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This paper is devoted to the large time behavior and especially
to the regularity of the global attractor of the second grade fluid
equations in the two-dimensional torus. We first recall that, for any
size of the material coefficient α > 0, these equations are globally
well posed and admit a compact global attractor Aα in (H3(T2))2.
We prove that, for any α > 0, there exists β(α) > 0, such that Aα

belongs to (H3+β(α)(T2))2 if the forcing term is in (H1+β(α)(T2))2.
We also show that this attractor is contained in any Sobolev space
(H3+m(T2))2 provided that α is small enough and the forcing term
is regular enough. These arguments lead also to a new proof of
the existence of the compact global attractor Aα . Furthermore we
prove that on Aα , the second grade fluid system can be reduced
to a finite-dimensional system of ordinary differential equations
with an infinite delay. Moreover, the existence of a finite number
of determining modes for the equations of the second grade fluid
is established.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

For dissipative evolutionary partial differential equations, which enjoy asymptotic smoothness (also
called asymptotic compactness) properties, the set J of all globally defined and bounded solutions
for t ∈ R, plays a special role. In general, the elements in this set J should enjoy certain regularity
properties in space and the trajectories in J should be as smooth in the time variable as the non-
linearity of the equation. We point out that, in the autonomous case, under additional dissipation
hypotheses, this set J coincides with the compact global attractor of the equation.
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These space or time regularity properties of J are obviously true for equations, which are smooth-
ing in finite time, such as ordinary differential equations or semi-linear parabolic equations [29]. For
example, the Navier–Stokes equations have this property of smoothing in finite time. When the sys-
tem is not smoothing in finite time, regularity (in space or time) of the elements J can be very
difficult to prove or could be even false. Note that regularity results are primordial in the theory of
perturbations of invariant sets and in particular of periodic orbits, as shown in [25] (see also [26]).

Numerous authors have shown regularity properties for J in the case of dynamical systems which
are not smoothing in finite time. For retarded functional differential equations in R

n with finite delay
or neutral functional differential equations, such results were obtained already thirty years ago by
Hale [20], Lopes [31], Nussbaum [34]. For dissipative evolutionary equations, which admit a compact
global attractor, regularity results have been proved by several authors, using different methods (for
the earliest results, see, for example, [17] for the damped wave equation, [18,19,35] for the weakly
damped Schrödinger equations, [32] for the weakly damped, forced Korteweg–de Vries equation, and
[36] for a review). In [17], in a same argument, Ghidaglia and Temam have shown space and time
regularity in Ck-type spaces for the global attractor of the damped wave equation (from their proof,
one could not deduce analyticity neither in time, nor in the spatial variables). In [18], Goubet showed
the existence of the compact global attractor and its regularity in Hk-spaces for the one-dimensional
weakly Schrödinger wave equation by using a Galerkin method. Applying the same Galerkin method,
Oliver and Titi have shown that this compact global attractor belongs actually to a Gevrey regularity
class.

In [24], Hale and Raugel have introduced a new type of Galerkin method, which, besides proving
again the above mentioned regularity results, allowed to show also analyticity in time of the orbits
on the global attractor and to reduce the system on the global attractor to a finite system of ordinary
differential equations with infinite delay. They gave applications to semilinear or quasilinear equa-
tions. In this paper, in addition of showing spatial regularity of the elements of the global attractor
for the nonlinear system of the grade two fluid equations, we extend the Galerkin method of Hale
and Raugel to this system and reduce the second grade fluid equations on the global attractor to a
finite system of ordinary differential equations with infinite delay. For an abstract formulation of this
extension of the Galerkin method of Hale and Raugel, we also refer the reader to [23].

Before presenting the second grade fluids equations, we recall that one of the first abstract regu-
larity results applying to partial differential equations was proved by Hale and Scheurle [27] in 1985.
Consider the equation

u̇ = Au + f (u), u(0) = u0 ∈ X, (1.1)

on a Banach space X , where A is the generator of a (linear) C0 semi-group and f (·) is a smooth map
on X . It is well known that, under these assumptions, for any u0 ∈ X , there exists a unique local mild
solution u(t) ∈ C0([0, T ); X) of (1.1). Assume that all these solutions exist on [0,+∞). Then one can
define the dynamical system S(t) on X , given by S(t)u0 = u(t) where u(t) is the unique mild solution
of (1.1). Assume that S(t) has a compact invariant set J in X , that is, S(t)J = J , for any t ∈ R. Then
there exists a positive number η such that, if ‖D f (v)‖L(X,X) � η for any v in a small neighborhood
of J , the mapping t ∈ R → S(t)u ∈ X for any u ∈ J is as smooth as f . The smoothness in the
time variable also implies smoothness in the spatial variable if (1.1) comes from a partial differential
equation. For example, if the restriction of S(t) to J is of class C1, then J is bounded in the domain
D(A), which usually is a smoother space than X .

In this paper, we study an example of an asymptotically smooth system (arising in non-Newtonian
fluid mechanics), which is not smoothing in finite time and, however, admits a compact global at-
tractor. The main difficulty here comes from the fact that this system is not semilinear, but really
nonlinear. Our goal is to show that this attractor is more regular than the phase space in which we
are working and to exhibit finite-dimensional properties of the global attractor. The system of second
grade fluids writes

∂t(u − α�u) − ν�u + rot(u − α�u) × u + ∇p = f , t > 0, x ∈ T
2,
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div u = 0, t > 0, x ∈ T
2,

u(0, x) = u0(x), x ∈ T
2, (1.2)

where T
2 is the two-dimensional torus (0,2π) × (0,2π) and where rot u ≡ curl u =

(0,0, ∂1u2 − ∂2u1). In this paper, we identify each 2-component vector-field u = (u1, u2) with the
3-component vector field u = (u1, u2,0) and each scalar m with the 3-component vector field
w = (0,0,m) (see Appendix A for more details). In the above equations, u, f , and p denote the
velocity vector field, the forcing term, and the pressure respectively.

Fluids of second grade are a particular class of non-Newtonian Rivlin–Ericksen fluids of differential
type [37] and the above precise form has been justified by Dunn and Fosdick [11]. The local existence
in time and uniqueness of strong solutions of Eqs. (1.2) in two-dimensional or three-dimensional
bounded domains with no slip boundary conditions have been shown by Cioranescu and Ouazar [9].
Moreover, in the two-dimensional case, they obtained global existence of solutions (that is, existence
on the time interval [0,+∞)). Moise, Rosa and Wang have shown later that these equations admit
a compact global attractor Aα [33]. So the question of the regularity and finite-dimensional behavior
of Aα naturally arises.

Note that Eqs. (1.2) differ from the so-called α-Navier–Stokes system (see e.g. [12] or [13] and
the references therein). Indeed, the α-Navier–Stokes model [13] contains the very regularizing term
−ν�(u − α�u) instead of −ν�u, and thus is a semilinear problem, which is much easier to solve.
This is not the case for the second grade fluids equations where the dissipation is weaker. The α-
models are used, in particular, as an alternative to the usual Navier–Stokes equations for numerical
modelling of turbulence phenomena in pipes and channels. We emphasize that the physics underlying
the second grade fluid equations and the α-models are quite different. There are numerous papers
devoted to the asymptotic behavior of α-types models, including Camassa–Holm equations, α-Navier–
Stokes equations, α-Bardina equations ([6,12] or [13]).

Let us now be more specific about the second grade fluid equations. We introduce the space V m ,
m ∈ N, which is the closure of the space{

u ∈ [
C∞(

T
2)]2

∣∣∣ u is periodic, div u = 0,

∫
T2

u dx = 0

}
,

in Hm(T2)2. The space V 0 will simply be denoted by H . By classical interpolation theory, we also
define the spaces V θ , for θ ∈ R

+ . We denote by Hm
per ≡ Hm

per(T
2)2 the space of vector fields u ∈

Hm(T2)2, which are periodic and whose mean value vanishes.
To simplify the discussion, we will assume in a large part of what follows that the forcing term

does not depend on the time variable. For any α > 0, for any forcing term f in H1
per , and for any

initial data u0 in V 3, the system (1.2) has a unique solution u ∈ C0([0,+∞), V 3) (see [9,33] and
Section 2 below). Actually, this solution u(t) is in C0(R, V 3). Thus, unlike the Navier–Stokes equa-
tions, the system (1.2) cannot be smoothing in finite time. However, as shown in [33], the system
(1.2) is asymptotically smooth (also called asymptotically compact). The system (1.2) defines a contin-
uous nonlinear semigroup (or dynamical system) Sα(t): u0 ∈ V 3 → Sα(t)u0 = u(t), where u(t) is the
unique solution of (1.2). Actually, this semigroup is a continuous nonlinear group. According to [33],
Sα(t) admits a compact global attractor Aα in V 3. We recall that Aα is a compact global attractor
of Sα(t) in V 3 if Aα is compact in V 3, invariant (i.e. Sα(t)Aα = Aα , for any t � 0), and attracts
all bounded sets of V 3, that is, for any ε > 0, for any bounded set B in V 3, there exists a time
T = T (ε, B) such that

Sα(t)B ⊂ NV 3(Aα;ε), for any t � T ,

where NV 3(Aα;ε) denotes the ε-neighborhood of Aα in V 3.
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We remark that, if f is time-dependent and belongs to C0
b (R, H1

per), then similar results are true.
Indeed, the existence results still hold and one can generalize the notion of global attractor and re-
place it by the notion of pullback attractor, for example. One can still study the set of all complete
bounded trajectories, that is, trajectories which are bounded for all t ∈ R. All the results that we
present in this paper are still true in that case. We leave this easy generalization to the reader.

In Section 3, we prove the following regularity result.

Theorem 1.1. 1) Let f ∈ H2
per . If a1 ≡ 2ν − 2α supz∈Aα

‖∇z‖L∞ > 0, the global attractor Aα is bounded

in V 4 . Moreover, there exists a positive constant M4 (independent of α), which can depend on a1 , such that,
for any u ∈ Aα ,

‖u‖2
V 3 + inf(1,α)‖u‖2

V 4 � M4 . (1.3)

2) For any α > 0, there exists a positive number β > 0, β � 1, depending only on α and the norm ‖ f ‖H1 , such

that, if f belongs to H1+β
per , then Aα is bounded in V 3+β . More precisely, there exists a positive constant M∗ ,

depending on ‖ f ‖H1+β such that

‖u‖2
V 2+β + inf(1,α)‖u‖2

V 3+β � M∗.

3) For any m � 2, there exists a positive number dm (which is a non-decreasing function of m), such
that, for any α > 0, if f ∈ Hm+1

per and am = 2ν − 2dmα(supz∈Aα
‖∇z‖L∞ ) > 0, then the global attrac-

tor Aα is bounded in V m+3 . Moreover, for any α0 > 0, there exists a positive constant Mm+3(α0) =
Mm+3(λ1, ν, f ,m,am,α0), depending only on λ1 , ν , f , m, am and α0 , such that, if 0 < α � α0 and am =
2ν − 2dmα(supz∈Aα

‖∇z‖L∞ ) > 0, then, for any u ∈ Aα ,

‖u‖2
V m+2 + α‖u‖2

V m+3 � Mm+3(α0). (1.4)

If am−1 > 0 and am � 0, then there exists θ0 > 0 such that the global attractor Aα is bounded in V m+2+θ0

and, for any 0 < α � α0 , for any u ∈ Aα ,

‖u‖2
V m+1+θ0

+ α‖u‖2
V m+2+θ0

� Mm+2+θ0(α0), (1.5)

where Mm+2+θ0 (α0) = M(λ1, ν, f ,m, θ0,am−1,α0) does not depend on α.

Remark. Let P be the Leray projection of H0
per ≡ (L2

per(T
2))2 onto H , that is, the orthogonal projection

of (L2
per(T

2))2 onto the subset of divergence free vectors fields. In Section 2.2, we are going to give
various upper bounds of α supz∈Aα

‖∇z‖L∞ depending on α and ‖P f ‖H1 . These estimates show that
ν − dmα supz∈Aα

‖∇z‖L∞ is strictly positive if for example α or ‖P f ‖H1 are small enough (see the
estimates (2.16) and (2.33) in Section 2.2).

Theorem 1.1 will be proved by decomposing system (1.2) into two affine non-autonomous systems.
More precisely, let u(t) be a trajectory of Sα(t) contained in the global attractor Aα . We write u(t) as
u(t) = vn(t) + wn(t), where vn(t) and wn(t) are the solutions of the following two non-autonomous
affine equations

∂t(vn − α�vn) − ν�vn + rot(vn − α�vn) × u + ∇pn = f , t > sn, x ∈ T
2,

div vn = 0, t > sn, x ∈ T
2,

vn(sn, x) = 0, x ∈ T
2, (1.6)

and
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∂t(wn − α�wn) − ν�wn + rot(wn − α�wn) × u + ∇ p̃n = 0, t > sn, x ∈ T
2,

div wn = 0, t > sn, x ∈ T
2,

wn(sn, x) = u(sn, x), x ∈ T
2, (1.7)

where sn ∈ R is an given “initial” time, which will go to −∞. Since system (1.6) has zero initial data,
we shall be able to prove that the solution of (1.6) is bounded in V m+3, provided that f is bounded
in Hm+1

per and α is sufficiently small. We will show that system (1.7) has a global solution wn(t) on

the time interval [sn,+∞), which is exponentially decaying to 0 in V 3 when t − sn goes to infinity.
Notice that related decompositions of dynamical systems into two auxiliary systems, the first system
admitting smoother solutions and the second one having exponentially decreasing solutions, have
been used in earlier papers. For example, in order to show the existence of a compact global attractor
for the damped wave equation with critical exponent, Arrieta, Carvalho and Hale have decomposed
their equation into two nonlinear equations [1] (see also [2] for similar decompositions). For more
details on the comparison between linear and nonlinear decompositions, we refer the reader to [23].
In their proofs of regularity of the global attractor, Goubet [18], Oliver and Titi [35], Moise and Rosa
[32] and Hale and Raugel [24] have also split the systems under consideration into two equations, but
in addition, they have used spectral projections. Here the difference lies in the fact that we do not
need spectral projections and that we use “linear systems” instead of nonlinear ones. Another crucial
remark is that, when estimating the solutions of (1.6) and (1.7), due to some cancellations, the “bad
terms” rot(vn −α�vn)×u and rot(wn −α�wn)×u disappear. We emphasize that these cancellations
will be used very often in this paper and that they are proved in Lemma A.1 of Appendix A.

At the end of the first part of this paper, that is, in Section 4, using the above regularity results,
we study the convergence of the solutions of Eqs. (1.2) to those of the Navier–Stokes equations and
give a V s-estimate of the difference of their solutions, for 0 � s < 3. From these estimates and the
properties of the global attractor of the two-dimensional Navier–Stokes equations, we deduce the
upper-semicontinuity of the attractors Aα at α = 0 in V s , when f belongs to the space H2

per , that is,
we show that

lim
α→0

sup
uα∈Aα

inf
u∈A0

‖uα − u‖V s = 0, 0 � s < 3,

where A0 is the compact global attractor of the Navier–Stokes system with forcing term f .
In the second part of this paper, assuming that a∗

1 ≡ 2ν −4α(supz∈Aα
‖∇z‖L∞ ) > 0, we concentrate

on “finite-dimensional properties” of the global attractor Aα . Our main goal is to reduce the second
grade fluid equations (1.2) on the global attractor to a finite system of ordinary differential equations
with infinite delay. In particular, we want to show that every complete trajectory u(t), t ∈ R, which is
contained in Aα , is uniquely determined by the low modes part of it. Here we use the construction
and the Galerkin method introduced by Hale and Raugel [24] in the general frame of semilinear
equations. As we have already indicated, in the case of the second grade fluid equations, we have to
face the problem that these nonlinear equations are not semilinear. Before stating our main results in
this direction, we will describe the strategy of the proof in the semilinear case considered in [24].

In [24], the following general equation has been considered:

ut = Bu + h(u), u(0) = u0 ∈ Y , (1.8)

where B is the generator of a C0 semi-group on a Banach space Y and h is a nonlinear C1-map from
Y into Y . Assume that Eq. (1.8) admits a compact global attractor A in Y . Let Pn be the projector
onto an appropriate subspace of Y of dimension n (usually Pn is a spectral projection), such that
Pn converges strongly to the identity as n goes to infinity. For sake of simplicity, we assume that
B Pn = Pn B . We set Q n = Id − Pn . If u(t), t ∈ R, is a complete trajectory contained in the global
attractor A, v(t) = Pnu(t) and q(t) = Q nu(t) satisfy the equations
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
vt = B v + Pnh(v + q),

q(t) =
t∫

−∞
e(t−s)B Q nh

(
v(s) + q(s)

)
ds,

(1.9)

which means that q(t) is a fixed point of the map

w ∈ C0
bu(R, Q nY ) →

t∫
−∞

e(t−s)B Q nh
(

v(s) + w(s)
)

ds ∈ C0
bu(R, Q nY ), (1.10)

where C0
bu(R, Q nY ) denotes the space of all bounded, uniformly continuous functions from R into

Q nY . In [24], the authors have proved that, under some additional hypotheses, for any v(t) in the
subset C0

bu(R, N ) of C0
bu(R, PnY ), where N is a neighborhood of Pn Aα in PnY , the map defined by

(1.10) is a strict contraction and thus admits a unique fixed point qv in a small neighborhood of 0
in C0

bu(R, Q nY ), provided n is large enough. We remark that, by construction, qv(t) depends on v(s),
s � t . This implies that, on A, Eq. (1.8) reduces to the following finite-dimensional system of retarded
functional differential equations with infinite delay

vt = B v + Pnh(v + qv).

The above construction can somehow be considered as a generalization of the construction of an
inertial manifold and an inertial form (in the case of parabolic equations, see the generalization of
inertial manifold of Debussche and Temam [10]).

Here we follow a similar strategy. However, our proofs are more complex because of the presence
of the nonlinear term − rot(α�u(t)) × u(t). We point out that our construction of the fixed point
differs somehow from the previous one. Indeed, due to the special properties of the quadratic non-
linearity in the system (1.2), qv will be the fixed point of an appropriate affine time-dependent map
instead of a nonlinear map as in (1.10).

Among other properties, in Section 5, we shall prove Theorem 1.2 below. We recall that P denotes
the classical orthogonal projection of (L2

per(T
2))2 onto the subspace H of L2-divergence-free vector

fields. In what follows, we introduce the orthogonal projection Pn in H onto the space spanned by
the eigenfunctions corresponding to the first n eigenvalues of the Stokes operator A = −P�. Finally,
we introduce the projection Q n = I − Pn . Hereafter, B Q n V 3 (0, r) denotes the ball of center 0 and radius

r > 0 in Q n V 3, where Q n V 3 is equipped with the norm (‖ · ‖2
V 2 + α‖ · ‖2

V 3)
1
2 . Let B be a bounded

subset of a metric space X ; we denote C0
b (R, B) (respectively C0

bu(R, B)) the space of bounded and
continuous (respectively uniformly continuous) functions from R into B .

Theorem 1.2. Let f be given in H1+d
per , 0 < d � 1.

We assume that a∗
1 ≡ 2ν − 4α(supz∈Aα

‖∇z‖L∞ ) > 0. Then, there exist an integer N1 and a small positive
constant r such that, for n � N1 , each solution u(t) of (1.2), which belongs to the attractor Aα for t ∈ R, can
be represented as

u = vn + qn(vn), vn ∈ Pn Aα,

where qn maps the subset C0
b (R, N ) of C0

b (R, Pn V 3+d) into C0
b (R, B Q n V 3(0, r)) and where N is an appropri-

ate neighborhood of Pn Aα in Pn V 3+d. Furthermore, qn(vn)(t) depends only upon vn(s), s � t and Eqs. (1.2)
on Aα reduce to the following system of n retarded functional differential equations

∂t(vn − α�vn) − ν�vn + Pn P
(
rot

(
vn + qn(vn) − α�

(
vn + qn(vn)

)) × (
vn + q(vn)

)) = Pn P f .
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In the case where d vanishes, the following slightly weaker property holds (see Section 5 for more
details).

Remark 1.1. Assume now that f is given in H1+d
per with d = 0 (that is, f ∈ H1

per) and that a∗
1 ≡

2ν − 4α(supz∈Aα
‖∇z‖L∞) > 0. Then, there exist an integer N1 and a small positive constant r such

that, for n � N1, the properties described in Theorem 1.2 hold, provided that 0 < α � αn , where αn is
a small positive number, which may depend on n.

Theorem 1.2 will be made more precise in a series of lemmas in Section 5.
Like in [24], we deduce from Theorem 1.2 the so-called “finite number of determining modes

property” for the system (1.2), when α is small enough. The property of “finite number of determining
modes” was introduced and proved for the two-dimensional Navier–Stokes equations by Foias and
Prodi in 1967 [14]. This property tells that the asymptotic behavior in time of the second grade fluid
system depends only on a finite number of parameters (called the determining modes).

From Theorem 1.2 and from the proof of Theorem 2.7 in [24], we at once deduce the following
result

Theorem 1.3. Let f be given in H1+d
per , d > 0.

We assume that 2ν − 4α(supz∈Aα
‖∇z‖L∞) > 0. Then system (1.2) has the property of finite number of

determining modes, that is, there exists a positive integer N0 such that, for any u0 , u1 in V 3 , the property∥∥P N0 Sα(t)u0 − P N0 Sα(t)u1
∥∥

V 3 →t→+∞ 0

implies that ∥∥Sα(t)u0 − Sα(t)u1
∥∥

V 3 →t→+∞ 0.

We point out that we also could directly prove Theorem 1.3, without applying Theorem 1.2, by
performing appropriate a priori estimates. But, showing Theorem 1.3 as a consequence of Theorem 1.2
and of the proof of [24, Theorem 2.7] is much shorter.

The paper is organized as follows. In Section 2, we recall the global existence and uniqueness of
solutions of (1.2) in V 3 and the existence of a compact global attractor Aα in V 3. We give various
estimates of the solutions of (1.2), which improve the previously known estimates. We also prove
different estimates for appropriate non-autonomous affine equations associated to (1.2). We use these
estimates to show the property of propagation of regularity for the second grade fluid equations, that
is, we prove that, if the initial data are more regular, then the solution of (1.2) is uniformly bounded
in a smoother space. Section 3 is devoted to the regularity properties of the compact global attractor.
In particular, we show that there exists β > 0 such that Aα ⊂ V 3+β if the forcing term f belongs to
H1+β

per . Furthermore, we prove that Aα ⊂ V m+3 provided that the forcing term f belongs to Hm+1
per ,

m � 1, and that the material coefficient α is small enough. These arguments also lead to another
proof of existence of the compact global attractor (see Remark 3.2). Section 4 deals with the upper
semicontinuity of the attractors Aα , when α goes to zero. In Section 5, we show that the high modes
component of any solution on the attractor is uniquely determined by the low modes component and
prove that the dynamics on the attractor can be completely described by a finite-dimensional system
of retarded ODE’s with infinite time delay.

2. Global existence of solutions and compact global attractor

2.1. Global existence of solutions and group property

The first result of existence and uniqueness of global solutions of Eqs. (1.2) is due to Cioranescu
and Ouazar [9]. Before stating it, we recall a few notations and the definition of strong solutions
of (1.2).
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We recall that V m , m ∈ N denotes the closure of the space{
u ∈ [

C∞(
T

2)]2
∣∣∣ u is periodic, div u = 0,

∫
T2

u dx = 0

}
,

in Hm(T2)2 and that we simply write H = V 0. We equip the space V m with the classical Hm-norm,
denoted ‖ · ‖V m ≡ ‖ · ‖Hm . We denote by (·,·) the usual L2(T2)2-scalar product. We also introduce the
space

W = {
u ∈ V 1

∣∣ rot(u − α�u) ∈ L2(
T

2)},
equipped with the scalar product

(u, w)W =
∫
T2

(
u · w + rot(u − α�u) · rot(w − α�w)

)
dx.

As already remarked in [8], if u belongs to W , then u is in V 3. Moreover, there exists a positive
constant C0 independent of α such that, for any u ∈ W ,

‖∇u‖2
L2 + 2α‖�u‖2

L2 + α2‖∇�u‖2
L2 � C0

∥∥rot(u − α�u)
∥∥2

L2 . (2.1)

In what follows, we will use this inequality, without further notice.

Definition 2.1. For given f ∈ L∞((0, T ); H1
per) and u0 ∈ V 3, we say that the vector field u = u(t, x) is

a strong solution of Eq. (1.2) on the interval [0, T ], T > 0, if u ∈ C0([0, T ]; V 3), ∂t u ∈ L∞((0, T ), V 2),
u(0) = u0, and the following equation holds, for any w ∈ H ,

(
∂t

(
u(t) − α�u(t)

) − ν�u(t) + rot
(
u(t) − α�u(t)

) × u(t), w
) = (

f (t), w
)
. (2.2)

In 1982, Cioranescu and Ouazar [9] showed the global existence and uniqueness of a solution
u(t) of (1.2) in L∞((0,+T ), V 3) (with ∂t u ∈ L∞((0, T ), W ′)), when u0 belongs to V 3 and f is in
L∞((0, T ), V 1) (in the three-dimensional case, they showed local existence and uniqueness of the
solution). When f and u0 are more regular, then these solutions are classical, as shown by Galdi
and Sequeira in [15] (see also [16] for example). In [8], Cioranescu and Girault proved that, in the
three-dimensional case, if the data are small enough, then the solution is also global.

In summary, using the existing results and their proofs, one can easily deduce the following exis-
tence and uniqueness results.

Theorem 2.1. Let α > 0 and T > 0.

1. For any f ∈ L∞((0, T ); H1
per) (respectively any f ∈ L∞((0,+∞); H1

per)) and any u0 ∈ V 3 , there ex-

ists a unique (strong) solution u in C0([0, T ], V 3) ∩ W 1,∞((0, T ), V 2) (resp. u ∈ C0
b ([0,∞), V 3) ∩

W 1,∞((0,∞), V 2)) of system (1.2). Moreover, for any t ∈ [0, T ], the map u0 ∈ V 3 �→ u(t) ∈ V 3 is con-
tinuous.

2. Likewise, if f ∈ L∞([−T ,0]; H1
per), then, for every u0 ∈ V 3 , there exists a unique strong solution u(t) ∈

C0([−T ,0]; V 3)∩W 1,∞((−T ,0), V 2) of Eqs. (1.2) for t ∈ [−T ,0], with initial data u(0) = u0 . Moreover,
for any t ∈ [−T ,0], the map u0 ∈ V 3 �→ u(t) ∈ V 3 is continuous.
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As indicated, the global existence and uniqueness of the solution u(t) ∈ L∞((0, T ), V 3) of (1.2) are
proved in [9], for T > 0. The existence and uniqueness results for negative times are straightforward
and are shown in [33], by reversing the time in system (1.2). The fact that the solution u(t) belongs
to C0([0, T ), V 3) has been proved in [33, Section 4.1]. Note that the continuity property with respect
to t of u(t) in V 3 follows from the continuity of the norm ‖u(t)‖V 3 and from the fact that u(t) is
weakly continuous from [0,+∞) into V 3. The continuity of the V 3-norm is a consequence of the
following “energy equality”, valid for any t ∈ [0, T ],∥∥(

rot(u − α�u)
)
(t)

∥∥2
L2 = e− 2ν

α t
∥∥(

rot(u − α�u)
)
(0)

∥∥2
L2

+
t∫

0

e− 2ν
α (t−s)

(
2 rot f (s) + 2ν

α
rot u(s), rot(u − α�u)(s)

)
ds. (2.3)

In Theorem 2.3, we will give another proof of the continuity of u(t) with respect to the time variable t .
The continuity of the map u0 ∈ V 3 �→ u(t) ∈ V 3, where u(t) is the solution of system (1.2) is also
shown in [33, Section 4.1] and uses the energy equality (2.3) as well.

Notice that the second statement of Theorem 2.1 rules out the possibility of a smoothing effect in
finite time for Eqs. (1.2), when α > 0. This is an important difference with the Navier–Stokes equa-
tions.

In the largest part of what follows, we assume that the forcing term f is independent of t . In
this case, Theorem 2.1 implies in particular that the map Sα(t) : u0 �→ u(t), where u(t) is the strong
solution of (1.2) with initial data u0, defines a continuous flow (or C0-nonlinear group) on V 3. Ap-
plying the method of functionals introduced by J. Ball in 1992 (see [3,4]), Moise, Rosa, and Wang [33]
have shown that the dynamical system Sα(t) is asymptotically smooth in the sense of Hale [22] or
asymptotically compact in the sense of Ladyzenskaya. This property together with the fact that Sα(t)
admits a bounded absorbing set in V 3 implies that Sα(t) admits a compact global attractor in V 3. For
more details on the notions of asymptotic smoothness, asymptotic compactness, absorbing sets, etc.,
see [2,21,22] or [36] for example.

Theorem 2.2. Assume that f belongs to H1
per and does not depend on the time variable. Then, for any α > 0,

Sα(t) has a compact global attractor Aα in V 3 .

In Section 3 below, we will prove that Eqs. (1.2) have an asymptotic smoothing effect, namely, that
the global attractors Aα are more regular if the forcing term is more regular. We will show that these
global attractors are as smooth as one wishes, provided that the coefficient α is sufficiently small
and f is sufficiently regular. In Section 3, we will also give another simple proof of the asymptotic
compactness of Sα(t) if f belongs to H1+d

per , d > 0 (see Remark 3.2).

2.2. Various a priori estimates

In this section, we show a few a priori estimates, which are more or less contained in earlier
papers (see [9,33], as well as [15] and [8] in the three-dimensional case). We will also show that
the norm ‖ · ‖V 2 + (inf(1,

√
α))‖ · ‖V 3 is uniformly bounded on the global attractor Aα by a positive

constant C , which is independent of α.
Let λn , n � 1, be the eigenvalues (in increasing order) of the Stokes operator A = −P� corre-

sponding to the eigenfunctions in V 3. Since the considered eigenfunctions have mean value zero, λ1
is strictly positive. In particular, we have, for any u ∈ V 1,

‖u‖2
L2 + α‖∇u‖2

L2 �
(
λ−1

1 + α
)‖∇u‖2

L2 . (2.4)

In what follows, we will establish several formal a priori estimates. All these a priori estimates can
be rigorously justified by the use of a classical Galerkin method. Thus, without loss of generality, we
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may assume here that u is regular enough. Taking the inner product in L2(T2)2 of Eq. (1.2) with u
and applying (2.4), we get the following inequalities, for any t � 0,

1

2
∂t

(‖u‖2
L2 + α‖∇u‖2

L2

) + ν

2
‖∇u‖2

L2 � 1

2λ1ν
‖ f ‖2

L2 , (2.5)

and,

∂t
(‖u‖2

L2 + α‖∇u‖2
L2

) + ν

(λ−1
1 + α)

(‖u‖2
L2 + α‖∇u‖2

L2

)
� 1

νλ1
‖ f ‖2

L2 .

Integrating the previous estimate and using the Gronwall inequality, we obtain, for t � 0,

∥∥u(t)
∥∥2

L2 + α
∥∥∇u(t)

∥∥2
L2 � exp

(
− νt

(λ−1
1 + α)

)(∥∥u(0)
∥∥2

L2 + α
∥∥∇u(0)

∥∥2
L2

)
+ (λ−1

1 + α)

ν2λ1
‖ f ‖2

L∞
t (L2)

, (2.6)

where, for any Banach space X , L∞
t (X) denotes the set L∞((0, t), X), while L∞(X) denotes the set

L∞((0,+∞), X). In particular, if f does not depend on the time variable, any element u ∈ Aα satisfies
the following estimate

‖u‖2
L2 + α‖∇u‖2

L2 �
2(λ−1

1 + α)

ν2λ1
‖ f ‖2

L2 . (2.7)

We remark that the estimate (2.7) together with the Poincaré inequality imply that the norm ‖u‖L2

is bounded by a constant independent of α > 0.
Integrating the inequality (2.5) from t to t + τ , τ > 0, and taking into account the estimate (2.6),

we also get, for t � 0,

∥∥u(t + τ )
∥∥2

L2 + α
∥∥∇u(t + τ )

∥∥2
L2 + ν

t+τ∫
t

∥∥∇u(s)
∥∥2

L2 ds

� exp

(
− νt

(λ−1
1 + α)

)(∥∥u(0)
∥∥2

L2 + α
∥∥∇u(0)

∥∥2
L2

) +
(

λ−1
1 + α

ν2λ1
+ τ

νλ1

)
‖ f ‖2

L∞(L2)
. (2.8)

We next want to obtain a priori estimates of the H2 and H3 norms of the solutions of Eqs. (1.2).
Assume that u(t) is a smooth enough solution of (1.2). Taking the vorticity of the first equation
in (1.2), we obtain the equation

∂t rot(u − α�u) − ν� rot u + rot
(
rot(u − α�u) × u

) = rot f . (2.9)

Taking the L2-inner product of (2.9) with rot(u − α�u) and using the identities (A.2) and (A.5) of
Appendix A lead to the following equality

1

2
∂t

∥∥rot(u − α�u)
∥∥2

L2 + ν
(‖∇ rot u‖2

L2 + α‖� rot u‖2
L2

) = (
rot f , rot(u − α�u)

)
. (2.10)

Remarking that,
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‖rot u‖2
L2 + 2α‖∇ rot u‖2

L2 + α2‖� rot u‖2
L2 �

(
λ−1

1 + 2α
)(‖∇ rot u‖2

L2 + α‖� rot u‖2
L2

)
, (2.11)

we deduce from the previous equality (2.10) that, for t � 0,

∂t
∥∥rot(u − α�u)

∥∥2
L2 + ν

2(λ−1
1 + 2α)

∥∥rot(u − α�u)
∥∥2

L2 + ν

2

(‖∇ rot u‖2
L2 + α‖� rot u‖2

L2

)
�

(λ−1
1 + 2α)

ν
‖rot f ‖2

L2 . (2.12)

Integrating this inequality and using Gronwall Lemma, we obtain, for t � 0 and for any 0 < β0 �
ν

2(λ−1
1 +2α)

,

∥∥rot u(t)
∥∥2

L2 + 2α
∥∥∇ rot u(t)

∥∥2
L2 + α2

∥∥� rot u(t)
∥∥2

L2

+ ν

2

t∫
0

exp
(
β0(s − t)

)(∥∥∇ rot u(s)
∥∥2

L2 + α
∥∥� rot u(s)

∥∥2
L2

)
ds

� exp(−β0t)
∥∥rot

(
u(0) − α�u(0)

)∥∥2
L2 + λ−1

1 + 2α

β0ν
‖rot f ‖2

L∞
t (L2)

. (2.13)

The continuous Sobolev embedding V 3 ⊂ (W 1,∞(T2))2 implies that, for t � 0,

α
∥∥∇u(t)

∥∥
L∞ � C S

(
exp

(
−β0

2
t

)∥∥rot
(
u(0) − α�u(0)

)∥∥
L2

+
(

(λ−1
1 + 2α)

β0ν

)1/2

‖rot f ‖L∞
t (L2)

)
. (2.14)

In particular, if f is time-independent, any element u ∈ Aα satisfies the following bound,

∥∥rot(u − α�u)
∥∥2

L2 = ‖rot u‖2
L2 + 2α‖∇ rot u‖2

L2 + α2‖� rot u‖2
L2

�
2(λ−1

1 + 2α)2

ν2
‖rot f ‖2

L2 . (2.15)

We at once deduce from (2.15) and the Poincaré inequality that, for any u ∈ Aα , the norm ‖rot u‖L2

is bounded by a constant depending only on ‖ rot f ‖L2 , and that, for α > 0, we have

‖� rot u‖L2 �
√

2

ν

(
λ−1

1

α
+ 2

)
‖rot f ‖L2 ,

α‖∇u‖L∞ � C S

√
2(λ−1

1 + 2α)

ν
‖rot f ‖L2 . (2.16)

Integrating the estimate (2.12) between t and t + 1, we deduce from the inequality (2.13) that
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∥∥rot(u − α�u)(t + 1)
∥∥2

L2 + ν

2

t+1∫
t

(∥∥∇ rot u(s)
∥∥2

L2 + α
∥∥� rot u(s)

∥∥2
L2

)
ds

� exp

(
− νt

2(λ−1
1 + 2α)

)∥∥rot(u − α�u)(0)
∥∥2

L2

+ (λ−1
1 + 2α)

ν

(
1 + 2(λ−1

1 + 2α)

ν

)
‖rot f ‖2

L∞
t+1(L2)

. (2.17)

If f depends on the time variable and is square-integrable in time, the estimate (2.13) is simply
replaced by the following one. Integrating the estimate (2.12) between 0 and t , we obtain, for t � 0,

∥∥rot(u − α�u)(t)
∥∥2

L2 + ν

2

t∫
0

(∥∥∇ rot u(s)
∥∥2

L2 + α
∥∥� rot u(s)

∥∥2
L2

)
ds

�
∥∥rot

(
u(0) − α�u(0)

)∥∥2
L2 + λ−1

1 + 2α

ν
‖rot f ‖2

L2
t (L2)

. (2.18)

When αλ1 � 1 for example, the estimates (2.13) and (2.15) can be improved. Indeed, taking the L2-
inner product of (2.9) with −� rot u and noticing that, by the properties (A.2) and (A.5) of Appendix A,(

rot(rot �u × u), rot �u
) = 0, (2.19)

we get,

1

2
∂t

(‖∇ rot u‖2
L2 + α‖� rot u‖2

L2

) + ν‖� rot u‖2
L2 − (

rot(rot u × u),� rot u
)

= −(rot f ,� rot u). (2.20)

The properties (A.2) and (A.3) in Appendix A imply that

(
rot(rot u × u),� rot u

) =
2∑

i, j=1

∫
T2

∂ jui�ui�u j dx.

Using the Gagliardo–Nirenberg and Young inequalities, we thus obtain,∣∣(rot(rot u × u),� rot u
)∣∣ � C‖∇u‖L2‖∇ rot u‖2

L4 � C‖∇u‖L2‖∇ rot u‖2
H1/2

� C‖∇u‖L2‖∇ rot u‖L2‖� rot u‖L2 . (2.21)

The properties (2.20) and (2.21) together with the condition αλ1 � 1 imply that

∂t
(‖∇ rot u‖2

L2 + α‖� rot u‖2
L2

) + νλ1

4

(‖∇ rot u‖2
L2 + α‖� rot u‖2

L2

) + ν

2
‖� rot u‖2

L2

� 2

ν
‖rot f ‖2

L∞
t (L2)

+ C

ν
‖∇u‖2

L2‖∇ rot u‖2
L2 . (2.22)

Let

β1 = νλ1
. (2.23)
4(1 + 2λ1α)
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Integrating the inequality (2.22) and applying Gronwall inequality, we get, for t � 0,

∥∥∇ rot u(t)
∥∥2

L2 + α
∥∥� rot u(t)

∥∥2
L2 + ν

2

t∫
0

exp
(
β1(s − t)

)∥∥� rot u(s)
∥∥2

L2 ds

� exp(−β1t)
(∥∥∇ rot u(0)

∥∥2
L2 + α

∥∥� rot u(0)
∥∥2

L2

) + 2

β1ν
‖rot f ‖2

L∞
t (L2)

+ C

ν
‖∇u‖2

L∞
t (L2)

t∫
0

exp
(
β1(s − t)

)∥∥∇ rot u(s)
∥∥2

L2 ds. (2.24)

Taking into account the estimate (2.13), we deduce from the previous inequality that, for t � 0,

∥∥∇ rot u(t)
∥∥2

L2 + α
∥∥� rot u(t)

∥∥2
L2 + ν

2

t∫
0

exp
(
β1(s − t)

)∥∥� rot u(s)
∥∥2

L2 ds

� exp(−β1t)
(∥∥∇ rot u(0)

∥∥2
L2 + α

∥∥� rot u(0)
∥∥2

L2

) + 2

β1ν
‖rot f ‖2

L∞
t (L2)

+ C

ν2

∥∥rot
(
u(0) − α�u(0)

)∥∥4
L2 + C(λ−1

1 + 2α)2

β2
1ν4

‖rot f ‖4
L∞

t (L2)
. (2.25)

To prove that ‖∇ rot u(t)‖2
L2 + α‖� rot u(t)‖2

L2 decays exponentially fast to some constant when
t → +∞, we can apply the uniform Gronwall inequality. We recall that if, for t � 0,

dy

dt
(t) � g(t)y(t) + h(t),

where y(t), g(t) and h(t) are non-negative locally integrable functions, then, for t � 0 and r > 0,

y(t + r) �
(

1

r

t+r∫
t

y(s)ds +
t+r∫
t

h(s)ds

)
exp

t+r∫
t

g(s)ds. (2.26)

Integrating the inequality (2.22) from t to t + 1, applying the uniform Gronwall inequality and using
the estimates (2.13) and (2.17) yield, for t � 0,

∥∥∇ rot u(t + 1)
∥∥2

L2 + α
∥∥� rot u(t + 1)

∥∥2
L2 �

t+1∫
t

(∥∥∇ rot u(s)
∥∥2

L2 + α
∥∥� rot u(s)

∥∥2
L2

)
ds

+ C

ν

t+1∫
t

∥∥∇u(s)
∥∥2

L2

∥∥∇ rot u(s)
∥∥2

L2 ds

+ 2

ν
‖rot f ‖2

L∞(L2)
,

and thus,
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∥∥∇ rot u(t + 1)
∥∥2

L2 + α
∥∥� rot u(t + 1)

∥∥2
L2 � 2

ν

(
1 + C

ν
E(t)

)[
E(t) + 1 + 2αλ1

νλ1
‖rot f ‖2

L∞(L2)

]
+ 2

ν
‖rot f ‖2

L∞(L2)
, (2.27)

where

E(t) ≡ exp

(
− νλ1t

2(1 + 2αλ1)

)∥∥rot(u − α�u)(0)
∥∥2

L2 + 2(1 + 2αλ1)
2

ν2λ2
1

‖rot f ‖2
L∞(L2)

. (2.28)

The Brézis–Gallouët inequality (see [5]) implies that, for t � 0,

∥∥∇u(t)
∥∥2

L∞ � C BG
∥∥∇ rot u(t)

∥∥2
L2

(
1 + ln

(
1 + ‖� rot u(t)‖2

L2

‖∇ rot u(t)‖2
L2

))

� C BG
∥∥∇ rot u(t)

∥∥2
L2

(
1 + ln

(
1 + ‖∇ rot u(t)‖2

L2 + α‖� rot u(t)‖2
L2

α‖∇ rot u(t)‖2
L2

))
. (2.29)

Since the function x ln(1 + y
αx ) is an increasing function of x (where 0 < x � y), we deduce from the

inequalities (2.29) and (2.25) that, for t � 0,

∥∥∇u(t)
∥∥2

L∞ � C BG

(
1 + ln

(
1 + 1

α

))(
exp(−β1t)

(∥∥∇ rot u(0)
∥∥2 + α

∥∥� rot u(0)
∥∥2)

+ 2

β1ν
‖rot f ‖2

L∞
t (L2)

+ C

ν2

∥∥rot
(
u(0) − α�u(0)

)∥∥4
L2

+ C(λ−1
1 + 2α)2

β2
1ν4

‖rot f ‖4
L∞

t (L2)

)
. (2.30)

We also infer from the inequalities (2.29) and (2.27) that, for t � 0,

∥∥∇u(t + 1)
∥∥2

L∞ � C BG

(
1 + ln

(
1 + 1

α

))(
2

ν

(
1 + C

ν
E(t)

)
×

[
E(t) + 1 + 2αλ1

νλ1
‖rot f ‖2

L∞(L2)

]
+ 2

ν
‖rot f ‖2

L∞(L2)

)
. (2.31)

When u(s) is a bounded solution of (1.2) on the whole line R, the above estimates become much
simpler. If f is time-independent, in the case αλ1 � 1, the estimates (2.25) and (2.30) together with
(2.15) imply that every element u ∈ Aα satisfies

‖∇ rot u‖2
L2 + α‖� rot u‖2

L2 � C0

(
1

ν2λ1
‖rot f ‖2

L2 + 1

ν6λ4
1

‖rot f ‖4
L2

)
, (2.32)

and also,

‖∇u‖2
L∞ � C0C BG

(
1 + ln

(
1 + 1

α

))(
1

ν2λ1
‖rot f ‖2

L2 + 1

ν6λ4
1

‖rot f ‖4
L2

)
, (2.33)

where C0 is a positive constant independent of α and f .
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The Poincaré inequality and the estimates (2.16) and (2.32) show in particular that, if u belongs
to the global attractor Aα , the quantity ‖∇ rot u‖L2 and thus ‖u‖V 2 can be bounded by a constant,
which is independent of α and depends only on ‖rot f ‖L2 .

Remark 2.1. The estimates (2.13), (2.14) and (2.18) still hold if u(t) is a smooth enough solution of
the following non-autonomous affine equation

∂t(u − α�u) − ν�u + rot(u − α�u) × u∗ + ∇p = f , t > 0, x ∈ T
2,

div u = 0, t > 0, x ∈ T
2,

u(0, x) = u0(x), x ∈ T
2, (2.34)

where u0 is an element of V 3 and u∗ belongs to C0([0,+∞), V 2).
In the case αλ1 � 1, the estimate (2.24) is still valid for the solution u of (2.34) provided the term

‖∇u‖L∞
t (L2) is replaced by ‖∇u∗‖L∞

t (L2) in (2.24). And the inequality (2.25) is replaced by

∥∥∇ rot u(t)
∥∥2

L2 + α
∥∥� rot u(t)

∥∥2
L2 + ν

2

t∫
0

exp
(
β1(s − t)

)∥∥� rot u(s)
∥∥2

L2 ds

� exp(−β1t)
(∥∥∇ rot u(0)

∥∥2
L2 + α

∥∥� rot u(0)
∥∥2

L2

) + 2

β1ν
‖rot f ‖2

L∞
t (L2)

+ C

ν2

∥∥∇u∗∥∥2
L∞

t (L2)

(
exp(−β1t)

∥∥rot
(
u(0) − α�u(0)

)∥∥2
L2 + λ−1

1 + 2α

νβ1
‖ rot f ‖2

L∞
t (L2)

)
. (2.35)

Likewise, the inequality (2.27) is replaced by∥∥∇ rot u(t + 1)
∥∥2

L2 + α
∥∥� rot u(t + 1)

∥∥2
L2

� 2

ν

(
1 + C

ν

∥∥∇u∗∥∥2
L∞

t+1(L2)

)[
E(t) + 1 + 2αλ1

νλ1
‖rot f ‖2

L∞(L2)

]
+ 2

ν
‖rot f ‖2

L∞(L2)
. (2.36)

2.3. Case of smoother initial data: V 4-regularity

In the next two sections, we assume that the initial data u0 belong to V m+3, m > 0, and that f is
in Hm+1

per . We prove that the solution u(t) of (1.2) is then in V m+3 and we give uniform estimates in
t under additional conditions. To this end, we consider the following auxiliary affine problem,

∂t
(

w∗ − α�w∗) − ν�w∗ + rot
(

w∗ − α�w∗) × u∗ + ∇p∗ = f , t > 0, x ∈ T
2,

div w∗ = 0, t > 0, x ∈ T
2,

w∗(0, x) = u0(x), x ∈ T
2, (2.37)

where f ∈ Hm+1
per and u∗ ∈ L∞((0,+∞), V m+2) ∩ C0([0,+∞), V 2). Once we have proved regularity

results and appropriate estimates for the solution w∗ of (2.37), we set u∗ = u in the above equations
in order to deduce the regularity properties and corresponding estimates for the solution u of (1.2).

We begin with the case m = 1. Arguing as in the case of the nonlinear equation (1.2), one easily
shows that, for any u0 ∈ V 3, there exists a unique global solution (in the sense of Definition 2.1)
w∗(t) ∈ C0([0,+∞), V 3) of (2.37), which also satisfies the inequality (2.13). In what follows, we are
going to prove that actually w∗(t) belongs to C0([0,+∞), V 4). Notice that the propagation of the
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V 4-regularity has already been proved in [8] for the local solutions of the system (1.2) in the three-
dimensional case.

Theorem 2.3. Assume that f and u∗(t) belong respectively to the spaces L∞((0,+∞), H2
per) and

L∞((0,+∞), V 3) ∩ C0([0,+∞), V 2). Then, for any α > 0 and for any u0 ∈ V 4 , there exists a unique so-
lution w∗ ∈ C0([0,+∞), V 4) of (2.37).

Furthermore, if a1 = 2ν − 2α‖∇u∗‖L∞(L∞) > 0, w∗ belongs to the space C0
b ([0,+∞), V 4), that is, w∗ is

uniformly bounded in V 4 , for t � 0 and the estimates (2.51) and (2.53) below hold. In the case where w∗(t)
and u∗(t) belong the global attractor and αλ1 < 1, the estimate (2.53) is replaced by the better estimate (2.61).

If 2ν − 2α‖∇u∗‖L∞(L∞) � 0, then w∗ belongs to the space C0
b ([0,+∞), V 3+θ ), for any θ satisfying the

condition (2.70) below and the estimates (2.72) and (2.74) below hold.
Finally, if moreover f and ∇u∗ belong to L2((0,+∞), H2

per) and L2((0,+∞), L∞) respectively, then, for

any α > 0, w∗ belongs to C0([0,+∞), V 4) and the inequality (2.63) below holds. In particular, if f is in
L2((0,+∞), H2

per), for any u0 ∈ V 4 , for any α > 0, the solutions u(t) of (1.2) belong to C0
b ([0,+∞), V 4) and

the estimate (2.65) below holds.

Proof. In this proof, we shall mainly discuss the uniform boundedness of w∗(t) in V 4. We will prove
the property that t �→ w∗(t) ∈ V 4 is a continuous map at the end of this proof.

Arguing as in [8, Section 5], one can prove the V 4-regularity of the solution w∗ of (2.37). For this
reason, we shall not give the details of the proof, but emphasize the a priori estimates that we need
for the purpose of this paper. In order to show that, if f and u0 are more regular, the solution w∗(t)
is also smoother, we begin by performing a Galerkin scheme. We denote by w∗

n(t) = Pn w∗(t) the
solution of the equation

∂t
(

w∗
n − α�w∗

n

) − ν�w∗
n + Pn P

(
rot

(
w∗

n − α�w∗
n

) × u∗) = Pn P f , t > 0, x ∈ T
2,

div w∗
n = 0, t > 0, x ∈ T

2,

w∗
n(0, x) = Pnu0(x), x ∈ T

2, (2.38)

where Pn is the orthogonal projection (in H) onto the span of the eigenfunctions of the Stokes oper-
ator −P�, corresponding to the first n eigenvalues 0 < λ1 < λ2 � λ3 � · · · � λn .

Considering the vorticity of this equation, we obtain the equality

∂t rot
(

w∗
n − α�w∗

n

) − ν� rot Pn P w∗
n + rot Pn P

{
rot

(
w∗

n − α�w∗
n

) × u∗} = rot Pn P f . (2.39)

Taking the L2-inner product of this equation with − rot(�w∗
n − α�2 w∗

n), using the equality (A.2),
and remarking that, by (A.5), the term (rot(rot �w∗

n × u∗), rot�w∗
n) vanishes, we get the following

equality,

1

2
∂t

∥∥∇(
rot w∗

n − α rot �w∗
n

)∥∥2
L2 + ν

(∥∥� rot w∗
n

∥∥2
L2 + α

∥∥�2 w∗
n

∥∥2
L2

) + (
�w∗

n × u∗, rot �w∗
n

)
− α

(
�w∗

n × u∗, rot �2 w∗
n

) + α2(�2 w∗
n × u∗, rot �2 w∗

n

)
= −(

rot Pn P f , rot
(
�w∗

n − α�2 w∗
n

))
. (2.40)

We begin with the estimation of the term α2(�2 w∗
n × u∗, rot�2 w∗

n). We first recall the equality (A.3)
of Appendix A,

(v × u, rot v) = −
2∑

i, j=1

∫
2

∂iu j vi v j dx, (2.41)
T
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valid for any smooth enough vectors v and w . Using this equality with u = u∗ and v = �2 w∗
n , we

obtain the following bound

α2
∣∣(�2 w∗

n × u∗, rot �2 w∗
n

)∣∣ � α2
∥∥∇u∗∥∥

L∞
∥∥�2 w∗

n

∥∥2
L2 . (2.42)

Likewise, using the equality (2.41) with u = u∗ and v = �w∗
n , we can write,∣∣(�w∗

n × u∗, rot �w∗
n

)∣∣ �
∥∥∇u∗∥∥

L∞
∥∥�w∗

n

∥∥2
L2 . (2.43)

Performing an integration by parts, we get the following estimate for the term α|(�w∗
n × u∗,

rot�2 w∗
n)|,

α
∣∣(�w∗

n × u∗, rot �2 w∗
n

)∣∣ � α
(∥∥u∗∥∥

L∞
∥∥∇�w∗

n

∥∥
L2 + ∥∥∇u∗∥∥

L∞
∥∥�w∗

n

∥∥
L2

)∥∥�2 w∗
n

∥∥
L2 . (2.44)

Finally, we estimate the term containing the forcing term as follows,∣∣(rot Pn P f , rot
(
�w∗

n − α�2 w∗
n

))∣∣ � ‖rot P f ‖L2

∥∥rot �w∗
n

∥∥
L2 + α‖�P f ‖L2

∥∥�2 w∗
n

∥∥
L2 . (2.45)

The equality (2.40) and the estimates (2.42) to (2.45) imply that, for t � 0,

∂t
∥∥∇(

rot w∗
n − α rot �w∗

n

)∥∥2
L2 + ν

∥∥� rot w∗
n

∥∥2
L2 + (2 − β2)να

∥∥�2 w∗
n

∥∥2
L2

� 3α

β2ν

(∥∥u∗∥∥2
L∞

∥∥∇�w∗
n

∥∥2
L2 + ∥∥∇u∗∥∥2

L∞
∥∥�w∗

n

∥∥2
L2 + ‖�P f ‖2

L2

) + 2

ν
‖rot P f ‖2

L2

+ 2α2
∥∥∇u∗∥∥

L∞
∥∥�2 w∗

n

∥∥2
L2 + 2 min

(
1,

1

λ1ν

∥∥∇u∗∥∥
L∞

)∥∥∇u∗∥∥
L∞

∥∥�w∗
n

∥∥2
L2 , (2.46)

where 0 < β2 � 2.
We notice that, taking the L2-inner product of Eq. (2.39) with rot�2 w∗

n and arguing exactly as
above, we also obtain the following inequality, for t � 0,

∂t
(∥∥rot �w∗

n

∥∥2
L2 + α

∥∥�2 w∗
n

∥∥2
L2

) + (2 − β2)ν
∥∥�2 w∗

n

∥∥2
L2

� 3

β2ν

(∥∥u∗∥∥2
L∞

∥∥∇�w∗
n

∥∥2
L2 + ∥∥∇u∗∥∥2

L∞
∥∥�w∗

n

∥∥2
L2 + ‖�P f ‖2

L2

)
+ 2α

∥∥∇u∗∥∥
L∞

∥∥�2 w∗
n

∥∥2
L2 , (2.47)

where 0 < β2 � 2.
Now, in the inequalities (2.46) and (2.47), we have to distinguish two cases according to the sign

of the quantity a1 ≡ 2ν − 2α‖∇u∗‖L∞(L∞) .

First case: a1 ≡ 2ν − 2α‖∇u∗‖L∞(L∞) > 0.
In this case, we choose β2 = a1/2ν in the inequality (2.46) and we obtain the following bound, for
t � 0,

∂t
∥∥∇(

rot w∗
n − α rot �w∗

n

)∥∥2
L2 + ν

∥∥rot �w∗
n

∥∥2
L2 + a1α

2

∥∥�2 w∗
n

∥∥2
L2

� 6α

a1

(∥∥u∗∥∥2
L∞

∥∥∇�w∗
n

∥∥2
L2 + ∥∥∇u∗∥∥2

L∞
∥∥�w∗

n

∥∥2
L2 + ‖�P f ‖2

L2

)
+ 2 min

(
1,

1

λ ν

∥∥∇u∗∥∥
L∞

)∥∥∇u∗∥∥
L∞

∥∥�w∗
n

∥∥2
L2 + 2

ν
‖rot P f ‖2

L2 . (2.48)

1
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Remarking that∥∥∇(
rot w∗

n − α rot �w∗
n

)∥∥2
L2 �

(
λ−1

1 + 2α
)(∥∥rot �w∗

n

∥∥2
L2 + α

∥∥�2 w∗
n

∥∥2
L2

)
, (2.49)

and integrating in time the inequality (2.48), we get, for t � 0,

∥∥∇(
rot w∗

n(t) − α rot �w∗
n(t)

)∥∥2
L2 +

t∫
0

exp
(
β3(s − t)

)(ν

2

∥∥rot �w∗
n(s)

∥∥2
L2 + a1α

4

∥∥�2 w∗
n(s)

∥∥2
L2

)
ds

� exp(−β3t)
∥∥∇(

rot w∗
n(0) − α rot �w∗

n(0)
)∥∥2

L2 + 6α

a1β3
‖�P f ‖2

L∞
t (L2)

+ 2

νβ3
‖rot P f ‖2

L∞
t (L2)

+ 6α

a1

t∫
0

exp
(
β3(s − t)

)(∥∥u∗(s)
∥∥2

L∞
∥∥∇�w∗

n(s)
∥∥2

L2 + ∥∥∇u∗(s)
∥∥2

L∞
∥∥�w∗

n(s)
∥∥2

L2

)
ds

+ 2

t∫
0

exp
(
β3(s − t)

)
min

(
1,

1

λ1ν

∥∥∇u∗(s)
∥∥

L∞

)∥∥∇u∗(s)
∥∥

L∞
∥∥�w∗

n(s)
∥∥2

L2 ds, (2.50)

where 0 < β3 � a1

4(λ−1
1 +2α)

. In the case where u∗ is a general smooth divergence-free vector field, we

proceed as follows. Taking into account the estimate (2.13) (see also Remark 2.1) and the fact that
2ν − 2α‖∇u∗‖L∞(L∞) > 0, we derive from the inequality (2.50) that, for t � 0,

∥∥∇(
rot w∗

n(t) − α rot �w∗
n(t)

)∥∥2
L2 +

t∫
0

exp
(
β3(s − t)

)(ν

2

∥∥rot �w∗
n(s)

∥∥2
L2 + a1α

4

∥∥�2 w∗
n(s)

∥∥2
L2

)
ds

� exp(−β3t)
∥∥∇(

rot w∗
n(0) − α rot �w∗

n(0)
)∥∥2

L2

+ 24α(λ−1
1 + 2α)

a2
1

‖�P f ‖2
L∞

t (L2)
+ 8(λ−1

1 + 2α)

a1ν
‖rot P f ‖2

L∞
t (L2)

+ 2ν − a1

αν

[
3(2ν − a1)

a1α

(
λ−1

1 + α
) + 2 min

(
1,

2ν − a1

2ανλ1

)]

×
(

exp(−β3t)
∥∥rot

(
w∗

n(0) − α�w∗
n(0)

)∥∥2
L2 + 4(λ−1

1 + 2α)2

a1ν
‖rot f ‖2

L∞
t (L2)

)
, (2.51)

where β3 = a1(λ
−1
1 + 2α)−1/4 and C is a positive constant, independent of α, u0, f and u∗ .

The inequality (2.51) shows that w∗
n(t) is uniformly bounded in V 4, for t � 0. Performing the

Galerkin procedure in the classical way, we deduce that the solution w∗(t) of (2.37) belongs to
L∞((0,+∞), V 4) and satisfies the bound (2.51) (we leave to the reader all the classical arguments
concerning the Galerkin procedure). We notice that the inequality (2.51) is a good estimate, uniform
in α, when α is bounded away from zero.

Notice that, if we choose β2 = a1/2ν in the inequality (2.47) and argue as above, we obtain the
following bound, for t � 0,

∥∥rot �w∗
n(t)

∥∥2
L2 + α

∥∥�2 w∗
n(t)

∥∥2
L2 + a1

4

t∫
exp

(
β̃3(s − t)

)∥∥�2 w∗
n

∥∥2
L2 ds
0
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� exp(−β̃3t)
(∥∥rot �w∗

n(0)
∥∥2

L2 + α
∥∥�2 w∗

n(0)
∥∥2

L2

) + 6

a1β̃3
‖�P f ‖2

L∞
t (L2)

+ 6

a1

t∫
0

exp
(
β̃3(s − t)

)(∥∥u∗∥∥2
L∞

∥∥∇�w∗
n

∥∥2
L2 + ∥∥∇u∗∥∥2

L∞
∥∥�w∗

n

∥∥2
L2

)
ds, (2.52)

where β̃3 � a1/4. Like above, we derive from the inequality (2.52) that, for t � 0,

∥∥rot �w∗
n(t)

∥∥2
L2 + α

∥∥�2 w∗
n(t)

∥∥2
L2 + a1

4

t∫
0

exp
(
β4(s − t)

)∥∥�2 w∗
n

∥∥2
L2 ds

� exp(−β4t)
(∥∥rot �w∗

n(0)
∥∥2

L2 + α
∥∥�2 w∗

n(0)
∥∥2

L2

) + 6

a1β4
‖�P f ‖2

L∞
t (L2)

+ C(2ν − a1)
2

νa1α3λ1

(
exp(−β4t)

∥∥rot
(

w∗
n(0) − α�w∗

n(0)
)∥∥2

L2 + (λ−1
1 + 2α)

β4ν
‖rot f ‖2

L∞
t (L2)

)
,

(2.53)

where 0 < β4 � inf( ν

2(λ−1
1 +2α)

, a1
4 ) and C is a positive constant, independent of α, u0, f and u∗ .

Actually, we are mainly interested in the special case where u∗(t) = Sα(t)u∗
0 is a solution of the

nonlinear system (1.2). In this case, according to (2.14), the condition

ν − C S

(∥∥rot
(
u∗

0 − α�u∗
0

)∥∥
L2 +

√
2(λ−1

1 + 2α)

ν
‖rot f ‖L∞(L2)

)
> 0, (2.54)

implies that a1 > 0. In the case where f does not depend on the time variable and u∗
0 belongs to the

global attractor Aα , due to (2.16), the condition

ν − C S

√
2(λ−1

1 + 2α)

ν
‖rot f ‖L2 > 0, (2.55)

is sufficient to imply that a1 > 0. When αλ1 � 1 and u∗(t) = Sα(t)u∗
0 is a solution of the nonlinear

system (1.2), one deduces from (2.30) that the condition a1 > 0 is satisfied if

ν − αC1/2
BG

(
1 + ln

(
1 + 1

α

))1/2[∥∥∇ rot u∗
0

∥∥2 + α
∥∥� rot u∗

0

∥∥2 + C0

ν2

∥∥rot
(
u∗

0 − α�u∗
0

)∥∥4
L2

+ C0

(
1

ν2λ1
‖rot f ‖2

L∞(L2)
+ 1

ν6λ4
1

‖rot f ‖4
L∞(L2)

)]1/2

> 0. (2.56)

Moreover, in the case where f does not depend on the time variable and u∗
0 belongs to the global

attractor Aα , due to (2.33), the condition a1 > 0 holds if

ν − αC1/2
0 C1/2

BG

(
1 + ln

(
1 + 1

α

))1/2( 1

ν2λ1
‖rot f ‖2

L2 + 1

ν6λ4
1

‖rot f ‖4
L2

)1/2

> 0. (2.57)

In the above estimates, the positive constant C0 depends only on the constants appearing in the
Poincaré and Sobolev inequalities.
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As we already noticed, the estimate of ‖�2 w∗
n‖L2 in the inequalities (2.51) or (2.53) is not uniform

in α, when α goes to zero. We next want to improve the estimate of ‖rot�w∗
n(t)‖2

L2 +α‖�2 w∗
n(t)‖2

L2

(and thus of ‖rot�w∗(t)‖2
L2 + α‖�2 w∗(t)‖2

L2 ) in the case where αλ1 � 1, when u∗(t) = Sα(t)u∗
0 is a

solution of (1.2). First we deduce from (2.52) that, for t � 0,

∥∥rot �w∗
n(t)

∥∥2
L2 + α

∥∥�2 w∗
n(t)

∥∥2
L2 + a1

4

t∫
0

exp
(
β5(s − t)

)∥∥�2 w∗
n

∥∥2
L2 ds

� exp(−β5t)
(∥∥rot �w∗(0)

∥∥2
L2 + α

∥∥�2 w∗(0)
∥∥2

L2

) + 6

a1β5
‖�P f ‖2

L∞
t (L2)

+ C S

a1

[
sup

0�s�t

(∥∥�u∗(s)
∥∥2

L2

) t∫
0

expβ5(s − t)
∥∥∇�w∗

n(s)
∥∥2

L2 ds

+ sup
0�s�t

(∥∥�w∗
n(s)

∥∥2
L2

) t∫
0

expβ5(s − t)
∥∥∇�u∗(s)

∥∥2
L2 ds

]
, (2.58)

where 0 < β5 � inf(β1,a1/4), with β1 = νλ1
4(1+2λ1α)

, and C S is a positive constant coming from the
classical Sobolev embeddings. Taking into account the estimates (2.13), (2.25), and (2.35), we deduce
from the inequality (2.58) that, for t � 0,

∥∥rot �w∗
n(t)

∥∥2
L2 + α

∥∥�2 w∗
n(t)

∥∥2
L2 + a1

4

t∫
0

exp
(
β5(s − t)

)∥∥�2 w∗
n

∥∥2
L2 ds

� exp(−β5t)
(∥∥rot �w∗(0)

∥∥2
L2 + α

∥∥�2 w∗(0)
∥∥2

L2

) + 6

a1β5
‖�P f ‖2

L∞
t (L2)

+ C S

νa1
L1

[
L2 + L3

(∥∥rot
(
u∗(0) − α�u∗(0)

)∥∥2
L2 + 2(λ−1

1 + 2α)2

ν2
‖rot f ‖2

L∞
t (L2)

)]
, (2.59)

where

L1 = ∥∥∇ rot u∗(0)
∥∥2

L2 + α
∥∥� rot u∗(0)

∥∥2
L2 + 2

β5ν
‖rot f ‖2

L∞
t (L2)

+ C

ν2

∥∥rot
(
u∗(0) − α�u∗(0)

)∥∥4
L2 + C(λ−1

1 + 2α)2

β2
5ν4

‖rot f ‖4
L∞

t (L2)
,

L2 = ∥∥∇ rot w∗(0)
∥∥2

L2 + α
∥∥� rot w∗(0)

∥∥2
L2 + 2

β5ν
‖rot f ‖2

L∞
t (L2)

,

L3 = C

ν2

(∥∥rot
(

w∗(0) − α�w∗(0)
)∥∥2

L2 + λ−1
1 + 2α

νβ5
‖rot f ‖2

L∞
t (L2)

)
. (2.60)

Performing a classical Galerkin method, we obtain the same estimates for the limit w∗ . If f does
not depend on t and that u∗(t) = Sα(t)u0 and w∗(t) = Sα(t)w0 belong to the global attractor, the
estimate (2.59) can be simplified. Indeed, one then deduces from the estimates (2.58), (2.15), (2.32),
and (2.25), that, for t � 0,
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∥∥rot �w∗(t)
∥∥2

L2 + α
∥∥�2 w∗(t)

∥∥2
L2 + a1

4

t∫
0

exp
(
β5(s − t)

)∥∥�2 w∗∥∥2
L2 ds

� exp(−β5t)
(∥∥rot �w∗(0)

∥∥2
L2 + α

∥∥�2 w∗(0)
∥∥2

L2

) + 6

a1β5
‖�P f ‖2

L2

+ C1C S

νa1
L4

[
L4 + 1

β5ν
‖rot f ‖2

L2 + 1

β2
5ν4λ2

1

‖rot f ‖4
L2

]
, (2.61)

where C1 is a positive constant independent of α, f , t and w∗(0) and where

L4 = 1

ν2λ1
‖rot f ‖2

L2 + 1

ν6λ4
1

‖rot f ‖4
L2 .

We next consider the second case, that is, the case where a1 � 0.

Second case: a1 ≡ 2ν − 2α‖∇u∗‖L∞(L∞) � 0.
In this case, setting β2 = 1/2 in the inequality (2.46), using the Young inequality, taking into account
the inequality (2.49) and integrating from 0 to t , yields, for t � 0,

∥∥∇(
rot w∗

n − α rot �w∗
n

)
(t)

∥∥2
L2 + ν

λ−1
1 + 2α

t∫
0

∥∥∇(
rot w∗

n − α rot �w∗
n

)
(s)

∥∥2
L2 ds

�
∥∥∇(

rot w∗
n − α rot �w∗

n

)
(0)

∥∥2
L2 + 6α

ν
‖�P f ‖2

L2
t (L2)

+ 2

ν
‖rot P f ‖2

L2
t (L2)

+
t∫

0

∥∥∇(
rot w∗

n − α rot �w∗
n

)
(s)

∥∥2
L2

(
6

ν

∥∥u∗(s)
∥∥2

L∞ + 6

ν
inf

(
λ−1

1 ,α
)∥∥∇u∗(s)

∥∥2
L∞

+ 2

[
inf

(
1,

α

ν

∥∥∇u∗(s)
∥∥

L∞

)
+ inf

(
1,

1

λ1ν

∥∥∇u∗(s)
∥∥

L∞

)]∥∥∇u∗(s)
∥∥

L∞

)
ds. (2.62)

Applying the Gronwall inequality to the estimate (2.62), we get, for t � 0,

∥∥∇(
rot w∗

n − α rot �w∗
n

)
(t)

∥∥2
L2

�
(∥∥∇(

rot w∗
n − α rot �w∗

n

)
(0)

∥∥2
L2 + 6α

ν
‖�P f ‖2

L2
t (L2)

+ 2

ν
‖rot P f ‖2

L2
t (L2)

)

× exp

(
− νt

λ−1
1 + 2α

+
t∫

0

(
6

ν

∥∥u∗(s)
∥∥2

L∞ + 6

ν
inf

(
λ−1

1 ,α
)∥∥∇u∗(s)

∥∥2
L∞

+ 2

[
inf

(
1,

α

ν

∥∥∇u∗(s)
∥∥

L∞

)
+ inf

(
1,

1

λ1ν

∥∥∇u∗(s)
∥∥

L∞

)]∥∥∇u∗(s)
∥∥

L∞

)
ds

)
. (2.63)

For any fixed T > 0, the inequality (2.63) shows that w∗
n(t) is uniformly bounded in V 4, for 0 �

t � T . Performing the Galerkin procedure in the classical way, we deduce that the solution w∗(t)
of (2.37) belongs to L∞((0, T ), V 4), for any 0 < T < +∞, and satisfies the bound (2.63). If f and ∇u∗
belong to L2(H2

per) and L2(L2) respectively, we conclude that w∗(t) belongs to L∞((0,+∞), V 4). If
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this hypothesis is not satisfied, the estimates (2.63) do not allow to conclude that w∗(t) belongs to
L∞((0,+∞), V 4), since the right-hand side of (2.63) is exponentially growing.

If α > α0 > 0, the inequality (2.63) implies an estimate of ‖w∗‖L∞((0,T ),V 4) , which is uniform in α.
When αλ1 � 1, the estimate of ‖w∗

n‖L∞((0,T ),V 4) (and of ‖w∗‖L∞((0,T ),V 4)) can be improved by going
back to the inequality (2.47). Indeed, arguing as above, setting β2 = 1/2 in the inequality (2.47),
integrating from 0 to t and, using the Gronwall lemma, we obtain, for t � 0,

∥∥rot �w∗
n(t)

∥∥2
L2 + α

∥∥�2 w∗
n(t)

∥∥2
L2

�
(∥∥rot �w∗(0)

∥∥2
L2 + α

∥∥�2 w∗(0)
∥∥2

L2 + 6α

ν
‖�P f ‖2

L2
t (L2)

)
× exp

(
−νt +

t∫
0

(
6

ν

∥∥u∗(s)
∥∥2

L∞ + 6λ−1
1

ν

∥∥∇u∗(s)
∥∥2

L∞

+ 2 inf

(
1,

α

ν

∥∥∇u∗(s)
∥∥

L∞

)∥∥∇u∗(s)
∥∥

L∞

)
ds

)
. (2.64)

We remark that, in the special case where f belongs to the space L2(H2
per), we immediately deduce

from the estimates (2.18) and (2.63) that, for any α > 0, any u0 ∈ V 4, the solution of the nonlinear
equations (1.2) is bounded in C0

b ((0,+∞), V 4). Indeed, these estimates imply that, for t � 0,

∥∥∇(rot u − α rot �u)(t)
∥∥2

L2

�
(∥∥∇(rot u0 − α rot u0)

∥∥2
L2 + 6α

ν
‖�P f ‖2

L2
t (L2)

+ 2

ν
‖rot P f ‖2

L2
t (L2)

)

× exp
C

ν2

(∥∥rot(u0 − α�u0)
∥∥2

L2 + λ−1
1 + 2α

ν
‖rot P f ‖2

L2(L2)

)
, (2.65)

where C is a positive constant independent of α, f and u0. In the case where α > 0 is small, this
estimate can be improved by using the inequality (2.64) instead of (2.63). We leave the details of this
improvement to the reader.

We now go back to the general case where f does not belong to the space L2(H2
per). According

to Remark 2.1 and the estimates (2.13), the V 3-norm of w∗
n(t) decays exponentially fast to some

constant. On the contrary, according to the estimate (2.63), the V 4-norm of w∗
n(t) could grow ex-

ponentially fast. These properties imply that, in some interpolated space, we still have exponential
decay.

To show it, we proceed as follows. We set f equal to zero in Eq. (2.38), that is, we consider the
following equation in the finite-dimensional space Pn V 3, for t � s,

∂t wn − ν(I + αA)−1 Pn�wn + (I + αA)−1 Pn P
(
rot(wn − α�wn) × u∗) = 0,

wn(s, x) = ws,n(x) ∈ Pn V 3, (2.66)

where P is the Leray orthogonal projection in L2(T2)2 onto H and A = −P� is the classical Stokes
operator. We denote Σα,n(t, s)ws,n the solution of Eq. (2.66). According to the estimates (2.13) and
(2.63), we have the following inequalities:

∥∥Σα,n(t, s)wn(s) − α�Σα,n(t, s)wn(s)
∥∥

1 � C P exp
(−γ0(t − s)

)∥∥wn(s) − α�wn(s)
∥∥

1 (2.67)
V V
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and also ∥∥Σα,n(t, s)wn(s) − α�Σα,n(t, s)wn(s)
∥∥

V 2

� C P exp

([
−γ0 +

(
2 + 6C P

ν

∥∥∇u∗∥∥
L∞(L∞)

)∥∥∇u∗∥∥
L∞(L∞)

]
(t − s)

)
× ∥∥wn(s) − α�wn(s)

∥∥
V 2 , (2.68)

where C P is a positive constant depending only on the constant λ−1
1 and γ0 = ν

4(λ−1
1 +2α)

.

Interpolating between the Hilbert spaces V 1 and V 2, we conclude that, for any 0 � θ � 1, we
obtain, ∥∥Σα,n(t, s)wn(s) − α�Σα,n(t, s)wn(s)

∥∥
V 1+θ

� C P exp

([
−γ0 + θ

(
2 + 6C P

ν

∥∥∇u∗∥∥
L∞(L∞)

)∥∥∇u∗∥∥
L∞(L∞)

]
(t − s)

)
× ∥∥wn(s) − α�wn(s)

∥∥
V 1+θ . (2.69)

Thus the norm of ‖Σα,n(t, s)wn(s) − α�Σα,n(t, s)wn(s)‖V 1+θ decays exponentially fast, if

−γθ ≡ − ν

4(λ−1
1 + 2α)

+ θ

(
2 + 6C P

ν

∥∥∇u∗∥∥
L∞(L∞)

)∥∥∇u∗∥∥
L∞(L∞)

< 0. (2.70)

We now go back to the solution w∗(t) of Eq. (2.38) and choose θ0 so that (2.70) holds for θ = θ0.
We notice that, since w∗

n is a solution of the finite-dimensional system (2.38) of ordinary differential
equations, w∗

n is given by the Duhamel formula (or variation of constants formula), that is, w∗
n can be

written as

w∗
n(t) = Σα,n(t,0)Pnu0 +

t∫
0

Σα,n(t, s)(I + αA)−1 Pn P f (s)ds, (2.71)

which implies, by (2.69) that, for t � 0,∥∥w∗
n(t) − α�w∗

n(t)
∥∥

V 1+θ0 � exp(−γθ0t)‖u0 − α�u0‖V 1+θ0 + γ
−1
θ0

‖P f ‖L∞(V 1+θ0 ). (2.72)

Next performing the Galerkin procedure in the classical way, we deduce that the solution w∗(t) of
(2.37) also satisfies the inequality (2.72).

Remark 2.2. The dependence with respect to α in estimate (2.72) is very good when α is bounded
away from 0. At first glance, the dependence with respect to α is less good when α tends to 0. But,
actually, when α is very close to 0, we will never consider this estimate, since then a1 � 0 and we
use the estimates (2.59) and (2.61).

Notice also that from estimate (2.72), we deduce that, for t � 0,

∥∥w∗(t)
∥∥

V 2+θ0 + √
α

∥∥w∗(t)
∥∥

V 3+θ0 � C√
α

exp(−γθ0t)‖u0 − α�u0‖V 1+θ0

+ C√
α

γ
−1
θ0

‖P f ‖L∞(V 1+θ0 ). (2.73)
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We derive from the inequality (2.73) and the condition a1 � 0 (that is, α−1 � ν−1‖∇u∗‖L∞(L∞)), that,
for t � 0,

∥∥w∗(t)
∥∥

V 2+θ0 + √
α

∥∥w∗(t)
∥∥

V 3+θ0 � Cν−1/2
∥∥∇u∗∥∥1/2

L∞(L∞)

(
exp(−γθ0t)‖u0 − α�u0‖V 1+θ0

+ γ
−1
θ0

)‖P f ‖L∞(V 1+θ0 ). (2.74)

It remains to prove that w∗(t) is a continuous function from [0,+∞) into V 4. To this end, for any
integer m, we decompose w∗(t) into a sum of two functions w∗(t) = vm(t) + zm(t), where vm(t) and
zm(t) are the solutions of the following systems of equations

∂t(vm − α�vm) − ν�vm + P
(
rot(vm − α�vm) × u∗) = Pm P f ,

vm(0, x) = Pmu0(x), (2.75)

and

∂t(zm − α�zm) − ν�zm + P
(
rot(zm − α�zm) × u∗) = (I − Pm)P f ,

zm(0, x) = (I − Pm)u0(x). (2.76)

Let t0 > 0 and η > 0 be fixed. We can choose an integer mη such that, for m � mη , (I − Pm)u0 and
(I − Pm)P f are small enough and that, according to the estimate (2.63), we have, for 0 � t � 2t0,
m � mη ,

2 sup
0�s�t

∥∥zm(t)
∥∥

V 4 � η/2. (2.77)

Arguing as in the proof of Theorem 2.1 (by using a Galerkin method, see [33]), one shows that
vm belongs to C0([0,+∞), V 2) at least. Furthermore, since Pmu0 and Pm P f belong to V 5 and
L∞((0,+∞), H3

per) respectively, we can show by arguing as above (see also the proof of Theorem

2.4 below) that the solution vm of system (2.75) belongs to L∞((0,2t0), V 5). By interpolation, we
deduce that vm belongs to C0([0,2t0), V 4). In particular, vmη belongs to C0([0,2t0), V 4) and there
exists a positive real number δη such that, if |t − t0| � δη , then

∥∥vmη (t) − vmη (t0)
∥∥

V 4 � η/2. (2.78)

The estimates (2.77) and (2.78) imply that ‖w∗(t) − w∗(t0)‖V 4 � η. The continuity in V 4 is shown
and thus Theorem 2.3 is proved. �
Remark 2.3. We point out that, in Theorem 2.1, we can prove, in the same way, that the solution u(t)
of (1.2) is continuous with values in V 3. Indeed, in the proof of Theorem 2.1, the Galerkin method
easily implies that u(t) belongs to C0([0,+∞), V 2) (see [33]). Thus, the same arguments as above
allow to show that u(t) actually belongs to C0([0,+∞), V 3). We leave the details to the reader.

2.4. Case of smoother initial data: V m+3-regularity, m � 2

We next assume that f belongs to the space L∞((0,+∞), Hm+1
per ) and that u∗ belongs to

L∞((0,+∞), V m+2) ∩ C0([0,+∞), V 2), for m � 2. If am ≡ 2ν − 2dmα‖∇u∗‖L∞(L∞) > 0, where dm > 0
is defined in the proof of Theorem 2.4 below (see (2.84)), we will show that, for any u0 ∈ V m+3, the
solution w∗ of Eq. (2.37) is uniformly bounded, with respect to t � 0, in the space V m+3.
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In the case where am < 0, we can still prove that w∗ is uniformly bounded, with respect to t , in the
space V m+3 if moreover f and u∗ belong to the space L2((0,+∞), Hm+1

per ) and L2((0,+∞), V m+2).
More precisely, we show the following theorem.

Theorem 2.4. Let α > 0 and m � 2. Assume that f and u∗(t) belong to the spaces L∞((0,+∞), Hm+1
per ) and

L∞((0,+∞), V m+2) ∩ C0([0,+∞), V 2) respectively. Then, for any α > 0, for any u0 ∈ V m+3 , the unique
solution w∗ of (2.37) belongs to C0([0,+∞), V m+3).

Moreover, if am = 2ν − 2dmα‖∇u∗‖L∞(L∞) > 0, where dm > 0 is a non-decreasing function of m, then w∗
belongs to the space C0

b ([0,+∞), V m+3) and satisfies, for t � 0

∥∥w∗(t)
∥∥2

V m+2 + α
∥∥w∗(t)

∥∥2
V m+3 + am

4

t∫
0

exp
(−βm(s − t)

)∥∥w∗(s)
∥∥2

V m+3 ds

� ‖u0‖2
V m+2 + α‖u0‖2

V m+3 + Km‖ f ‖2
L∞

t (Hm+1)

+
m−3∑
i=1

(‖u0‖2
V m+2−i + α‖u0‖2

V m+3−i + Km−i‖ f ‖2
L∞

t (Hm+1−i)

)

×
(

i∏
j=1

Km+1− j

)(
i∏

j=1

(∥∥u∗∥∥2
L∞

t (V m+2− j)
+ α

∥∥u∗∥∥2
L∞

t (V m+3− j)

))

+
(

‖u0‖2
V 4 + α‖u0‖2

V 5 + K2‖ f ‖2
L∞

t (H3)

+ K2

t∫
0

exp
(−β2(s − t)

)(
α2

∥∥w∗(s)
∥∥2

V 4

∥∥u∗(s)
∥∥2

V 4 + ∥∥w∗(s)
∥∥2

V 4

∥∥u∗(s)
∥∥

V 3

)
ds

)

×
(

m−3∏
j=1

Km+1− j

)(
m−3∏
j=1

(∥∥u∗∥∥2
L∞

t (V m+2− j)
+ α

∥∥u∗∥∥2
L∞

t (V m+3− j)

))
, (2.79)

where Ki are positive constants depending only on i and ai , and where 0 < βi � ai/4.
If am−1 > 0 and am � 0, there still exists θ > 0 such that w∗ is uniformly bounded in V m+1+θ .
In particular, if am > 0 and u∗(t) = Sα(t)u∗

0 , the following estimate holds

∥∥w∗(t)
∥∥2

V m+2 + α
∥∥w∗(t)

∥∥2
V m+3 + am

4

t∫
0

exp
(−βm(s − t)

)∥∥w∗(s)
∥∥2

V m+3 ds

� ‖u0‖2
V m+2 + α‖u0‖2

V m+3 + Km‖ f ‖2
L∞

t (Hm+1)

+ Q m(x2, . . . , xm+1, y2, . . . , ym+1, z1, . . . , zm), (2.80)

where x j = ‖u0‖2
V j +α‖u0‖2

V j+1 , y j = ‖u∗
0‖2

V j +α‖u∗
0‖2

V j+1 , z j = ‖ f ‖L∞
t (H j) , and where Q m(x2, . . . , xm+1,

y2, . . . , ym+1, z1, . . . , zm) is a polynomial of x2, . . . , xm+1 , y2, . . . , ym+1 , and z1, . . . , zm, whose coefficients
depend only on m and ai , i = 1, . . . ,m.

Proof. Assume that m � 2. We will prove the propagation of the regularity and the estimate (2.79)
by recursion on m. The propagation of the V �+3 regularity and the estimate (2.79) have been proved
in Theorem 2.3 for � = 1. Assume now that the propagation of the V �+3-regularity and the estimate
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(2.79) have been proved for � � m − 1, with m � 2, and let us prove these properties for � = m. As
in the proof of Theorem 2.3, we need to use a Galerkin method and first obtain estimates for w∗

n
in V m+3. To simplify the notation, we denote w∗

n by w∗ and we assume that m is an odd integer. The
proof is similar in the case where m is even.

Taking the inner product in L2(T2) of Eq. (2.39) with rot�m+1 w∗ , we obtain the equality

1

2

d

dt

(∥∥rot �
m+1

2 w∗∥∥2
L2 + α

∥∥�
m+3

2 w∗∥∥2
L2

) + ν
∥∥�

m+3
2 w∗∥∥2

L2 − (
�w∗ × u∗, rot �m+1 w∗)

+ α
((

�2 w∗ × u∗), rot �m+1 w∗) = (
rot Pn P f , rot �m+1 w∗). (2.81)

On the one hand, performing several integrations by parts, using the Leibnitz formula, the equal-
ity (A.5) of Lemma A.1, and the classical Sobolev embeddings (or the Moser inequalities), we get,(

�w∗ × u∗, rot �m+1 w∗) = (
�

m+1
2

(
�w∗ × u∗), rot �

m+1
2 w∗)

= ((
��

m+1
2 w∗) × u∗), rot �

m+1
2 w∗) + B = B, (2.82)

where

B = (
�

m+1
2

(
�w∗ × u∗) − ((

��
m+1

2 w∗) × u∗), rot �
m+1

2 w∗)
� C1(m)

(∥∥�w∗∥∥
L∞

∥∥u∗∥∥
Hm+1 + ∥∥w∗∥∥

Hm+2

∥∥∇u∗∥∥
L∞

)∥∥∇�
m+1

2 w∗∥∥
L2

� C2(m)
(∥∥w∗∥∥

H7/2

∥∥u∗∥∥
Hm+1 + ∥∥w∗∥∥

Hm+2

∥∥u∗∥∥
H5/2

)∥∥∇�
m+1

2 w∗∥∥
L2 , (2.83)

and where C1(m) and C2(m) are positive constants depending only on m.
On the other hand, again integrating by parts, using the Leibnitz formula, and the equality (A.5) of

Lemma A.1 as well as classical Sobolev and interpolation inequalities, we deduce that, for t � 0,

α
((

�2 w∗ × u∗), rot �m+1 w∗)
= −

2∑
i=1

α
(
�

m+1
2 −1∂i

(
�2 w∗ × u∗), rot �

m+1
2 ∂i w∗)

= −α

2∑
i=1

((
�∂i�

m+1
2 w∗) × u∗, rot �

m+1
2 ∂i w∗) − αB∗

− αdm

2∑
j=1

2∑
i=1

((
��

m+1
2 w∗) × ∂ ju

∗, rot �
m+1

2 ∂i w∗)

= −
(
αB∗ + αdm

2∑
j=1

2∑
i=1

((
��

m+1
2 w∗) × ∂ ju

∗, rot �
m+1

2 ∂i w∗)) (2.84)

where

αB∗ � αC3(m)

2∑
i=1

∑
|a+b|�m, |b|�2

∣∣(Da�2 w∗ × Dbu∗, rot �
m+1

2 ∂i w∗)∣∣
� αC4(m)

(∥∥w∗∥∥
V 4

∥∥u∗∥∥
V m+2 + ∥∥w∗∥∥

V m+2

∥∥u∗∥∥
V 4

)∥∥�
m+3

2 w∗∥∥
L2 , (2.85)

and where dm , C3(m), and C4(m) are positive constants depending only on m.
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The estimates (2.83), (2.85), and the equalities (2.81), (2.82) and (2.84) imply that, for t � 0,

d

dt

(∥∥�
m+1

2 rot w∗∥∥2
L2 + α

∥∥�
m+3

2 w∗∥∥2
L2

) + ν
(
2 − β∗)∥∥�

m+3
2 w∗∥∥2

L2

� 3α2C4(m)2

β∗ν
(∥∥w∗∥∥2

V 4

∥∥u∗∥∥2
V m+2 + ∥∥w∗∥∥2

V m+2

∥∥u∗∥∥2
V 4

)
+ 3

β∗ν
‖P f ‖2

Hm+1 + 2αdm
∥∥∇u∗∥∥

L∞
∥∥�

m+3
2 w∗∥∥2

L2

+ 2C2(m)
(∥∥w∗∥∥

V 4

∥∥u∗∥∥
V m+1 + ∥∥w∗∥∥

V m+2

∥∥u∗∥∥
V 3

)∥∥w∗∥∥
V m+2 , (2.86)

where 0 < β∗ < 2. If am = 2ν − 2dmα‖∇u∗‖L∞
t (L∞) > 0, we choose β∗ = am/2ν and, from (2.86), we

deduce the following estimate, for t � 0,

d

dt

(∥∥�
m+1

2 rot w∗∥∥2
L2 + α

∥∥�
m+3

2 w∗∥∥2
L2

) + am

2

∥∥�
m+3

2 w∗∥∥2
L2

� 6α2C4(m)2

am

(∥∥w∗∥∥2
V 4

∥∥u∗∥∥2
V m+2 + ∥∥w∗∥∥2

V m+2

∥∥u∗∥∥2
V 4

) + 6

am
‖P f ‖2

Hm+1

+ 2C2(m)
(∥∥w∗∥∥

V 4

∥∥u∗∥∥
V m+1 + ∥∥w∗∥∥

V m+2

∥∥u∗∥∥
V 3

)∥∥w∗∥∥
V m+2 . (2.87)

Integrating in time the inequality (2.87), we obtain, for t � 0,

∥∥�
m+1

2 rot w∗(t)
∥∥2

L2 + α
∥∥�

m+3
2 w∗(t)

∥∥2
L2 + am

4

t∫
0

exp
(
β(s − t)

)∥∥�
m+3

2 w∗(s)
∥∥2

L2 ds

� exp(−βt)
(∥∥�

m+1
2 rot u0

∥∥2
L2 + α

∥∥�
m+3

2 u0
∥∥2

L2

) + 6

amβ
‖P f ‖2

L∞
t (Hm+1)

+ α2C2
m

am

t∫
0

exp
(
β(s − t)

)(∥∥w∗(s)
∥∥2

V 4

∥∥u∗(s)
∥∥2

V m+2 + ∥∥w∗(s)
∥∥2

V m+2

∥∥u∗(s)
∥∥2

V 4

)
ds

+ Cm

t∫
0

exp
(
β(s − t)

)(∥∥w∗(s)
∥∥

V 4

∥∥u∗(s)
∥∥

V m+1

+ ∥∥w∗(s)
∥∥

V m+2

∥∥u∗(s)
∥∥

V 3

)∥∥w∗(s)
∥∥

V m+2 ds, (2.88)

where 0 < β � am/4 and Cm is a positive constant depending only on m. The estimate (2.79) is now
a direct consequence of (2.88) and of the estimates (2.79), with m replaced by �, 2 � � � m − 1.

If am � 0, one proceeds like in the proof of Theorem 2.3, that is, we set β∗ = 1/2 in the es-
timate (2.86). Integrating then the resulting estimate, using the Gronwall lemma as well as the
recursion hypothesis that w∗ belongs to L∞

loc((0,+∞), V m+2), we prove that w∗ is actually in the
space L∞

loc((0,+∞), V m+3). The obvious details are left to the reader. If am � 0 and am−1 > 0, then
proceeding by interpolation like in the proof of Theorem 2.3, one shows that there exists θ > 0 such
that w∗ ∈ L∞((0,+∞), V m+2+θ ). The details are also left to the reader.

The continuity of w∗ : t ∈ [0,+∞) �→ w∗(t) ∈ V m+3 is proved by using the same arguments as in
the proof of Theorem 2.3. �
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Inequality (2.80) is also proved by recursion. The estimate (2.80) is a direct consequence of (2.88),
(2.53) and (2.61) when m = 2. Assume now that the inequality (2.80) is true for � � m − 1. Then the
estimate (2.80) for � = m is a direct consequence of the estimate (2.79) and the inequalities (2.80) for
� � m − 1.

3. Regularity of the global attractor in V 3+m , m > 0

In this section, we shall prove Theorem 1.1 about the regularity of the global attractor Aα if f
belongs to Hm+1

per , m > 0. As explained in the introduction, we shall prove it by decomposing the
system (1.2) into two affine non-autonomous systems. Let u(t) be an orbit of Sα(t) contained in
the global attractor Aα . We decompose u(t) as u(t) = vn(t) + wn(t), where vn(t) and wn(t) are the
solutions of the following non-autonomous affine equations

∂t(vn − α�vn) − ν�vn + rot(vn − α�vn) × u + ∇pn = f , t > sn, x ∈ T
2,

div vn = 0, t > sn, x ∈ T
2,

vn(sn, x) = 0, x ∈ T
2, (3.1)

and

∂t(wn − α�wn) − ν�wn + rot(wn − α�wn) × u + ∇ p̃n = 0, t > sn, x ∈ T
2,

div wn = 0, t > sn, x ∈ T
2,

wn(sn, x) = u(sn, x), x ∈ T
2, (3.2)

where sn ∈ R is a given initial time, which will go to −∞.
For sake of clarity, we shall distinguish the case where the forcing term f belongs to H1+θ

per , 0 <

θ � 1 from the case where f belongs to Hm+1
per , m > 1.

Theorem 3.1. The following regularity properties of the global attractor Aα hold.
1) Assume that f ∈ H2

per and that a1 = 2ν − 2α(supz∈Aα
‖∇z‖L∞ ) > 0, then the global attractor Aα is

bounded in V 4 . Moreover, for any u ∈ Aα ,

‖u‖2
V 3 + inf(1,α)‖u‖2

V 4 � M4, (3.3)

where M4 = M4(λ1, ν, f ,a1) does not depend on α.
2) For any α > 0, there exists a positive number θ0 , 0 < θ0 � 1, depending only on α and the norm ‖ f ‖H1 ,

such that, if f belongs to H1+θ0
per , then Aα is bounded in V 3+θ0 . Moreover, for any u ∈ Aα ,

‖u‖2
V 2+θ0

+ inf(1,α)‖u‖2
V 3+θ0

� M3+θ0 , (3.4)

where M3+θ0 = M3+θ0 (λ1, ν, f ) does not depend on α.

Proof. Let u(t) be a trajectory on the global attractor. Due to the uniqueness of the solution of
Eqs. (1.2), we at once notice that u = vn + wn . We also remark that vn (resp. wn) is the solution
of the system (2.37) with u∗(t) = u(t) = Sα(t)u(0), vn(sn, x) = 0 (resp. wn(sn, x) = u(sn, x)) and forc-
ing term f (resp. 0). Then, by Remark 2.1, vn and wn satisfy the inequality (2.13). In particular, the
following estimate holds for wn
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∥∥rot
(

wn(t) − α�wn(t)
)‖2

L2 � exp

(
− ν

2(λ−1
1 + 2α)

(t − sn)

)∥∥rot
(
u(sn) − α�u(sn)

)∥∥2
L2

� exp

(
− ν

2(λ−1
1 + 2α)

(t − sn)

)
K

(
1 + α2), (3.5)

where, according to the bounds (2.16) or (2.32) satisfied by the elements on the global attractor,
K = K (‖ f ‖H1 ) is a positive constant depending only on ‖ f ‖H1 .

Assume first that 2ν − 2α supz∈Aα
‖∇z‖L∞ > 0. Then, by Theorem 2.3 and its proof, vn(t) belongs

to C0
b ([sn,+∞), V 4) and the inequality (2.51) implies that, for t � sn ,

∥∥∇(
rot vn(t) − α rot �vn(t)

)∥∥2
L2

� C(1 + α)

a1

[
α

a1
‖� f ‖2

L2 +
(

1 + (1 + α)2

a1α2
+ (1 + α)

α

)
‖rot f ‖2

L2

]
, (3.6)

where C ≡ C(λ1, ν) is a positive constant independent of α, f , a1 and vn , but depending on λ1 and ν .
If αλ1 < 1, taking into account the estimate (2.59), we can improve the previous estimate and

replace it by the following inequality,

∥∥rot �vn(t)
∥∥2

L2 + α
∥∥�2 vn(t)

∥∥2
L2 � C

a1β

[
‖� f ‖2

L2 + ‖rot f ‖4
L2

(
1 + ‖rot f ‖2

L2

)2
(

1 + 1

β

)2]
, (3.7)

where C ≡ C(λ1, ν) is a positive constant independent of α, f , a1 and vn , but depending on λ1 and
ν , and where β = inf(a1,1).

The properties (3.5) and (3.6) (or (3.7)) imply that vn(t) converges to u(t) in V 3 as n goes to infin-
ity and that vn(t) is uniformly bounded in V 4 with respect to n. Therefore there exists a subsequence
vnk (t) which converges weakly to u(t) in V 4. Hence, u(t) belongs to V 4 and satisfies the estimate
(3.6) (or (3.7)), where vn is replaced by u(t). Statement 1) of Theorem 3.1 is proved.

To prove statement 2), one proceeds in the same way. But, since

a1 ≡ 2ν − 2α
(

sup
z∈Aα

‖∇z‖L∞
)

� 0,

one cannot longer prove that vn is bounded in V 4. However, by Theorem 2.3 and its proof (see
condition (2.70) and estimate (2.74)), for any θ0 ∈ (0,1) such that

−γθ0 ≡ − ν

4(λ−1
1 + 2α)

+ θ0 sup
z∈Aα

[(
2 + 6C P

ν
‖∇z‖L∞

)
‖∇z‖L∞

]
< 0 (3.8)

holds, vn(t) belongs to C0
b ([sn,+∞), V 3+θ0 ) and the inequality (2.72) implies that, for t � sn ,

∥∥vn(t) − α�vn(t)
∥∥

V 1+θ0 � γ
−1
θ0

‖P f ‖V 1+θ0 . (3.9)

In the case where α > 0 is very close to zero (in particular αλ1 < 1 and α < 1), one argues as follows.
The inequality (2.73) of Remark 2.2 implies that

∥∥vn(t)
∥∥

V 2+θ0 + √
α

∥∥vn(t)
∥∥

V 3+θ0 � C√
α

γ
−1
θ0

‖P f ‖V 1+θ0 . (3.10)
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Now one distinguishes two cases. If

ν − α

(
1 + ln

(
1 + 1

α

))1/2

K0
(‖rot f ‖L2

)
> 0,

where

K0
(‖rot f ‖L2

) ≡ C1/2
0 C1/2

BG

(
1

ν2λ1
‖rot f ‖2

L2 + 1

ν6λ4
1

‖rot f ‖4
L2

)1/2

,

then, by the estimate (2.33), a1 > 0. In this case, we already proved that Aα is bounded in V 4 and
that the estimate (3.3) holds. If

ν − α

(
1 + ln

(
1 + 1

α

))1/2

K0
(‖rot f ‖L2

)
� 0,

then,

√
α � c0α

(
1 + ln

(
1 + 1

α

))1/2

� c0ν

K0(‖rot f ‖L2)
,

where c0 is a positive constant, and therefore

∥∥vn(t)
∥∥

V 2+θ0 + √
α

∥∥vn(t)
∥∥

V 3+θ0 �
C K0

(‖rot f ‖L2

)
c0ν

γ
−1
θ0

‖P f ‖V 1+θ0 . (3.11)

Finally, one concludes the proof like in the case 1). �
Theorem 3.1 and the estimates (2.16) and (2.33) at once imply the following corollary.

Corollary 3.2. Let α > 0. Assume that f ∈ H2
per and that, either

ν − C S

√
2(λ−1

1 + 2α)

ν
‖rot f ‖L2 > 0

or, when αλ1 < 1, that

ν − αC1/2
0 C1/2

BG

(
1 + ln

(
1 + 1

α

))1/2( 1

ν2λ1
‖rot f ‖2

L2 + 1

ν6λ4
1

‖rot f ‖4
L2

)1/2

> 0,

holds, then the global attractor Aα is bounded in V 4 and the estimate (3.3) holds.

Remark 3.1. If one is only interested in the V 4-regularity of a given trajectory u(t) ⊂ Aα , one can
replace the condition ν − α(supz∈Aα

)‖∇z‖L∞ > 0 by the weaker hypothesis

ν − α
∥∥∇u(t)

∥∥
L∞(L∞)

> 0.

Under this condition, one shows as above that the trajectory u(t) is uniformly bounded in V 4.

One easily generalizes the previous regularity result to the case where f belongs to Hm+1
per , m � 2.
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Theorem 3.3. For any m � 2, there exists a positive number dm (which is a non-decreasing func-
tion of m), such that, for any α > 0, the following regularity properties hold. If f ∈ Hm+1

per and am =
2ν − 2dmα(supz∈Aα

‖∇z‖L∞) > 0, then the global attractor Aα is bounded in V m+3 . Moreover, for any
α0 > 0, there exists a positive constant Mm+3(α0) = Mm+3(λ1, ν, f ,m,am,α0), depending only on λ1 , ν , f ,
m, am and α0 , such that, if 0 < α � α0 and am = 2ν − 2dmα(supz∈Aα

‖∇z‖L∞ ) > 0, then, for any u ∈ Aα ,

‖u‖2
V m+2 + α‖u‖2

V m+3 � Mm+3(α0). (3.12)

If am−1 > 0 and am � 0, then there exists θ0 > 0 such that the global attractor Aα is bounded in V m+2+θ0

and, for any 0 < α � α0 , for any u ∈ Aα ,

‖u‖2
V m+1+θ0

+ α‖u‖2
V m+2+θ0

� Mm+2+θ0(α0), (3.13)

where Mm+2+θ0 (α0) = M(λ1, ν, f ,m, θ0,am−1,α0) does not depend on α.

Proof. The proof follows the same lines as the proof Theorem 3.1; but, instead of only using The-
orem 2.3 in order to estimate the solution vn of (3.1), one applies Theorem 2.4 together with
Theorem 2.3. �
Remark 3.2. We conclude this section by pointing out that, if f belongs to H1+d

per , d > 0, then we
can prove the asymptotic compactness by using a decomposition similar to the one introduced in the
proof of Theorem 3.1. Assume first that f is in H2

per; for any u0 ∈ V 3, we write S(t)u0 = v(t)+ w(t) ≡
L0(t)u0 + K0(t)u0, where v(t) and w(t) are the solutions of the following systems

∂t(v − α�v) − ν�v + rot(v − α�v) × u + ∇p = f , t > 0 x ∈ T
2,

div v = 0, t > 0, x ∈ T
2,

v(0, x) = 0, x ∈ T
2, (3.14)

and

∂t(w − α�w) − ν�w + rot(w − �w) × u + ∇ p̃ = 0, t > 0, x ∈ T
2,

div w = 0, t > 0, x ∈ T
2,

w(0, x) = u0(x), x ∈ T
2. (3.15)

Like in the proof of Theorem 3.1, applying Remark 2.1, we show that w satisfies the following expo-
nential decay, for t � 0,

∥∥rot
(

w(t) − α�w(t)
)∥∥2

L2 � exp

(
− νt

2(λ−1
1 + 2α)

)∥∥rot(u0 − α�u0)
∥∥2

L2 . (3.16)

On the other hand, we deduce from the estimates (2.63) and (2.13) that, for t � 0,

∥∥∇ rot
(

v(t) − α�v(t)
)∥∥2

L2 � C1‖P f ‖2
H2 exp

(
C1t

(∥∥rot(u0 − α�u0)
∥∥2

L2 + ‖rot f ‖2
L2

))
, (3.17)

where C1 = C1(λ1, ν,α) is a positive constant depending only of λ1, ν and α. This shows that S(t)u0
can be written as the sum of two maps L0(t)u0 and K0(t)u0, where L0(t) is asymptotically contracting
and K0(t) is a compact map. Thus S(t) is asymptotically smooth (see for example [22]). Since S(t)
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admits a bounded absorbing set in V 3 (by the property (2.13)), we can conclude that S(t) admits
a compact global attractor Aα in V 3. If f belongs only to H1+d

per , 0 < d < 1, using an interpolation

argument between V 3 and V 4 as in the proof of Theorem 2.3, we can replace the estimate (3.17) by
the following inequality∥∥v(t) − α�v(t)

∥∥2
V 1+d � C2‖P f ‖2

H1+d exp
(
C2t

(∥∥rot(u0 − α�u0)
∥∥2

L2 + ‖rot f ‖2
L2

))
, (3.18)

where C2 = C2(λ1, ν,α) is a positive constant depending only of λ1, ν and α. This again implies that
K0(t) is a compact map.

4. Convergence to the Navier–Stokes equations

If we set α = 0 in Eqs. (1.2), we recover the Navier–Stokes equations. The Navier–Stokes equations
are not only a “formal” limit of Eqs. (1.2), as it has already been remarked by Iftimie, who proved
a weak convergence result in [30], in any space dimension. In this section, we want to compare the
strong solutions of the second grade fluid equations (1.2) with those of the corresponding Navier–
Stokes equations when α goes to zero. We also want to give upper-semicontinuity results for the
corresponding global attractors. We assume here that the forcing term f belongs to Cθ (H1

per), where
0 < θ � 1. Let us recall that the Navier–Stokes equations

∂t u − ν�u + rot u × u + ∇p = f , t > 0, x ∈ T
2,

div u = 0, t > 0, x ∈ T
2,

u(0, x) = u0(x), x ∈ T
2, (4.1)

have a unique global solution S0(t)u0 ≡ u(t) ∈ C0([0,+∞), V 3)∩C1([0,+∞), V 1) if u0 belongs to V 3.
Moreover, if f does not depend on the time variable, S0(t) admits a compact global attractor A0
in V 3. If f belongs to Cθ (H2

per), 0 < θ � 1, then S0(t)u0 is in C0([0,+∞), V 3) ∩ C0((0,+∞), V 4) ∩
C1((0,+∞), V 2). If, in addition, u0 belongs to V 4, then S0(t)u0 is in C0([0,+∞), V 4), and in the
autonomous case, the global attractor A0 in V 3 is actually also the compact global attractor in V 4.
If uα(t) = Sα(t)u0 is the solution of the grade two fluid equations, then z = uα − u satisfies the
following equations

∂t(z − α�z) − ν�z + rot z × uα + rot u × z + ∇(pα − p)

= α∂t�u + α rot �uα × uα, t > 0, x ∈ T
2,

div z = 0, t > 0, x ∈ T
2,

z(0, x) = 0, x ∈ T
2. (4.2)

Taking the inner product in L2(T2) of (4.2) with z, applying the Young inequality and using the
classical Sobolev inequalities, we obtain the following estimate

1

2
∂t

(‖z‖2
L2 + α‖∇z‖2

L2

) + ν‖∇z‖2
L2

� 2α2

ν
‖∂t∇u‖2

L2 + ν

4
‖∇z‖2

L2 + 2

ν
‖uα‖2

L4‖z‖2
L4

+ α‖rot �uα‖L2‖uα‖L4‖z‖L4

� 2α2

ν
‖∂t∇u‖2

L2 + ν

4
‖∇z‖2

L2 + 2C4
S

ν
‖uα‖L2‖∇uα‖L2‖z‖L2‖∇z‖L2

+ αC2
S‖rot �uα‖L2‖uα‖1/2

2 ‖∇uα‖1/2
2 ‖z‖1/2

2 ‖∇z‖1/2
2
L L L L
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� 2α2

ν
‖∂t∇u‖2

L2 + ν

2
‖∇z‖2

L2 + 8C8
S

ν2
‖uα‖2

L2‖∇uα‖2
L2‖z‖2

L2

+ α2C4
S

2
‖rot �uα‖2

L2‖uα‖L2‖∇uα‖L2 + 1

2ν
‖z‖2

L2 .

From the above estimate and the Poincaré inequality (2.4), we deduce that, for t � 0,

∂t
(∥∥z(t)

∥∥2
L2 + α

∥∥∇z(t)
∥∥2

L2

) + ν

α + λ−1
1

(∥∥z(t)
∥∥2

L2 + α
∥∥∇z(t)

∥∥2
L2

)
� 4α2

ν

∥∥∂t∇u(t)
∥∥2

L2 +
(

1

ν
+ 16C8

S

ν2

∥∥uα(t)
∥∥2

L2

∥∥∇uα(t)
∥∥2

L2

)∥∥z(t)
∥∥2

L2

+ α2C4
S

∥∥rot �uα(t)
∥∥2

L2

∥∥uα(t)
∥∥

L2

∥∥∇uα(t)
∥∥

L2 . (4.3)

Integrating the inequality (4.3) from 0 to t and using the Gronwall inequality, we obtain, for t � 0,

∥∥z(t)
∥∥2

L2 + α
∥∥∇z(t)

∥∥2
L2 �

(
4α2

ν

t∫
0

∥∥∂t∇u(s)
∥∥2

L2 ds

+ α2C4
S

t∫
0

∥∥rot �uα(s)
∥∥2

L2

∥∥uα(s)
∥∥

L2

∥∥∇uα(s)
∥∥

L2 ds

)

× exp

( t∫
0

(
1

ν
+ 16C8

S

ν2

∥∥uα(s)
∥∥2

L2

∥∥∇uα(s)
∥∥2

L2

)
ds

)
. (4.4)

When αλ1 � 1, the inequality (4.4) together with the estimates (2.8), (2.18), (2.22) and a classical
estimate for the solution of the Navier–Stokes equations imply that, for t � 0,∥∥z(t)

∥∥2
L2 + α

∥∥∇z(t)
∥∥2

L2 � α2 K0
(‖rot f ‖L∞

t (L2),‖∇ rot u0‖2
L2 + α‖� rot u0‖2

L2

)
× exp

(
1 + K1

(‖rot f ‖L∞
t (L2),‖u0‖2

L2 + α‖∇u0‖2
L2

))
t, (4.5)

where K0 and respectively K1 are positive constants depending only on ‖rot f ‖L∞
t (L2) and on

‖∇ rot u0‖2
L2 + α‖� rot u0‖2

L2 (respectively ‖u0‖2
L2 + α‖∇u0‖2

L2 ). The property (2.25) and analogous
properties of the solutions of the Navier–Stokes equations imply that, for t � 0,∥∥∇ rot z(t)

∥∥2
L2 + α

∥∥� rot z(t)
∥∥2

L2 � K2
(‖rot f ‖L∞

t (L2),‖∇ rot u0‖2
L2 + α‖� rot u0‖2

L2

)
, (4.6)

where K2 is a positive constant depending only on ‖rot f ‖L∞
t (L2) and on ‖∇ rot u0‖2

L2 + α‖� rot u0‖2
L2 .

Thus, by interpolation, we obtain, for 0 � s � 2 and t � 0,∥∥z(t)
∥∥2

V s + α
∥∥z(t)

∥∥2
V s+1 � α2(1−s/2)K s/2

2

(‖rot f ‖L∞
t (L2),‖∇ rot u0‖2

L2 + α‖� rot u0‖2
L2

)
× K 1−s/2

0

(‖rot f ‖L∞
t (L2),‖∇ rot u0‖2

L2 + α‖� rot u0‖2
L2

)
× exp

(
1 − s

2

)(
1 + K1

(‖rot f ‖L∞
t (L2),‖u0‖2

L2 + α‖∇u0‖2
L2

))
t. (4.7)
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Let us now assume that f belongs to Cθ ((0,+∞), H2
per), θ > 0, and that u0 is an element in V 4.

Then, the solution S0(t)u0 of the Navier–Stokes equations (4.1) belongs to the space C0
b ([0,+∞), V 4).

Moreover, for α > 0 small enough so that 2ν − 2α‖Sα(t)u0‖L∞(L∞) > 0, the solution Sα(t)u0 of
Eqs. (1.2) is bounded in V 4, for t � 0, as described in (2.59). We thus obtain, for t � 0,

∥∥rot �z(t)
∥∥2

L2 + α
∥∥�2 rot z(t)

∥∥2
L2 � K3

(‖ f ‖L∞
t (H2),‖rot �u0‖2

L2 + α
∥∥�2u0

∥∥2
L2

)
, (4.8)

where K3 is a positive constant depending only on ‖ f ‖L∞
t (H2) and on ‖rot�u0‖2

L2 + α‖�2u0‖2
L2 . In-

terpolating between the inequalities (4.8) and (4.5), we obtain that, for 0 � s � 3 and t � 0,

∥∥z(t)
∥∥2

V s + α
∥∥z(t)

∥∥2
V s+1 � α2(1−s/3)K s/3

3

(‖ f ‖L∞
t (H2),‖rot �u0‖2

L2 + α
∥∥�2u0

∥∥2
L2

)
× K 1−s/3

0

(‖rot f ‖L∞
t (L2),‖∇ rot u0‖2

L2 + α‖� rot u0‖2
L2

)
× exp

(
1 − s

3

)(
1 + K1

(‖rot f ‖L∞
t (L2),‖u0‖2

L2 + α‖∇u0‖2
L2

))
t. (4.9)

We can improve the estimate (4.9) by arguing as follows. Taking the inner product in L2(T2)

of (4.2) with −�z, using the equality (A.5) of Appendix A, applying the Young inequality and using
the classical Sobolev inequalities, we obtain the following estimate

∂t
(‖∇z‖2

L2 + α‖�z‖2
L2

) + ν‖�z‖2
L2 � 3

ν

(
α2‖∂t�u‖2

L2 + α2‖rot �uα‖2
L2‖uα‖2

L∞

+ ‖rot u‖2
L4‖z‖2

L4

)
� 3

ν

(
α2‖∂t�u‖2

L2 + α2C2
S‖rot �uα‖2

L2‖�uα‖2
L2

+ C4
S‖�u‖2

L2‖∇z‖2
L2

)
,

where C S is a positive constant coming from the Sobolev inequalities. From the above estimate and
the Poincaré inequality (2.4), we infer that, for t � 0,

∂t
(∥∥∇z(t)

∥∥2
L2 + α

∥∥�z(t)
∥∥2

L2

) + νλ1

1 + αλ1

(∣∣∇z(t)
∥∥2

L2 + α
∥∥�z(t)

∥∥2
L2

)
� 3

ν

(
α2

∥∥∂t�u(t)
∥∥2

L2 + α2C2
S

∥∥rot �uα(t)
∥∥2

L2

∥∥�uα(t)
∥∥2

L2 + C4
S

∥∥�u(t)
∥∥2

L2

∥∥∇z(t)
∥∥2

L2

)
. (4.10)

Integrating the inequality (4.10) from 0 to t and using the Gronwall lemma, we get, for t � 0,

∥∥∇z(t)
∥∥2

L2 + α
∥∥�z(t)

∥∥2
L2 � 3

ν

(
α2

t∫
0

(∥∥∂t�u(τ )
∥∥2

L2 + C2
S

∥∥rot �uα(τ )
∥∥2

L2

∥∥�uα(τ )
∥∥2

L2

)
dτ

)

× exp

(
C4

S

t∫
0

∥∥�u(τ )
∥∥2

L2 dτ

)
. (4.11)

When αλ1 � 1, the inequality (4.11) together with the estimates (2.18), (2.22) and the regularity
properties of the solution u(t) of the Navier–Stokes equations (4.1), imply that, for t � 0,
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∥∥∇z(t)
∥∥2

L2 + α
∥∥�z(t)

∥∥2
L2 � α2 K4

(‖ f ‖L∞
t (H2),‖∇ rot u0‖2

L2 + α‖� rot u0‖2
L2

)
× exp K4

(‖ f ‖L∞
t (H2),‖∇ rot u0‖2

L2 + α‖� rot u0‖2
L2

)
t, (4.12)

where K4(‖ f ‖L∞
t (H2),‖∇ rot u0‖2

L2 +α‖� rot u0‖2
L2) is a positive constant depending only on ‖ f ‖L∞

t (H2)

and ‖∇ rot u0‖2
L2 +α‖� rot u0‖2

L2 . By interpolation, we deduce from the estimates (4.8) and (4.12) that,
for t � 0, for 0 � s � 2,

∥∥z(t)
∥∥2

V 1+s + α
∥∥z(t)

∥∥2
V 2+s

� α2(1−s/2)K s/2
3

(‖ f ‖L∞
t (H2),‖rot �u0‖2

L2 + α
∥∥�2u0

∥∥2
L2

)
× K 1−s/2

4

(‖ f ‖L∞
t (H2),‖∇ rot u0‖2

L2 + α‖� rot u0‖2
L2

)
× exp

[
(1 − s/2)

(
K4

(‖ f ‖L∞
t (H2),‖∇ rot u0‖2

L2 + α‖� rot u0‖2
L2

)
t
)]

. (4.13)

We have thus proved the following result.

Theorem 4.1. Assume that αλ1 � 1.
1) Assume that f belongs to Cθ ((0,+∞), H1

per), θ > 0, and let u0 ∈ V 3 . Then, for every 0 � s � 2, the
following estimate holds

∥∥S0(t)u0 − Sα(t)u0
∥∥2

V s + α
∥∥S0(t)u0 − Sα(t)u0

∥∥2
V s+1

� α2(1−s/2) exp t K5
(‖rot f ‖L∞

t (L2),‖∇ rot u0‖2
L2 + α‖� rot u0‖2

L2

)
, (4.14)

where K5(‖rot f ‖L∞
t (L2),‖∇ rot u0‖2

L2 +α‖� rot u0‖2
L2) is a positive constant depending only on ‖rot f ‖L∞

t (L2)

and ‖∇ rot u0‖2
L2 + α‖� rot u0‖2

L2 .

2) Assume moreover that f belongs to Cθ ((0,+∞), H2
per), θ > 0, that α > 0 is small enough and that u0

is in V 4 . Then, for every 0 � s � 2, the following estimate holds

∥∥S0(t)u0 − Sα(t)u0
∥∥2

V s+1 + α
∥∥S0(t)u0 − Sα(t)u0

∥∥2
V s+2

� α2(1−s/2) exp t K6
(‖ f ‖L∞

t (H2),‖� rot u0‖2
L2 + α

∥∥�2u0
∥∥2

L2

)
, (4.15)

where K6(‖ f ‖L∞
t (H2),‖� rot u0‖2

L2 + α‖�2u0‖2
L2 ) is a positive constant depending only on ‖ f ‖L∞

t (H2) and

‖� rot u0‖2
L2 + α‖�2u0‖2

L2 .

This theorem at once implies the upper-semicontinuity of the global attractors in V s , for 0 � s < 2
(respectively 0 � s < 3).

Corollary 4.2. 1) Assume that f belongs to H1
per . Let A0 and Aα be the compact global attractors of Eqs. (4.1)

and (1.2). Then, the attractors Aα are upper-semicontinuous at α = 0 in V s, for 0 � s < 2, that is

lim
α→0

sup
uα∈Aα

inf
u∈A0

‖uα − u‖V s = 0.

2) Assume moreover that f belongs to H2
per , then the attractors Aα are upper-semicontinuous at α = 0 in V s,

for 0 � s < 3.
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Proof. Although the proof of this corollary is classical, we give it for the reader’s convenience. Assume
that αλ1 � 1. Then, the global attractor Aα is bounded in V 2 by a positive constant C2 independent of
α. Let η > 0 be a small positive number. Since A0 is the compact global attractor of the Navier–Stokes
equations in V 3 and in V 2, there exists a positive time Tη such that, for any u0 ∈ Aα , S0(t)u0 belongs
to the η/2-neighborhood of A0 in V 2, for t � Tη . By Theorem 4.1, since ‖rot u0‖2

L2 + α‖� rot u0‖2
L2 is

uniformly bounded by a constant C3 independent of α, for any s, 0 � s < 2, there exists αs > 0, such
that, for 0 < α � αs , for any u0 ∈ Aα , we have,

∥∥S0(Tη)u0 − Sα(Tη)u0
∥∥

V s � η

2
.

The above properties imply that Sα(Tη)Aα is included in the η-neighborhood of A0 in V s . Since Aα

is invariant under Sα(t), we deduce that Aα is included in the η-neighborhood of A0 in V s .
The second statement of the corollary is proved exactly in the same way. But now, we use the

fact that, by the results of Section 2, ‖rot�u0‖2
L2 + α‖�2u0‖2

L2 is uniformly bounded by a constant
C4 independent of α, for any u0 ∈ Aα . �

More generally, by using the regularity results of the global attractors Aα of Section 3, we can
prove the following upper-semicontinuity result, the proof of which is left to the reader.

Corollary 4.3. Assume that f belongs to Hm
per , m � 1. Let A0 and Aα be the compact global attractors of

Eqs. (4.1) and (1.2). Then, the attractors Aα are upper-semicontinuous at α = 0 in V s, for 0 � s < m + 1, that
is

lim
α→0

sup
uα∈Aα

inf
u∈A0

‖uα − u‖V s = 0.

5. Determining modes and asymptotic dynamics

The main goal of this section is the proof of Theorem 1.2 and its consequences. Theorem 1.2 will
be proved in several steps and will be the consequence of several lemmas. Except in Lemma 5.1, we
will need to impose the condition 2ν − 4α supz∈Aα

‖∇z‖L∞ > 0.
Before entering into the details of the proof of Theorem 1.2, we quickly explain the lines of its

proof and the construction of the map q(v). As we have already explained in the introduction, here
we follow the strategy developed by Hale and Raugel in [24]. We have to face an additional difficulty
due to the low regularity of the nonlinear term. Let n � 1 be a fixed integer. We recall that P denotes
the Leray orthogonal projection of L2(T2)2 onto H and that Pn is the orthonormal projection in H
onto the space generated by the eigenfunctions corresponding to the first n eigenvalues of the Stokes
operator A and that Q n = I − Pn . As in [24], we remark that, if u(t) ∈ C0

b (R, V 3) is a solution of (1.2),
contained in the attractor Aα , then v(t) = Pnu(t) and q(t) = Q nu(t) are solutions to the following
systems, for all t ∈ R,

∂t(v − α�v) − ν�v + Pn P
({

rot
(
q + v − α�(q + v)

) × (v + q)
}) = Pn P f , (5.1)

and

∂t(q − α�q) − ν�q + Q n P
({

rot
(
q + v − α�(q + v)

) × (v + q)
}) = Q n P f . (5.2)

We will see below that, if n is large enough, for every “bounded curve” (also called bounded trajec-
tory) v(t) ∈ C0

b (R, Pn Aα), there exists a unique solution qn(v)(t) ∈ C0
b (R, Q n V 3) of Eq. (5.2) and that,

if v(t) = Pnu(t) where u(t) is a solution of (1.2) contained in the attractor Aα , then qn(v)(t) = Q nu(t)
(to simplify the notation, we write qn(v)(t) ≡ q(v)(t) below). In Theorem 1.2, we want to show that
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Eqs. (1.2) reduce to a finite system of ordinary differential equations with an infinite delay term in-
volving q(v). In order to give a sense to this reduced system, we have to define the mapping q(v) not
only for trajectories v(t) contained in Pn Aα , but also for all “curves” contained in a neighborhood Vn
of Pn Aα in Pn V 3+d , d > 0. The most natural idea is to define q(v) as “the” solution of Eq. (5.2). We
will show below that, for any element v ∈ C0

b (R, Vn), and for n large enough and α small enough, the
solution q(v) ∈ C0

b (R, Q n V 3) of (5.2) is obtained as the (unique) fixed point of the contraction map-
ping defined as follows. Let w(t) be given in C0

b (R, Q n V 2) ∩ L∞(R, Q n V 3), we consider the problem:
to find q ∈ C0

b (R, V 3) such that,

∂t(q − α�q) − ν�q + Q n P
({

rot
(
q + v − α�(q + v)

) × (v + w)
}) = Q n P f , t ∈ R. (5.3)

In a first step (see Lemma 5.1 below), we show that, if f belongs to H1
per , and if v and w belong

to C0
b (R, Pn V 3) and C0

b (R, Q n V 2) ∩ L∞(R, Q n V 3) respectively, Eq. (5.3) has a unique solution qn
v,w in

the space C0
b (R, Q n V 3) (to simplify, we write qv,w instead of qn

v,w if there is no possible confusion).

In a second step, we assume that f belongs to H1+d
per , d > 0, and we show that, if v belongs

to C0(R, N Pn V 3+d (Pn Aα, r0)), where N Pn V 3+d (Pn Aα, r0) is the r0-neighborhood of Pn Aα in Pn V 3+d ,

equipped with the norm (‖ · ‖2
V 2+d + α‖ · ‖2

V 3+d )
1
2 , and where r0 > 0 is small enough, then, for n large

enough, for R = Rn > 0 large enough, and for α small enough, the map w ∈ Wn(Rn) → qn
v,w ∈ Wn(Rn)

is a strict contraction and thus has a unique fixed point qn(v) ≡ q(v) ∈ Wn(Rn), where Wn(Rn) is
defined in (5.16) below. Moreover, we prove that the map v → q(v) is Lipschitz-continuous. These
properties allow us to reduce system (1.2) on the attractor Aα to a system of ordinary differential
equations containing an infinite delay term. This system is well-posed since it satisfies the hypotheses
of the Cauchy–Lipschitz theorem.

5.1. Proof of Theorem 1.2

5.1.1. Step 1 of the proof of Theorem 1.2
The first step consists in proving that Eq. (5.3) has a unique solution in C0

b (R, Q n V 3). In this step
we do not need any smallness assumption of α.

Lemma 5.1. Let f ∈ H1
per be fixed. We assume that v(t) and w(t) belong to the spaces C0

b (R, Pn V 3) and

C0
b (R, Q n V 2) ∩ L∞(R, Q n V 3) respectively. Then, for any integer n, there exists a unique solution qn

v,w ∈
C0

b (R, Q n V 3) of Eq. (5.3). Moreover, qn
v,w(t) depends on the values v(s) and w(s), for s � t only.

Proof. The proof consists in three steps.
a) Existence of a solution: As usually, we show the existence of a solution q in C0(R, Q n V 3) by
considering a Galerkin approximation of Eq. (5.3):

∂t(qm − α�qm) − ν�qm + Pm Q n P
{

rot(qm − α�qm) × (v + w)
} = gm, t ∈ R, (5.4)

where

gm = Pm Q n P f − Pm Q n P
{

rot(v − α�v) × (v + w)
}
.

Eq. (5.4) can be rewritten in the equivalent form

∂tqm + Am(t)qm = (I + αA)−1 gm(t), t ∈ R, (5.5)

where

Am(t)qm = −ν(I + αA)−1 Pm Q n�qm + (I + αA)−1 Pm Q n P
{

rot(qm − α�qm) × (v + w)
}
.
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Note that (5.5) is a system of linear non-autonomous ODE’s in the finite-dimensional space H =
Pm Q n P H3(T2) = Pm Q n V 3, that Am(t) ∈ C0(R, L(H)) is a continuous matrix-valued function and that
gm(t) ∈ C0(R, H). Consider the Cauchy problem for the matrix-valued function Um(t, s)

∂t Um + Am(t)Um = 0, t � s, Um(s, s) = I. (5.6)

As is well known from the theory of linear ODE’s, this problem admits a unique continuous solution
Um(t, s) ∈ C(D, L(H)) where D = {(t, s) ∈ R

2: t � s}. We remark that, for any t ∈ R, for any U ∈ L(H),(
rot(I + αA)Am(t)U , rot(U − α�U )

) = ν
(‖�U‖2

L2 + α‖∇�U‖2
L2

)
.

Therefore, using the inequality (2.11), we deduce from the above equality that the solution Um(t, s)
of (5.6), satisfies, for any (t, s) ∈ D ,

∂t
∥∥rot(Um − α�Um)

∥∥2
L2 + ν

λ−1
1 + 2α

∥∥rot(Um − α�Um)
∥∥2

L2 � 0, (5.7)

and therefore

∥∥rot
(
Um(t, s)q0 − α�Um(t, s)q0

)∥∥2
L2 � e−γ1(t−s)

∥∥rot(q0 − α�q0)
∥∥2

L2 , (t, s) ∈ D, (5.8)

where γ1 = ν

λ−1
1 +2α

. It is easy to see now that the function

qm(t) =
t∫

−∞
Um(t, s)(I + αA)−1 gm(s)ds

is well defined on R, belongs to the space C1(R, H) and satisfies (5.5). We remark that qm(t) depends
on the values of v(s) and w(s), for s � t only. Moreover, the estimate (5.8) implies that

∥∥rot(qm − α�qm)(t)
∥∥

L2

�
t∫

−∞
e− γ1

2 (t−s)
∥∥rot

(
f − (

rot
(

v(s) − α�v(s)
)) × (v + w)(s)

)∥∥
L2 ds � C, (5.9)

where C is a positive constant, which does not depend on m. We have thus proved that the sequence
qm(t) is uniformly bounded (with respect to m) in the space L∞(R, V 3). Applying standard Galerkin
approximation arguments, we infer that there exists a weak limit qn

v,w ≡ q ∈ L∞(R, V 3) which satis-
fies (5.3). Arguing as in Remark 2.3, one shows that q(t) belongs to the space C0(R, V 3).

b) Remark: We note that Q nq = q, where q is any solution in L∞(R; V 3) of Eq. (5.3). To prove this
property, it suffices to show that Pnq = 0. But Pnq is the solution of the following linear equation

∂t(Pnq − α�Pnq) − ν�Pnq = 0.

Taking the inner product in H of this equation with q in H , we get

1
∂t

(‖Pnq‖2
L2 + α‖rot Pnq‖2

L2

) + ν‖rot Pnq‖2
L2 = 0, t ∈ R.
2
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This implies that, for some positive constant γ > 0, we have, for t � s,

∥∥Pnq(t)
∥∥2

L2 + α
∥∥rot Pnq(t)

∥∥2
L2 � eγ (s−t)(∥∥Pnq(s)

∥∥2 + α
∥∥rot Pnq(s)

∥∥2)
.

Since q(s) belongs to the space L∞(R, V 3), Pnq belongs to the same space and the above inequality
implies that Pnq(t) = 0 for all t ∈ R.

c) Uniqueness of the solution: Assume now that there exist two solutions q1(t), q2(t) of problem (5.3),
which belong to the space Cb(R, V 2)∩ L∞(R, V 3). Writing the equation for the difference q∗ = q1 −q2,
we obtain the equality

∂t
(
q∗ − α�q∗) − ν�q∗ + Q n P

(
rot

(
q∗ − α�q∗) × (v + w)

) = 0, ∀t ∈ R. (5.10)

Taking the vorticity of the equality (5.10), we get the equation,

∂t rot
(
q∗ − α�q∗) − ν rot �q∗ + rot Q n P

(
rot

(
q∗ − α�q∗) × (v + w)

) = 0, ∀t ∈ R. (5.11)

Formally, taking the scalar product in H of this equation with rot(q∗ − α�q∗) we obtain,

1

2
∂t

∥∥rot
(
q∗ − α�q∗)∥∥2

L2 + ν
(∥∥�q∗∥∥2 + α

∥∥rot �q∗∥∥2) = 0, ∀t ∈ R,

which implies, after integration in time, that, for t � s,∥∥rot
(
q∗(t) − α�q∗(t)

)∥∥2
L2 � e−γ (t−s)

∥∥rot
(
q∗(s) − α�q∗(s)

)∥∥2
L2

where γ is a positive number. Since q∗(s) belongs to L∞(R, V 3), by taking s → −∞, one deduces
from this inequality that q∗(t) = 0, for all t ∈ R. We emphasize that, arguing in the same way as
above, one shows that the solution q(t) of (5.3) depends on the values of v(s) and w(s), for s � t
only.

In order to justify the above formal computation, we proceed as follows. For any integer N , for any
g ∈ L2(T2), we introduce the operator

J N g =
∑

n≡(n1,n2)

ϕ

( |n|
2N

)
ĝnei(n1x1+n2x2),

where ĝn is the Fourier coefficient of order n of g and ϕ is a classical truncation function. For ex-
ample, we choose a symmetric function ϕ ∈ C∞(R, [0,1]) such that the support of ϕ is contained
in [−4/3,4/3] and such that ϕ = 1 on [−3/4,3/4]. In the same way, we define the operator J N for
vectors in L2(T2)2. For any vector u ∈ L2(T2)2, we introduce the operator

J N u =
∑

n≡(n1,n2)

ϕ

( |n|
2N

)
ûnei(n1x1+n2x2).

Applying the operator J N to Eq. (5.10) and taking the vorticity of the resulting equation, we get the
equality

∂t rot
(

J Nq∗ − α� J Nq∗) − ν rot � J Nq∗ + rot
(
rot

(
J Nq∗ − α� J Nq∗) × (v + w)

) = hN (5.12)
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where

hN = rot
(
rot

(
J Nq∗ − α� J Nq∗) × (v + w)

) − rot J N
(
rot

(
q∗ − α�q∗) × (v + w)

)
.

Then, we take the inner product in H of Eq. (5.12) with rot( J Nq∗ − α� J Nq∗) and we perform the
same computation as above. We obtain, for t � s,

∥∥rot
(

J Nq∗(t) − α� J Nq∗(t)
)∥∥2

L2 � e−γ (t−s)
∥∥rot

(
J Nq∗(s) − α� J Nq∗(s)

)∥∥2
L2

+
t∫

s

e−γ (t−τ )
(
hN(τ ), rot

(
J Nq∗ − α� J Nq∗)(τ )

)
dτ . (5.13)

We note that ∫
T2

hN · rot
(

J Nq∗ − α� J Nq∗) = −
∫
T2

(
J N(b × a) − b × J Na

) · rot J Na,

where b = v + w and a = rot(q∗ − α�q∗) ∈ L2(T2). Arguing as in [7] for example, one proves the
following commutator estimate∥∥ J N (b × a) − b × J Na

∥∥
L2 � C2−N‖a‖L2‖∇b‖L∞ ,

which implies that,∣∣(hN , rot
(

J Nq∗ − α� J Nq∗))∣∣ � C2−N‖ rot J Na‖L2‖∇b‖L∞‖a‖L2 .

Using Parseval theorem together with Lebesgue convergence theorem, we easily show that, for every
a ∈ L2(T2), 2−N‖∇ J Na‖L2 converges to zero when N goes to infinity. Using this property and taking
the limit as N → ∞, we obtain the justification of the above computations. �
Remark 5.1. If one does not wish to introduce the above operator J N and to use commutator in-
equalities, one can also prove the uniqueness (under some restrictions on the size of w and on α) as
follows. These conditions are not really restrictive, since they will be satisfied in the next steps.

Let λn > 0, n � 1, be the sequence of eigenvalues of the Stokes operator A. Let R0 > 0,
ρ0 > 0 be given positive constants. Let Rn , n � 1, be a sequence of positive numbers such that
Rnλ

δ−1/2
n+1 , δ > 0, converges to zero when n goes to infinity. Assume that v(t) and w(t) belong to

C0
b (R, B Pn V 3(0, R0)) and L∞(R, B Q n V 3(0, Rn)) ∩ C0

b (R, V 2) respectively and that ‖∇v‖L∞(R,L∞(T2)2) �
ρ0, with 2ν − 4αρ0 > 0.

Taking the inner product in H of Eq. (5.10) with q∗ , we get, for any t ,

∂t
(∥∥q∗(t)

∥∥2
L2 + 2α

∥∥∇q∗(t)
∥∥2

L2

) + ∥∥∇q∗(t)
∥∥

L2

� 2
∣∣(rot

(
q∗(t) − α�q∗(t)

) × (
v(t) + w(t)

)
,q∗(t)

)∣∣. (5.14)

Using the equalities (A.4) and (A.6) of Appendix A and classical Sobolev imbedding theorems, we
obtain the following estimate,
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∣∣(rot
(
q∗ − α�q∗) × (v + w),q∗)∣∣ �

∥∥q∗∥∥2
L2

∥∥∇(v + w)
∥∥

L∞ + α
∥∥q∗∥∥

L4

∥∥∇q∗∥∥
L2(‖�v + �w‖L4)

+ 2α
∥∥∇q∗∥∥2

L2

(‖∇v‖L∞ + ‖∇w‖L∞
)

� C Sλ
−1
n+1

∥∥∇q∗∥∥2
L2(R0 + Rn)

+ αC Sλ
−1/4
n+1

∥∥∇q∗∥∥2
L2

(
R0 + λ

−1/4
n+1 Rn

)
+ 2αC S,δλ

δ−1/2
n+1

∥∥∇q∗∥∥2
L2 Rn + 2α

∥∥∇q∗∥∥2
L2ρ0, (5.15)

where C S , C S,δ are positive constants coming from the Sobolev estimates. Since β0 ≡ ν − 2αρ0 > 0,

that λn goes to infinity and that Rnλ
δ−1/2
n goes to zero, when n tends to infinity, one deduces from

the inequalities (5.14) and (5.15) that there exists n0 large enough so that, for n � n0,

∥∥q∗(t)
∥∥2 + α

∥∥∇q∗(t)
∥∥2 � e−β0(t−s)(∥∥q∗(s)

∥∥2 + α
∥∥rot q∗(s)

∥∥2)
, ∀t � s.

Since q∗(s) belongs to L∞(R, V 3), this inequality implies that q∗(t) = 0, for any t ∈ R.

5.1.2. Step 2 of the proof of Theorem 1.2
For any integer n, we introduce the space

Wn ≡ Wn(Rn) ≡ W

= {
w ∈ L∞(

R, Q n V 3) ∩ C0(
R, V 2) ∣∣ ‖�w‖2

L∞(R,H) + α‖∇�w‖2
L∞(R,H) � R2

n

}
, (5.16)

where Rn > 0 is a large enough positive number, which may depend on n. We endow W with the
topology induced by the norm (‖w‖2

C0
b (R,H)

+ α‖rot w‖2
C0

b (R,H)

)1/2
,

which makes W a complete metric space.
In this step, we need to assume that 2ν − 4α supz∈Aα

‖∇z‖L∞ > 0. Under this assumption, we
know by Section 3, that, if f belongs to V 1+d , 0 < d � 1, then the attractor is bounded in V 3+d . Here
we prove that, for a fixed element v(t) in C0(R, N Pn V 3+d (Pn Aα, r0)), where r0 > 0 is small enough,
there exists n0 large enough so that, for n � n0, for Rn > 0 large enough, the map w ∈ W �→ qv,w ≡
qn

v,w ∈ W is a strict contraction, provided α is small enough. We recall that N Pn V 3+d (Pn Aα, r0) is the

r0-neighborhood of Pn Aα in Pn V 3+d , equipped with the norm (‖ · ‖2
V 2+d + α‖ · ‖2

V 3+d )
1
2

Lemma 5.2. Assume that f ∈ H1+d
per , 0 < d � 1 and that 2ν − 4α supz∈Aα

‖∇z‖L∞ > 0.
There exist a real number r0 > 0 small enough, an integer n0 large enough and, for n � n0 , a large enough

number Rn, such that, for n � n0 , for v in C0(R, N Pn V 3+d (Pn Aα, r0)), the map w ∈ Wn �→ qn
v,w , where qn

v,w
is the unique solution of (5.3), is a strict contraction on Wn and thus admits a unique fixed point qn(v) in
Wn ∩ C0(R, V 3). Moreover, qn(v) depends on the values v(s), for s � t only.

Proof. a) Remark that the condition a∗
1 = 2ν − 4α supz∈Aα

‖∇z‖L∞ > 0 implies that we can assume
without loss of generality that α � α0, for some adequate α0.

Let δ0 < 1 and δ1 < 1 be two small fixed positive constants, which will be made more precise later.
We assume that δ0 is so small that

8α
1/2
0 δ0 < a∗

1. (5.17)
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If f belongs to H1+d
per , 0 < d � 1, then, by the results of Sections 2 and 3, there exists a positive

number ρ0 such that, for any u ∈ Aα , and thus, for any integer n

‖u‖2
V 2+d + α‖u‖2

V 3+d � ρ2
0 ,

‖Pnu‖2
V 2+d + α‖Pnu‖2

V 3+d � ρ2
0 . (5.18)

Since Aα is compact in V 3, there exists an integer n0 such that, for any integer n � n0, for any
element u ∈ Aα ,

α1/2‖Q n∇u‖L∞ � δ0

4
(5.19)

and, therefore,

2ν − 4α‖Pn∇u‖L∞ � a∗
1 − α1/2δ0. (5.20)

We will also choose n0 large enough so that, for n � n0,

λ
−1/4
n � δ1 < 1, (5.21)

and

‖Q n P f ‖2
L2 �

δ2
0

2
. (5.22)

We choose r0 > 0 small enough so that, for any n � n0, for v ∈ C0(R, N Pn V 3+d (Pn Aα, r0)),

2ν − 4α‖∇v‖L∞ � a∗
1 − 2α1/2δ0 � 3

4
a∗

1. (5.23)

b) We set

R2
n = (

λ−1
1 + α0

)( 8

ν2
‖rot f ‖2

L2 + 16 sup(C2
S , C2

S,d)

ν2
(ρ0 + r0)

4(1 + α0λ
1−d
n

)) + 2ρ2
0 , (5.24)

where C S is the positive constant in the Sobolev estimates below and where C S,d is the positive
constant in the Sobolev estimate,

‖U‖L∞ � C S,d‖U‖H1+d , (5.25)

valid for any U ∈ H1+d .
Let v be fixed in C0(R, N Pn V 3+d (Pn Aα, r0)). Due to Lemma 5.1 and to the choice of Rn , there exists

an integer n1, such that, for n � n1, for w ∈ W , Eq. (5.3) has a unique solution qn
v,w . We first prove

that there exists an integer n0 � n1 such that, for n � n0, the solution qn
v,w belongs to W . To simplify

the notation, we set q ≡ qn
v,w . The following a priori estimates on q can be rigorously justified by a

classical Galerkin method (we let the details to the reader). For this reason, we can assume without
loss of generality that q is regular enough. Then, applying the curl operator to Eq. (5.3), taking the
inner product in H of the resulting equation with rot�q, and using the equality (A.5), we obtain the
following equality
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1

2
∂t

(‖∇ rot q‖2 + α‖� rot q‖2) + ν‖� rot q‖2

= (rot f ,� rot q) + (
�q × (v + w),� rot q

)
− (

rot
(
rot(v − α�v) × (v + w)

)
,� rot q

)
. (5.26)

Using the equality (A.3) of Lemma A.1 and applying the classical Sobolev estimates, we obtain, for
t ∈ R, ∣∣(�q × (v + w),� rot q

)∣∣ � ‖�q‖2
L4

∥∥∇(v + w)
∥∥

L2

� C2
Sλ

−1/2
n+1

(
ρ0 + r0 + λ

−1/2
n+1 Rn

)‖� rot q‖2
L2 , (5.27)

where C S is a constant coming from the Sobolev inequalities.
Next we estimate the term |(rot(rot(v − α�v) × (v + w)),� rot q)|. Using the equality (A.2), we

can write, for t ∈ R,∣∣(rot
(
rot(v − α�v)

) × w,� rot q
)∣∣ �

(‖v‖V 2‖w‖L∞ + α
∥∥�2 v

∥∥
L2‖w‖L∞

)‖rot �q‖L2

� C S,δ

(‖v‖V 2λ
−1/2+δ

n+1 + α1/2‖v‖V 3λ
1/2
n λ−1+δ

n+1

)
Rn‖rot �q‖L2

� C S,δ(ρ0 + r0)Rnλ
−1/2+δ

n+1 ‖rot �q‖L2

� ν

8
‖rot �q‖2

L2 + 2C2
S,δ

ν
(ρ0 + r0)

2 R2
nλ−1+2δ

n+1 , (5.28)

where C S,δ > 0 is the constant in the Sobolev estimate ‖w‖L∞ � C S,δ‖w‖H1+δ . Arguing in the same
way, we obtain, for any t ∈ R,∣∣(rot

(
rot(v − α�v) × v

)
,� rot q

)∣∣ �
(‖v‖V 2 + α

∥∥�2 v
∥∥

L2

)‖v‖L∞‖rot �q‖L2

� C S,d
(‖v‖V 2 + α‖v‖V 3+dλ

1−d
2

n
)‖v‖V 2‖rot �q‖L2

� C S,d(ρ0 + r0)
2(1 + α1/2λ

1−d
2

n
)‖rot �q‖L2

� ν

8
‖� rot q‖2

L2 + 4C2
S,d

ν
(ρ0 + r0)

4(1 + αλ1−d
n

)
. (5.29)

Finally, we have, for t ∈ R,∣∣(rot f ,� rot q)
∣∣ � ν

8
‖� rot q‖2

L2 + 2

ν
‖rot f ‖2

L2 . (5.30)

From the equality (5.26) and the estimates (5.27) to (5.30), we deduce that, for t ∈ R,

1

2
∂t

(‖∇ rot q‖2
L2 + α‖� rot q‖2

L2

) +
(

5

8
ν − C2

Sλ
−1/2
n+1

(
ρ0 + r0 + λ

−1/2
n+1 Rn

))‖� rot q‖2
L2

� 2

ν
‖rot f ‖2

L2 + 4C2
S,d

ν
(ρ0 + r0)

4(1 + αλ1−d
n

) + 2C2
S,δ

ν
λ−1+2δ

n+1 R2
n(ρ0 + r0)

2. (5.31)

We first remark that, due to the choice of Rn , there exists a positive constant R0 such that, for any
integer n,

λ
d/2−1/2
n+1 Rn � R0. (5.32)
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We now set δ = 1/4 for example. We next choose the integer n0 large enough (and δ1 small enough)
so that, for n � n0,

λ
−1/2
n+1 C2

S(ρ0 + r0 + R0) � δ2
1 C2

S(ρ0 + r0 + R0) � ν

8
,

4C2
S,δ(λ

−1
1 + α)

ν2
λ

−1/2
n+1 (ρ0 + r0)

2 �
4C2

S,δ(λ
−1
1 + α)

ν2
δ2

1(ρ0 + r0)
2 � 1

2
. (5.33)

Taking into account the conditions (5.33), the definition (5.24) of Rn and the inequality (2.4), we
deduce from (5.31) that, for t ∈ R,

∂t
(‖∇ rot q‖2

L2 + α‖� rot q‖2
L2

) + ν

λ−1
1 + α

(‖∇ rot q‖2
L2 + α‖� rot q‖2

L2

)
� ν

λ−1
1 + α

R2
n. (5.34)

Integrating the inequality (5.34) from −∞ to t , we obtain finally that, for t ∈ R,

∥∥∇ rot q(t)
∥∥2

L2 + α
∥∥� rot q(t)

∥∥2
L2 � R2

n, (5.35)

which proves that the mapping w �→ qv,w maps Wn into itself.

b) Next we prove that the map w ∈ Wn �→ qv,w ∈ Wn is a strict contraction. Let w1 ∈ Wn , w2 ∈ Wn

and let q1 = qv,w1 , q2 = qv,w2 be the corresponding solutions of Eq. (5.3). The difference q∗ = q1 − q2
satisfies the following equation, for any t ∈ R,

∂t
(
q∗ − α�q∗) − ν�q∗ + Q n P

(
rot

(
q∗ − α�q∗) × (v + w1)

)
= −Q n P

(
rot(v − α�v) × (w1 − w2)

) − Q n P
(
rot(q2 − α�q2) × (w1 − w2)

)
. (5.36)

Taking the inner product in H of the equality (5.36) with q∗ , we obtain the following inequality, for
any t ∈ R,

1

2
∂t

(∥∥q∗∥∥2
L2 + α

∥∥∇q∗∥∥2
L2

) + ν
∥∥∇q∗∥∥2

L2 �
∣∣(rot

(
q∗ − α�q∗) × (v + w1),q∗)∣∣

+ ∣∣(rot(v − α�v) × (w1 − w2),q∗)∣∣
+ ∣∣(rot(q2 − α�q2) × (w1 − w2),q∗)∣∣. (5.37)

In order to bound the three terms in the right-hand side of the estimate (5.37), we proceed as follows.
Using the classical Sobolev inequalities, we easily show that, for t ∈ R,

∣∣(rot(v − α�v) × (w1 − w2),q∗)∣∣
�

(‖ rot v‖L4‖w1 − w2‖L2 + α‖rot �v‖L2‖w1 − w2‖L4

)∥∥q∗∥∥
L4

� λ
−1/4
n+1

∥∥∇q∗∥∥
L2 C2

S

(‖w1 − w2‖L2‖v‖V 2 + αλ
−1/4
n+1

∥∥∇(w1 − w2)
∥∥

L2‖rot �v‖L2

)
� δ1

2

∥∥∇q∗∥∥2
L2 + δ1C4

S

(‖w1 − w2‖2
L2 + δ2

1α
∥∥∇(w1 − w2)

∥∥2
L2

)
(r0 + ρ0)

2. (5.38)

Likewise, using classical Sobolev estimates and the inequality (5.32), we have, for t ∈ R,
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∣∣(rot(q2 − α�q2) × (w1 − w2),q∗)∣∣
�

(‖rot q2‖L4‖w1 − w2‖L2 + α‖rot �q2‖L2‖w1 − w2‖L4

)∥∥q∗∥∥
L4

� C2
Sλ

−1/2
n+1

∥∥∇q∗∥∥
L2

(‖�q2‖L2‖w1 − w2‖L2 + α‖rot �q2‖L2

∥∥∇(w1 − w2)
∥∥

L2

)
� C2

Sλ
−1/2
n+1

∥∥∇q∗∥∥
L2 Rn

(‖w1 − w2‖L2 + α1/2
∥∥∇(w1 − w2)

∥∥
L2

)
� λ

−d/2
n+1

∥∥∇q∗∥∥2
L2 + λ

−1+d/2
n+1 R2

nC4
S

(‖w1 − w2‖2
L2 + α

∥∥∇(w1 − w2)
∥∥2

L2

)
� λ

−d/2
n+1

∥∥∇q∗∥∥2
L2 + λ

−d/2
n+1 R2

0C4
S

(‖w1 − w2‖2
L2 + α

∥∥∇(w1 − w2)
∥∥2

L2

)
. (5.39)

It remains to bound the term |(rot(q∗ −α�q∗)× (v + w1),q∗)|. Using the equality (A.4) of Appendix A
and the classical Sobolev embeddings, we can write

∣∣(rot q∗ × (v + w1),q∗)∣∣ �
∥∥q∗∥∥

L2

∥∥q∗∥∥
L4

∥∥∇(v + w1)
∥∥

L4

�
∥∥∇q∗∥∥2

L2λ
−3/4
n+1 C2

S

(
(r0 + ρ0) + λ

−1/4
n+1 Rn

)
. (5.40)

Next, using the equality (A.6) of Appendix A and the classical Sobolev embeddings, we estimate the
term α|(rot�q∗ × (v + w1),q∗)| as follows,

α
∣∣(rot �q∗ × (v + w1),q∗)∣∣
� α

∥∥∇q∗∥∥
L2

∥∥q∗∥∥
L4

(‖�v‖L4 + ‖�w1‖L4

) + 2α
∥∥∇q∗∥∥2

L2

(‖∇v‖L∞ + ‖∇w1‖L∞
)

�
∥∥∇q∗∥∥2

L2

[
α1/2λ

−1/4
n+1 C2

S

(
r0 + ρ0 + λ

−1/4
n+1 Rn

) + 2α‖∇v‖L∞ + 2α1/2λ
−1/2+δ

n+1 RnC S,δ

]
. (5.41)

We choose δ = d/4. From the estimates (5.37) to (5.41) and the inequality (2.4), we deduce that, for
t ∈ R,

∂t
(∥∥q∗∥∥2 + α

∥∥∇q∗∥∥2) + (
λ−1

1 + α
)−1

(2ν − 4α‖∇v‖L∞ − L)
(∥∥q∗∥∥2 + α

∥∥∇q∗∥∥2)
� 2C4

S

(
λ

−1/4
n+1 (r0 + ρ0)

2 + λ
−d/2
n+1 R2

0

)(‖w1 − w2‖2
L2 + α

∥∥∇(w1 − w2)
∥∥2

L2

)
, (5.42)

where

L = λ
−1/4
n+1 + 2λ

−d/2
n+1 + 2λ

−3/4
n+1 C2

S

(
(r0 + ρ0) + λ

−1/4
n+1 Rn

)
+ 2

[
α1/2C2

S

(
λ

−1/4
n+1 (r0 + ρ0) + λ

−1/2
n+1 Rn

) + 2α1/2λ
−1/2+d/4
n+1 RnC S,δ

]
. (5.43)

Due to the condition (5.23), we have

2ν − 4α‖∇v‖L∞ − L � a∗
1 − 2α1/2δ0 − L. (5.44)

We recall that λ
d/2−1/2
n+1 Rn is bounded from above by a positive constant R0. We now choose the

integer n0 large enough so that the following two inequalities hold, for n � n0,

λ
−1/4
n+1 + 2λ

−d/2
n+1 + 2λ

−1/2
n+1 C2

S

(
λ

−1/4
n+1 (r0 + ρ0) + λ

−d/2
n+1 R0

)
+ 2

[
α1/2C2

S

(
λ

−1/4
n+1 (r0 + ρ0) + λ

−d/2
n+1 R0

) + 2α1/2λ
−d/4
n+1 R0C S,δ

]
�

a∗
1 , (5.45)
4
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and

2C4
S

(
λ

−1/4
n+1 (r0 + ρ0)

2 + λ
−d/2
n+1 R2

0

)
�

a∗
1

4(λ−1
1 + α)

. (5.46)

The estimate (5.42), together with the property (5.44), the conditions (5.17), (5.45) and (5.46), implies
that, for t ∈ R,

∂t
(∥∥q∗(t)

∥∥2 + α
∥∥∇q∗(t)

∥∥2) + a∗
1

2(λ−1
1 + α)

(∥∥q∗(t)
∥∥2 + α

∥∥∇q∗(t)
∥∥2)

�
a∗

1

4(λ−1
1 + α)

(∥∥(w1 − w2)(t)
∥∥2

L2 + α
∥∥(∇(w1 − w2)

)
(t)

∥∥2
L2

)
. (5.47)

Integrating this inequality from −∞ to t , we finally obtain that, for t ∈ R,

∥∥q∗(t)
∥∥2 + α

∥∥∇q∗(t)
∥∥2 � 1

2
sup
s�t

(∥∥(w1 − w2)(s)
∥∥2

L2 + α
∥∥∇(w1 − w2)(s)

∥∥2
L2

)
,

which means that the map w ∈ Wn �→ qn
v,w ∈ Wn is a strict contraction and thus admits a unique

fixed point qn(v) ∈ Wn . Lemma 5.2 is proved. �
Remark 5.2. In general, if 0 < d < 1, the fixed point q(v) could be not uniformly bounded in V 3 with
respect to n. If P f belongs to V 2, then d is equal to 1 and Rn = R is independent of n, that is, qn(v)

is bounded in V 3, uniformly in n, for n � n0.

Remark 5.3. In order to simplify the proofs, we have assumed in Lemma 5.2 that the forcing term f
belongs to H1+d

per with d > 0. Looking carefully at the proof of this lemma and replacing the Sobolev

inequality (5.25) by the Brézis–Gallouët inequality, one easily shows that, if f belongs only to H1
per ,

the properties of Lemma 5.2 still hold provided that 0 < α < αn , where αn satisfies the following
condition

λ
−1/2
n+1 Rn

(
1 + α

1/2
n ln(1 + λn+1)

)
� δ1, (5.48)

where, in the definition of Rn , the constant C S,d has been replaced by the constant of the Brézis–
Gallouët inequality.

5.1.3. Step 3 of the proof of Theorem 1.2
In this step we prove that the map v �→ qn(v) is a Lipschitz-continuous map.

Lemma 5.3. We assume that the hypotheses of Lemma 5.2 hold. One can choose the integer n0 large enough so
that, for n � n0 , the mapping v ∈ C0(R, N Pn V 3+d (Pn Aα, r0)) �→ qn(v) ∈ Wn is Lipschitz-continuous. More

precisely, for v1 and v2 in C0(R, N Pn V 3+d (Pn Aα, r0)), we have the estimates, for any t ∈ R,

sup
s�t

(∥∥(
qn(v1) − qn(v2)

)
(s)

∥∥2
L2 + α

∥∥∇(
qn(v1) − qn(v2)

)
(s)

∥∥2
L2

)
� CL

a∗2
1

[
sup
s�t

(∥∥(v1 − v2)(s)
∥∥2

L2 + α
∥∥∇(v1 − v2)(s)

∥∥2
L2

) + α2 sup
s�t

∥∥�(v1 − v2)(s)
∥∥2

L2

]
, (5.49)

and
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sup
s�t

(∥∥∇(
qn(v1) − qn(v2)

)
(s)

∥∥2
L2 + α

∥∥�
(
qn(v1) − qn(v2)

)
(s)

∥∥2
L2

)
� CL

a∗2
1

(
1 + αR2

n

)[
sup
s�t

(∥∥(v1 − v2)(s)
∥∥2

V 2 + α
∥∥(v1 − v2)(s)

∥∥2
V 3

)]
, (5.50)

where CL ≡ CL(r0,ρ0) is a positive constant depending on r0 and ρ0 and where ρ0 has been defined in (5.18).

Proof. 1) We begin by proving the inequality (5.49). To simplify the notations, we set

qi(s) = qn(vi(s)
)
, i = 1,2, v∗(s) = v1(s) − v2(s), q∗(s) = q1(s) − q2(s).

The difference q∗ satisfies the equation

∂t
(
q∗ − α�q∗) − ν�q∗ + Q n P

(
rot

(
q∗ − α�q∗) × (q1 + v1)

) + Q n P
(
rot(q2 − α�q2) × (

q∗ + v∗))
= −Q n P

(
rot

(
v∗ − α�v∗) × (q1 + v1)

) − Q n P
(
rot(v2 − α�v2) × (

q∗ + v∗)) − ∇p∗. (5.51)

Taking the inner product in H of Eq. (5.51) with q∗ , we obtain the following inequality, for any t ∈ R,

∂t
(∥∥q∗∥∥2 + α

∥∥∇q∗∥∥2) + 2ν
∥∥∇q∗∥∥2

� 2
[∣∣(rot q∗ × (q1 + v1),q∗)∣∣ + α

∣∣(rot �q∗ × (q1 + v1),q∗)∣∣
+ ∣∣((rot q2) × v∗,q∗)∣∣ + α

∣∣(rot �q2 × v∗,q∗)∣∣
+ ∣∣(rot

(
v∗ − α�v∗) × (v1 + q1),q∗)∣∣ + ∣∣(rot(v2 − α�v2) × v∗,q∗)∣∣]. (5.52)

Now we proceed like in the proof of Lemma 5.2 to estimate the various terms in the right-hand side
of the inequality (5.52). Due to the condition (5.21) and the property (5.32), the first term |(rot q∗ ×
(q1 + v1),�q∗)| is estimated as follows, for any t ∈ R,

∣∣(rot q∗ × (q1 + v1),q∗)(t)∣∣ �
∥∥q∗(t)

∥∥
L4

∥∥rot q∗(t)
∥∥

L2

(∥∥v1(t)
∥∥

L4 + ∥∥q1(t)
∥∥

L4

)
� C2

S

∥∥∇q∗(t)
∥∥2

L2λ
−1/4
n+1

(
r0 + ρ0 + λ

−3/4
n+1 Rn

)
� C2

S

∥∥∇q∗(t)
∥∥2

L2δ1
(
r0 + ρ0 + λ

−1/4
n+1 R0

)
. (5.53)

Using the equality (A.6) of Lemma A.1 and the classical Sobolev embeddings, and taking into account
the property (5.32), we can write, for any t ∈ R,

α
∣∣(rot �q∗ × (q1 + v1),q∗)(t)∣∣
� α

∥∥∇q∗(t)
∥∥

L2

(∥∥q∗(t)
∥∥

L4

∥∥�(v1 + q1)(t)
∥∥

L4 + ∥∥∇q∗(t)
∥∥

L2

∥∥∇(v1 + q1)(t)
∥∥

L∞
)

�
∥∥∇q∗(t)

∥∥2
L2

[
α1/2C2

Sλ
−1/4
n+1

(
r0 + ρ0 + λ

−1/4
n+1 Rn

) + α
∥∥∇v1(t)

∥∥
L∞ + α1/2C S,d/2λ

− 1
2 + d

4
n+1 Rn

]
�

∥∥∇q∗(t)
∥∥2

L2

[
α1/2C2

S

(
λ

−1/4
n+1 (r0 + ρ0) + λ

−d/2
n+1 R0

)
+ α

∥∥∇v1(t)
∥∥

L∞ + α1/2C S,d/2λ
− d

4
n+1 R0

]
. (5.54)

Applying classical Sobolev embeddings and using the property (5.32) again, we obtain, for any t ∈ R,
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∣∣((rot q2) × v∗,q∗)(t)∣∣ �
∥∥q∗(t)

∥∥
L4

∥∥rot q2(t)
∥∥

L4

∥∥v∗(t)
∥∥

L2

� C2
Sλ

−1/2
n+1 Rn

∥∥∇q∗(t)
∥∥

L2

∥∥v∗(t)
∥∥

L2

� C2
Sλ

−d/2
n+1 R0

∥∥∇q∗(t)
∥∥

L2

∥∥v∗(t)
∥∥

L2 . (5.55)

Likewise, we get, for any t ∈ R,

α
∣∣(rot �q2 × v∗,q∗)(t)∣∣ � α

∥∥rot �q2(t)
∥∥

L2

∥∥q∗(t)
∥∥

L
4

2−d

∥∥v∗(t)
∥∥

L
4
d

� C̃2
S,d/4λ

−1/2+d/4
n+1

∥∥∇q∗(t)
∥∥

L2 Rnα
1/2

∥∥∇v∗(t)
∥∥

L2

� C̃2
S,d/4λ

−d/4
n+1 R0

∥∥∇q∗(t)
∥∥

L2α
1/2

∥∥∇v∗(t)
∥∥

L2 , (5.56)

where C̃2
S,d/4 is a constant occurring in the Sobolev estimates depending on d/4. We next estimate

the term |(rot(v∗ −α�v∗)× (v1 +q1),q∗)|. Integrating by parts, using classical Sobolev estimates and
the property (5.32) yields, for any t ∈ R,

∣∣(rot v∗ × (v1 + q1),q∗)(t)∣∣
�

∥∥v∗(t)
∥∥

L2

(∥∥∇q∗(t)
∥∥

L2

∥∥(v1 + q1)(t)
∥∥

L∞ + ∥∥q∗(t)
∥∥

L4

∥∥∇(v1 + q1)(t)
∥∥

L4

)
�

∥∥v∗(t)
∥∥

L2

∥∥∇q∗(t)
∥∥

L2

((
C S + C2

S

)
(r0 + ρ0) + C S,d/2λ

− 1
2 + d

4
n+1 Rn + C2

Sλ
−1/2
n+1 Rn

)
�

∥∥v∗(t)
∥∥

L2

∥∥∇q∗(t)
∥∥

L2

((
C S + C2

S

)
(r0 + ρ0) + C S,d/2λ

− d
4

n+1 R0 + C2
Sλ

− d
2

n+1 R0
)
. (5.57)

The estimate of the term |α(rot�v∗ ×(v1 +q1),q∗)(t)| is the only one, involving the norm of ‖�v∗‖L2

in the right-hand side. Integrating by parts, using classical Sobolev inequalities, the property (5.32)
once more and the fact that λn/λn+1 � 1, we obtain, for any t ∈ R,

∣∣α(
rot �v∗ × (v1 + q1),q∗)(t)∣∣
� α

∥∥�v∗(t)
∥∥

L2

[∥∥∇q∗(t)
∥∥

L2

∥∥(v1 + q1)(t)
∥∥

L∞ + ∥∥q∗(t)
∥∥

L4

∥∥∇(v1 + q1)(t)
∥∥

L4

]
� α1/2

∥∥�v∗(t)
∥∥

L2

∥∥∇q∗(t)
∥∥

L2

[
α1/2(C S + C2

S

)
(r0 + ρ0) + C S,1+d/2λ

−1+d/4
n+1 Rn + C2

Sλ
−1
n+1 Rn

]
�

∥∥∇q∗(t)
∥∥

L2

[
α

∥∥�v∗(t)
∥∥

L2

(
C S + C2

S

)
(r0 + ρ0)

+ C0α
1/2

∥∥∇v∗(t)
∥∥

L2 R0
(
C S,d/2λ

−d/4
n+1 + C2

Sλ
−d/2
n+1

)]
. (5.58)

Finally, we consider the term |(rot(v2 − α�v2) × v∗,q∗)|. Due to the classical Sobolev estimates, we
can write, for t ∈ R,

∣∣(rot(v2 − α�v2) × v∗,q∗)(t)∣∣
�

∥∥rot v2(t)
∥∥

L4

∥∥q∗(t)
∥∥

L4

∥∥v∗(t)
∥∥

L2 + α
∥∥rot �v2(t)

∥∥
L2

∥∥v∗(t)
∥∥

L4

∥∥q∗(t)
∥∥

L4

� C2
S(r0 + ρ0)λ

−1/4
n+1

∥∥∇q∗(t)
∥∥

L2

(∥∥v∗(t)
∥∥

L2 + α1/2
∥∥∇v∗(t)

∥∥
L2

)
. (5.59)

Using the Young inequality 2ab � η−1a2 + ηb2, with η = a∗
1

48 , we deduce from the estimates (5.52) to
(5.59) that, for t ∈ R,
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∂t
(∥∥q∗(t)

∥∥2 + α
∥∥∇q∗(t)

∥∥2) + K1
∥∥∇q∗(t)

∥∥2

� K2

a∗
1

(∥∥v∗(t)
∥∥2

L2 + α
∥∥∇v∗(t)

∥∥2
L2

) + C1α
2

a∗
1

∥∥�v∗(t)
∥∥2

L2(r0 + ρ0)
2, (5.60)

where C1 is a positive constant depending only on the Sobolev estimates, where

K1 = 2ν − 2α sup
s

∥∥∇v1(s)
∥∥

L∞ − 2C2
Sλ

−1/4
n+1

(
r0 + ρ0 + λ

−1/4
n+1 R0

) − 2α1/2C S,d/2λ
−d/4
n+1 R0

− 2α1/2C2
S

(
λ

−1/4
n+1 (r0 + ρ0) + λ

−d/2
n+1 R0

) − 6

(
a∗

1

48

)
≡ 2ν − 2α sup

s

∥∥∇v1(s)
∥∥

L∞ − a∗
1

8
− λ

−d/4
n+1 K ∗

1 , (5.61)

and

K2 = 48
[(

C4
S + C̃4

S,d/4

)
λ

−d/2
n+1 R2

0 + 4
(
C S + C2

S

)2(
λ

−1/2
n+1 + 1

)
(r0 + ρ0)

2

+ R2
0

(
2 + C2

0

)(
C S,d/2λ

−d/4
n+1 + C2

Sλ
−d/2
n+1

)2]
. (5.62)

We remark that, by the condition (5.23),

K1 �
3a∗

1

4
− a∗

1

8
− λ

−d/4
n+1 K ∗

1 �
5a∗

1

8
− λ

−d/4
n+1 K ∗

1 . (5.63)

Clearly, we can choose n0 large enough so that λ
−d/4
n+1 K ∗

1 � a∗
1/8, which implies that

K1 �
a∗

1

2
. (5.64)

The estimates (5.60) and (5.64), together with the inequality (2.4), imply that, for any t ∈ R,

∂t
(∥∥q∗(t)

∥∥2 + α
∥∥∇q∗(t)

∥∥2) + a∗
1

2(λ−1
1 + α)

(∥∥q∗(t)
∥∥2 + α

∥∥∇q∗(t)
∥∥2)

� K2

a∗
1

(∥∥v∗(t)
∥∥2

L2 + α
∥∥∇v∗(t)

∥∥2
L2

) + C1α
2

a∗
1

∥∥�v∗(t)
∥∥2

L2(r0 + ρ0)
2, (5.65)

which, after integration in time from −∞ to t , yields, for any t ∈ R,

∥∥q∗(t)
∥∥2

L2 + α
∥∥∇q∗(t)

∥∥2
L2 � 2

(
λ−1

1 + α
)[ K2

a∗2
1

sup
s�t

(∥∥v∗(s)
∥∥2

L2 + α
∥∥∇v∗(s)

∥∥2
L2

)
+ C1α

2

a∗2
1

(r0 + ρ0)
2 sup

s�t

∥∥�v∗(s)
∥∥2

L2

]
. (5.66)

The inquality (5.49) is thus proved.
2) In order to prove the inequality (5.50), we take the inner product in H of the equality (5.51)

with −�q∗ and obtain the following inequality, for any t ∈ R,
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∂t
(∥∥∇q∗∥∥2 + α

∥∥�q∗∥∥2) + 2ν
∥∥�q∗∥∥2

� 2
[∣∣(rot q∗ × (q1 + v1),�q∗)∣∣ + α

∣∣(rot �q∗ × (q1 + v1),�q∗)∣∣
+ ∣∣(rot(q2 + v2) × q∗,�q∗)∣∣ + α

∣∣(rot �(q2 + v2) × q∗,�q∗)∣∣
+ ∣∣((rot q2) × v∗,�q∗)∣∣ + α

∣∣(rot �q2 × v∗,�q∗)∣∣
+ ∣∣(rot(v∗ − α�v∗) × (v1 + q1),�q∗)∣∣ + ∣∣(rot(v2 − α�v2) × v∗,�q∗)∣∣]. (5.67)

Since the terms on the right-hand side of the inequality (5.67) are estimated by arguing in the same
way as for estimating the terms in the right-hand side of the inequality (5.52), we do not give the
details.

The proof of Lemma 5.3 is completed. �
Remark 5.4. Like in Lemma 5.2, in order to simplify the proofs, we have assumed that the forcing
term f belongs to H1+d

per with d > 0. Looking carefully at the proof of Lemma 5.3 and replacing the
Sobolev inequality (5.25) by the Brézis–Gallouët inequality, one easily shows that, if f belongs only
to H1

per , the mapping v ∈ C0(R; N Pn V 3+d (Pn Aα, r0)) �→ qn(v) ∈ Wn is still Lipschitz-continuous.

5.1.4. Step 4 of the proof of Theorem 1.2
Under the hypotheses of Lemma 5.2, we can choose the integer n0 large enough (in Lemma 5.2)

so that, for any 0 < α < α0, if u(R) ⊂ Aα , then, for any n � n0, the “trajectory” wn = Q nu ≡ (I − Pn)u
belongs to Wn and, thus, by uniqueness of the solution of the system (1.2), u is represented as

u(t) = Pnu(t) + Q nu(t) = Pnu(t) + qn(Pnu(t)
)
, (5.68)

where qn(·) is the fixed point defined in Lemma 5.2 and where vn is the solution of the finite-
dimensional system (5.1); that is, vn ≡ Pnu satisfies the system

∂t vn = Pn(I + αA)−1 Pn P
(
ν�vn − rot

(
vn + q(vn) − α�

(
vn + qn(vn)

)) × (
v + qn(vn)

) + f
)

≡ Fn(vn), (5.69)

where A denotes the Stokes operator −P�.
Since the map v �→ qn(v) ∈ Wn is defined for any v ∈ C0(R, N Pn V 3+d (Pn Aα, r0)) and, by

Lemma 5.3, is even a Lipschitzian mapping, the map Fn(v) is well defined and, as we shall see
below, is also Lipschitzian. Therefore, it is interesting to study the finite-dimensional system (5.68) for
“ continuous curves” v with values in N Pn V 3+d (Pn Aα, r1) where 0 < r1 < r0. As in [27] and in [24],
one approach consists in considering the following differential equation

∂s v = Fn(v), v(0) = v0, (5.70)

in the Banach space C0(R, Pn V 3+d). Since Fn is a Lipschitzian map (see Lemma 5.4 below),
by the classical theorem of existence of solutions, for any v0 ∈ C0(R, N Pn V 3+d (Pn Aα, r0/2)),
there are a positive constant s∗ and a unique solution v∗ : (v0, s) ∈ C0(R, N Pn V 3+d (Pn Aα, r0/2))

×[0, s∗) �→ v∗(v0)(s) ∈ C0(R, N Pn V 3+d (Pn Aα,2r0/3)) of (5.70). Let now u0(t) = Pnu0(t) + Q nu0(t) ⊂
Aα be a solution of (1.2) and let z(s)(t) = Pnu0(t + s). By assumption, z(0) = Pnu0(t) ∈ C0(R,

N Pn V 3+d (Pn Aα, r0/2)). One easily checks that z(s) is a solution of (5.70) and, thus, by uniqueness
of the solution of (5.70), z(s)(t) = Pnu0(t + s) = v∗(v0)(s)(t) for any s ∈ R. This point of view allowed,
in [27] and in [24], to prove time-regularity results for the trajectories contained in compact global
attractors, in the case of general dissipative dynamical systems.

Since the map qn(v) depends on the values v(s), for s � t only, we may also consider the system
(5.69) as a system of differential equations with infinite delay in the following way.
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Lemma 5.4. Assume that the hypotheses of Lemma 5.2 are satisfied. Then, for any n � n0 , there exists a time
T0(n) > 0 such that, for any v0 ∈ C0((−∞,0]; N Pn V 3+d (Pn Aα, r0/2)), the following finite-dimensional sys-
tem of differential equations

∂t v = Fn(v), 0 � t � T0(n),

v(s) = v0(s), s � 0, (5.71)

where

Fn(v) = Pn(I + αA)−1 Pn P
(
ν�vn − rot

(
vn + q(vn) − α�

(
vn + qn(vn)

)) × (
v + qn(vn)

) + f
)
,

admits a unique solution v ∈ C0((−∞, T0(n)]; N Pn V 3+d (Pn Aα,2r0/3)). Moreover, the dependence of v with
respect to the initial data v0 is continuous.

Remarks 5.5. 1) In Lemma 5.4, we have taken σ0 = 0 as initial time. Of course, due to Lemmata 5.2
and 5.3, the same well-posedness result holds if 0 is replaced by any real number σ0.

2) As we have remarked at the beginning of this section, we can choose n0 large enough so that,
for any 0 < α � α0, if u(R) ⊂ Aα , then, for n � n0,

u(t) = Pnu(t) + qn(Pnu(t)
)
,

where v(t) = Pnu(t) is the solution of the finite-dimensional system (5.71). This allows to say that, on
the global attractor, Eqs. (1.2) reduce to the functional-differential equation (5.71) with infinite delay.
For the properties of functional-differential equations with infinite delay, we refer the reader to the
book [28] for example.

Proof of Lemma 5.4. Since this lemma is proved by using the strict contraction fixed point theorem
in a very classical way, we will not give all the details of the proof and let them to the reader. First,
we remark that the system (5.71) is equivalent to the following integral system

v(t) = v0(0) +
t∫

0

Fn
(

v(σ )
)

dσ , 0 � t � T0,

v(s) = v0(s), s � 0. (5.72)

We emphasize that, due to Lemma 5.2, for any T , the map Fn(v) is well-defined if v belongs to
BC0((−∞,T ];Pn V 3+d)(Pn Aα, r0). We also remark that Lemma 5.2 at once implies that there exists a

positive number M0(n) such that, for any T and for any v ∈ C0((−∞, T ]; N Pn V 3+d (Pn Aα, r0)), we
have the following bound

sup
σ�T

∥∥Fn
(

v(σ )
)∥∥

V 3+d � M0(n). (5.73)

We next choose a positive time T0 ≡ T0(n) satisfying the condition

T0M0(n) <
r0

3
, (5.74)

as well as the condition (5.76) below.
Let v0 be fixed in C0((−∞,0]; N Pn V 3+d (Pn Aα, r0/2)). In view of solving the integral system (5.72),

we introduce the convex subset

E0 = {
v ∈ C0((−∞, T0]; N P V 3+d (Pn Aα,2r0/3)

) ∣∣ v(s) = v0(s), ∀s � 0
}
,

n
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of the Banach space ET0 where ET is the Banach space C0
b ((−∞, T ]; Pn V 3+d), endowed with the

norm

‖v‖ET = sup
s�T

∥∥v(s)
∥∥

L2 .

One next introduces the mapping F0 from E0 into ET0 , defined for any y ∈ E0 by

F0(y)(t) = v0(t), t � 0,

F0(y)(t) = v0(0) +
t∫

0

Fn
(

y(σ )
)

dσ , 0 � t � T0.

Since T0 satisfies the condition (5.74), F0 is a mapping from E0 into E0. If in addition F0 is a
strict contraction from E0 into E0, the strict contraction fixed point theorem will imply that F0 has
a unique fixed point in E0 and thus we will have proved the existence of a solution of (5.72). In
order to show that F0 is a strict contraction, we prove that, for any T , Fn is a Lipschitz-continuous
mapping from N ≡ C0((−∞, T ]; N Pn V 3+d (Pn Aα, r0)) into ET . More precisely, we will show that, for
any elements v1, v2 in N , ∥∥Fn(v1) − Fn(v2)

∥∥
ET

� M1(n)‖v1 − v2‖ET , (5.75)

where M1(n) does not depend on T , but may depend on n.
If we choose T0 satisfying the condition (5.74) and the inequality (5.76) below,

T0M1(n) � 1

2
, (5.76)

we will have shown that F0 is a strict contraction from E0 into E0.
It thus remains to prove the property (5.75). We set v = v1 − v2, q = qn(v1) − qn(v2), and qi =

qn(vi), i = 1,2. The map Fn(v1) − Fn(v2) satisfies the equality

Fn(v1) − Fn(v2) = Pn(I + αA)−1 Pn P
(
ν�v − rot

(
q + v − α�(q + v)

) × (q1 + v1)

− rot
(
q2 + v2 − α�(q2 + v2)

) × (q + v)
)
. (5.77)

Clearly, for any v ∈ Pn H , we have∥∥(I + αA)−1 Pn P�v
∥∥

L2 � C(α)‖v‖L2 . (5.78)

Next, using Lemma 5.2, the inequality (5.50) of Lemma 5.3 as well as the inequality (A.9), we obtain
that, for any t � T ,∥∥(1 + αA)−1 Pn P

[
rot

(
q(t) + v(t) − α�

(
q(t) + v(t)

)) × (
q1(t) + v1(t)

)]∥∥
L2

� C

α1/2

(∥∥�q1(t)
∥∥

L2 + ∥∥�v1(t)
∥∥

L2

)∥∥q(t) + v(t) − α�
(
q(t) + v(t)

)∥∥
L2

� C

α1/2
(Rn + r0 + ρ0)

(∥∥v(t)
∥∥

L2 + α
∥∥�v(t)

∥∥
L2 + ∥∥q(t)

∥∥
L2 + α

∥∥�q(t)
∥∥

L2

)
� C

α1/2
(Rn + r0 + ρ0) sup

s�t

∥∥v(s)
∥∥

L2

[
(1 + αλn) + C1/2

L

a∗
(
1 + αR2

n

)1/2(
λ2

n + αλ3
n

)1/2
]
. (5.79)
1
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In the same way, we obtain, for all t � T ,

∥∥(1 + αA)−1 Pn P
[
rot

(
q2(t) + v2(t) − α�

(
q2(t) + v2(t)

)) × (
q(t) + v(t)

)]∥∥
L2

� C

α1/2

∥∥q2(t) + v2(t) − α�
(
q2(t) + v2(t)

)∥∥
L2

(∥∥�q(t)
∥∥

L2 + ∥∥�v(t)
∥∥

L2

)
� C

α1/2

(
Rn

λ
1/2
n+1

+ r0 + ρ0

)
sup
s�t

∥∥v(s)
∥∥

L2

[
λn + C1/2

L

a∗
1

(
1 + αR2

n

)1/2(
λ2

n + αλ3
n

)1/2
]
. (5.80)

The equality (5.77) and the estimates (5.78), (5.79), and (5.80) imply the Lipschitz property (5.75).
The proof of the uniqueness and continuity with respect to the initial data are really elementary

and classical and are left to the reader. Lemma 5.4 is proved. �
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Appendix A. Proof of auxiliary equalities and estimates

We first recall some formulas of vectorial calculus. For any vectors u = (u1, u2, u3)t , v =
(v1, v2, v3)t in R

3, the vector product w = u × v is defined as follows.

w = (
u2 v3 − u3 v2, u3 v1 − u1 v3, u1 v2 − u2 v1)t

.

For any vector u = (u1, u2, u3)t in R
3, we define the curl of u as follows

curl u = rot u = (
∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1)t

.

We recall that, in this paper, all scalar and vector fields functions are defined on T
2. We identify

the 2-component vector field u = (u1, u2)t with the 3-component vector field u = (u1, u2,0)t . The
scalar w is identified with the 3-component vector ŵ = (0,0, w)t .

Since the vectorial functions u considered here do not depend on the x3-variable, ∂3u1 = ∂3u2 = 0.
Consequently,

rot u = (
0,0, ∂1u2 − ∂2u1)t

.

For any m ∈ N the iterated operator rotm+1 is defined as rotm+1 u = rot(rotm u), rot1 u = rot u.
In the case where div u = 0, we notice that

rot(rot u) = −�u. (A.1)

Throughout this paper, we frequently use the following identity

rot{rot u × v} = −�u × v, (A.2)

which holds for any (regular enough) divergence-free vector fields u and v .
Throughout this paper we also often use the following identities, without mentioning it explicitly.
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Lemma A.1. Let u = (u1, u2)t , v = (v1, v2)t be smooth periodic divergence-free vector fields defined on T
2 .

With the above conventions, the following identities hold:

(v × u, rot v) = −
2∑

i, j=1

∫
T2

∂iu
j vi v j dx, (A.3)

(rot v × u, v) =
∫
T2

(
∂1u1(v1)2 + (

∂1u2 + ∂2u1)v1 v2 + ∂2u2(v2)2)
dx, (A.4)

(
rot{rot v × u}, rot v

) = −(�v × u, rot v) = 0, (A.5)

(rot �v × u, v) =
∫
T2

rot v
(
�u1 v2 − �u2 v1)dx + 2

∫
T2

rot v
(∇u1 · ∇v2 − ∇u2 · ∇v1)dx, (A.6)

(
�u × u,�2 rot u

) = 2(�∇u × ∇u,� rot u), (A.7)

where

�∇u × ∇u = −∇u1 · ∇�u2 + ∇u2 · ∇�u1.

Proof. 1) Integrating by parts and taking into account the property div v = 0, we get

(v × u, rot v)

=
∫
T2

(
u1 v2∂2 v1 + u2 v1∂1 v2 − u1 v2∂1 v2 − u2 v1∂2 v1)dx

= −
∫
T2

(
u1 v1∂2 v2 + u2 v2∂1 v1 + v1 v2∂1u2 + v1 v2∂2u1 + 1

2
u1∂1

(
v2)2 + 1

2
u2∂2

(
v1)2

)
dx

= −
∫
T2

(
∂1u2 + ∂2u1)v1 v2 dx + 1

2

∫
T2

(
u1∂1

(
v1)2 + u2∂2

(
v2)2 − u1∂1

(
v2)2 − u2∂2

(
v1)2)

dx.

(A.8)

The second integral in the right-hand side is equal to∫
T2

({−∂1u1 + ∂2u2}(v1)2 + {
∂1u1 − ∂2u2}(v2)2)

dx = −2
∫
T2

(
∂1u1(v1)2 + ∂2u2(v2)2)

dx.

Combining both equalities, we obtain (A.3).
2) A similar calculation gives (A.4).
3) A direct calculation yields

�v × u = u2�v1 − u1�v2 = −u2∂2 rot v − u1∂1 rot v.

Therefore,

(�v × u, rot v) = 1

2

∫
2

(rot v)2 div u dx = 0.
T
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4) Integrating by parts, we get

(rot �v × u, v) =
∫
T2

� rot v
(
u1 v2 − u2 v1)dx =

∫
T2

rot v�
(
u1 v2 − u2 v1)dx

=
∫
T2

rot v
(
�u1 v2 − �u2 v1)dx + 2

∫
T2

rot v
(∇u1 · ∇v2 − ∇u2 · ∇v1)dx

+
∫
T2

rot v(u · ∇) rot v dx.

The third integral in the right-hand side is equal to

−1

2

∫
T2

(rot v)2 div u dx = 0.

5) Due to (A.5) and to the identity �u × �u = 0, we can write(
�u × u,�2 rot u

) = (
�2u × u,� rot u

) + 2(�∇u × ∇u,� rot u) + (�u × �u,� rot u)

= 2(�∇u × ∇u,� rot u).

Thus Lemma A.1 is proved. �
Lemma A.2. Let u, v be smooth periodic divergence-free vector fields and let

w = (1 + αA)−1 P {rot u × v},
where A = −P� is the Stokes operator. Then there exists a positive constant C such that

‖w‖2
L2 + α‖∇w‖2

L2 � C‖∇u‖2
L2‖�v‖2

L2 ,

‖w‖2
L2 + α‖∇w‖2

L2 � C

α
‖u‖2

L2‖�v‖2
L2 . (A.9)

Proof. We take the L2-inner product of the equation

(1 + αA)w = P (rot u × v)

with w in L2(T2)2 to get

‖w‖2
L2 + α‖∇w‖2

L2 = (rot u × v, w). (A.10)

On the one hand, the first inequality in (A.9) is a direct consequence of (A.10) and the classical Sobolev
inequalities. On the other hand, performing an integration by parts yields

(rot u × v, w) =
∫
T2

(
w1 v2(∂2u1 − ∂1u2) + w2 v1(∂1u2 − ∂2u1))dx

=
∫
T2

((−∂2 w1 v2 + ∂2 w2 v1 − w1∂2 v2 + w2∂2 v1)u1

+ (
∂1 w1 v2 − ∂1 w2 v1 + w1∂1 v2 − w2∂1 v1)u2)dx.
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Therefore, (A.10) implies that

‖w‖2
L2 + α‖∇w‖2

L2 �
∫
T2

(|∇v| · |w| + |v| · |∇w|)|u|dx �
(‖∇v‖L4‖w‖L4 + ‖v‖L∞‖∇w‖L2

)‖u‖L2

� c0‖u‖L2‖�v‖L2‖∇w‖L2 � α

2
‖∇w‖2

L2 + c2
0

2α
‖u‖2

L2‖�v‖2
L2 .

The lemma is proved. �
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