

Notation. Define $M_{i}=X \backslash u_{i}(i=1,2, \ldots, n) . \quad N_{i j} \in \pi_{n-1}(X)$ denotes a partition of rank $n-1$ having one block consisting of two elements u_{i} and $u_{j}(i \neq j)$.
(i) (i, j) denotes a sequence from the set $\{1,2, \ldots, n\}$ with $j>i$. Let (i, j) and (s, t) be two distinct sequences from the set $\{1,2, \ldots, n\}$. We write $(s, t)>(i, j)$ if either $t>j$ or $j=t$ and $s>i$. Letting $\left(m_{1}, m_{2}\right)>\left(n_{1}, n_{2}\right)$, define $\left[n_{1} n_{2}, m_{1} m_{2}\right]=\left\{N_{i j} \in \pi_{n-1}(X):\left(n_{1}, n_{2}\right) \leqslant(i, j) \leqslant\left(m_{1}, m_{2}\right)\right\}$.
(ii) Let $t_{2}>t_{1}$. Define $\left[t_{1}, t_{2}\right]=\left\{M_{i} \in p_{n-1}(X): i=t_{1}, t_{1}+1, \ldots, t_{2}\right\}$.
(iii) $\left[n_{1} n_{2}, m_{1} m_{2}\right][t]=\left\{\left[N_{i j}, M_{t}\right] \in \pi_{n-1} x p_{n-1}(X): N_{i j} \in\left[n_{1} n_{2}, m_{1} m_{2}\right]\right\}$. $\left[n_{1} n_{2}\right]\left[t_{1}, t_{2}\right]=\left\{\left[N_{n_{1} n_{2}}, M_{t}\right]: t=t_{1}, t_{1}+1, \ldots, t_{2}\right\} .\left[n_{1} n_{2}, m_{1} m_{2}\right]\left[t_{1}, t_{2}\right]=$ $\left\{\left[N_{i j}, M_{t}\right]: N_{i j} \in\left[n_{1} n_{2}, m_{1} m_{2}\right]\right.$ and $\left.M_{t} \in\left[t_{1}, t_{2}\right]\right\}$.
(iv) $K_{3}=\left\{\left[N_{12}, M_{3}\right], \quad\left[N_{13}, M_{2}\right], \quad\left[N_{23}, M_{1}\right]\right\} . \quad K_{4}=[12,23][4] \cup$ $[14,24][3] \cup[34][1,2]$.
(v) $K_{5}=[12,23][4,5] \cup[14][2,3] \cup[15][2,3] \cup[24,34][1] \cup$ $[25,45][1] . K_{6}=[12,34][5,6] \cup[15,25][3,4] \cup[35,16][2] \cup[26,56][1]$. $K_{7}=\cup A_{i}, \quad$ where $\quad A_{1}=[12,45][6,7], \quad A_{2}=[16,36][4,5], \quad A_{3}=$ $[46,17][2,3]$, and $A_{4}=[27,67][1] . K_{8}=\cup B_{i}$, where $B_{1}=[12,56][7,8]$, $B_{2}=[17,47][5,6], B_{3}=[57,28][3,4]$, and $B_{4}=[38,78][1,2]$.
(vi) $A(n)=[1 n-3, n-3 n-2][n-1, n] \quad \cup \quad[1 n-1, n-4 n-1]$ $[n-3, n-2] \cup[n-3 n-1, n-1 n][n-5, n-4] \cup[n-5 n, n-1 n]$ [$n-7, n-6]$.
(vii) Let n be a positive integer of the form $n=4 m+4+i$ for $1 \leqslant i \leqslant 4$. We define $K_{n}=A(n) \cup A(n-4) \cup \cdots \cup A(n-(m-1) 4) \cup$ K_{4+i}. If $A \in \pi_{r} \chi p_{r}(X)$, we define $A\left(D_{r}\right)=\left\{\alpha \in D_{r}:[N(\alpha), M(\alpha)] \in A\right\}$.

Now we can state:

Theorem 3. Let $3 \leqslant n$. Let S_{n} be the symmetric semigroup on n letters u_{1}, u_{2}, \ldots, and u_{n}.
(i) $K_{n}\left(D_{n-1}\right)$ is a mutant in S_{n}.
(ii) $K_{n}\left(D_{n-1}\right)$ is a maximal mutant of $T_{n-1}=S_{n} \backslash D_{n}$, that is, if $\alpha \in\left(T_{n-1} \backslash K_{n}\left(D_{n-1}\right)\right.$), then $\{\alpha\} \cup K_{n}\left(D_{n-1}\right)$ cannot be a mutant in T_{n-1}.

We omit the proof of Theorem 3.
Remark. To prove Theorem 3, we may need the following, which taken from a generalized Clifford and Miller's theorem for S_{n} [7]:

Theorem. If H_{1} and I_{2} are two H-classes of S_{n}, then

$$
H_{1} H_{2}=\bigcup_{\substack{x \in H_{1} \\ y \in I_{2}^{1}}} H_{x y}
$$

References

1. A. H. Clifford and G. B. Preston, "The Algebraic Theory of Semigroups," Vols. I, II (Math. Surveys 7), American Mathematical Society, Providence, R.I., 1961, 1967.
2. B. Harris and L. Schoenfeld, The number of idempotent elements in symmetric semigroups, J. Combinatorial Theory 3 (1967), 122-135.
3. E. Hewitt and H. S. Zuckerman, The irreducible representations of a semigroup related to the symmetric group, Illinois J. Math. (1957), 188-213.
4. J. M. Howie, The semigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc. 41 (1966), 707-716.
5. Jin Bai Kim, The rank of the product of two matrices, Kyungpook Math. J. 9 (1969), 27-30.
6. Jin Bai Kim, Mutants in semigroups, Czechoslovak Math. J. 19 (94) (1969), 86-90.
7. Jin Bai Kim, On full transformation semigroups, Semigroup Forum 1, No. 3 (1970), 236-242.
8. G. B. Preston, Congruences on completely 0-simple semigroups, Proc. London Math. Soc. 11 (1961), 557-576.
9. G.-C. Rota, The number of partitions of a set, Amer. Math. Monthly 71 (1964), 498-504.
10. M. Tainiter, A characterization of idempotents in semigroups, J. Combinatorial Theory 5 (1968), 370-373.
