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1. Introduction

For dissipative evolutionary partial differential equations, which enjoy asymptotic smoothness (also
called asymptotic compactness) properties, the set 7 of all globally defined and bounded solutions
for t € R, plays a special role. In general, the elements in this set 7 should enjoy certain regularity
properties in space and the trajectories in 7 should be as smooth in the time variable as the non-
linearity of the equation. We point out that, in the autonomous case, under additional dissipation
hypotheses, this set J coincides with the compact global attractor of the equation.
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These space or time regularity properties of 7 are obviously true for equations, which are smooth-
ing in finite time, such as ordinary differential equations or semi-linear parabolic equations [29]. For
example, the Navier-Stokes equations have this property of smoothing in finite time. When the sys-
tem is not smoothing in finite time, regularity (in space or time) of the elements J can be very
difficult to prove or could be even false. Note that regularity results are primordial in the theory of
perturbations of invariant sets and in particular of periodic orbits, as shown in [25] (see also [26]).

Numerous authors have shown regularity properties for [ in the case of dynamical systems which
are not smoothing in finite time. For retarded functional differential equations in R" with finite delay
or neutral functional differential equations, such results were obtained already thirty years ago by
Hale [20], Lopes [31], Nussbaum [34]. For dissipative evolutionary equations, which admit a compact
global attractor, regularity results have been proved by several authors, using different methods (for
the earliest results, see, for example, [17] for the damped wave equation, [18,19,35] for the weakly
damped Schrodinger equations, [32] for the weakly damped, forced Korteweg-de Vries equation, and
[36] for a review). In [17], in a same argument, Ghidaglia and Temam have shown space and time
regularity in C¥-type spaces for the global attractor of the damped wave equation (from their proof,
one could not deduce analyticity neither in time, nor in the spatial variables). In [18], Goubet showed
the existence of the compact global attractor and its regularity in H¥-spaces for the one-dimensional
weakly Schrédinger wave equation by using a Galerkin method. Applying the same Galerkin method,
Oliver and Titi have shown that this compact global attractor belongs actually to a Gevrey regularity
class.

In [24], Hale and Raugel have introduced a new type of Galerkin method, which, besides proving
again the above mentioned regularity results, allowed to show also analyticity in time of the orbits
on the global attractor and to reduce the system on the global attractor to a finite system of ordinary
differential equations with infinite delay. They gave applications to semilinear or quasilinear equa-
tions. In this paper, in addition of showing spatial regularity of the elements of the global attractor
for the nonlinear system of the grade two fluid equations, we extend the Galerkin method of Hale
and Raugel to this system and reduce the second grade fluid equations on the global attractor to a
finite system of ordinary differential equations with infinite delay. For an abstract formulation of this
extension of the Galerkin method of Hale and Raugel, we also refer the reader to [23].

Before presenting the second grade fluids equations, we recall that one of the first abstract regu-
larity results applying to partial differential equations was proved by Hale and Scheurle [27] in 1985.
Consider the equation

u=Au+ f(u), u(0) =ug € X, (11)

on a Banach space X, where A is the generator of a (linear) C° semi-group and f(-) is a smooth map
on X. It is well known that, under these assumptions, for any ug € X, there exists a unique local mild
solution u(t) € ([0, T); X) of (1.1). Assume that all these solutions exist on [0, +00). Then one can
define the dynamical system S(t) on X, given by S(t)ug = u(t) where u(t) is the unique mild solution
of (1.1). Assume that S(t) has a compact invariant set 7 in X, that is, S(t).7 = 7, for any t € R. Then
there exists a positive number 7 such that, if ||[Df (v)|l(x,x) <1 for any v in a small neighborhood
of 7, the mapping t € R — S(t)u € X for any u € J is as smooth as f. The smoothness in the
time variable also implies smoothness in the spatial variable if (1.1) comes from a partial differential
equation. For example, if the restriction of S(t) to 7 is of class C!, then 7 is bounded in the domain
D(A), which usually is a smoother space than X.

In this paper, we study an example of an asymptotically smooth system (arising in non-Newtonian
fluid mechanics), which is not smoothing in finite time and, however, admits a compact global at-
tractor. The main difficulty here comes from the fact that this system is not semilinear, but really
nonlinear. Our goal is to show that this attractor is more regular than the phase space in which we
are working and to exhibit finite-dimensional properties of the global attractor. The system of second
grade fluids writes

or(u —aAu) —vAu+rot(u —aAu) xu+Vp=f, t>0, xeT?,



M. Paicu et al. /]. Differential Equations 252 (2012) 3695-3751 3697

divu=0, t>0, xeT?,

u(0,x) = ug(x), xeT?, (1.2)

where T2 is the two-dimensional torus (0,27w) x (0,2mw) and where rotu = curlu =
(0,0, 01uy — d2uq). In this paper, we identify each 2-component vector-field u = (u1, uy) with the
3-component vector field u = (uq,u3,0) and each scalar m with the 3-component vector field
w = (0,0,m) (see Appendix A for more details). In the above equations, u, f, and p denote the
velocity vector field, the forcing term, and the pressure respectively.

Fluids of second grade are a particular class of non-Newtonian Rivlin-Ericksen fluids of differential
type [37] and the above precise form has been justified by Dunn and Fosdick [11]. The local existence
in time and uniqueness of strong solutions of Eqs. (1.2) in two-dimensional or three-dimensional
bounded domains with no slip boundary conditions have been shown by Cioranescu and Ouazar [9].
Moreover, in the two-dimensional case, they obtained global existence of solutions (that is, existence
on the time interval [0, +00)). Moise, Rosa and Wang have shown later that these equations admit
a compact global attractor A, [33]. So the question of the regularity and finite-dimensional behavior
of A, naturally arises.

Note that Egs. (1.2) differ from the so-called «-Navier-Stokes system (see e.g. [12] or [13] and
the references therein). Indeed, the «-Navier-Stokes model [13] contains the very regularizing term
—VA(u — aAu) instead of —vAu, and thus is a semilinear problem, which is much easier to solve.
This is not the case for the second grade fluids equations where the dissipation is weaker. The «-
models are used, in particular, as an alternative to the usual Navier-Stokes equations for numerical
modelling of turbulence phenomena in pipes and channels. We emphasize that the physics underlying
the second grade fluid equations and the o-models are quite different. There are numerous papers
devoted to the asymptotic behavior of «-types models, including Camassa-Holm equations, «-Navier-
Stokes equations, «-Bardina equations ([6,12] or [13]).

Let us now be more specific about the second grade fluid equations. We introduce the space V™,
m € N, which is the closure of the space

{u € [Coo(?l‘2)]2 ‘ u is periodic, divu =0, /udx:O},

T2

in H™(T?)2. The space V° will simply be denoted by H. By classical interpolation theory, we also
define the spaces V?, for # € Rt. We denote by Hl’fer = HI’J”E,r(’IFZ)2 the space of vector fields u e
H™(T?)2, which are periodic and whose mean value vanishes.

To simplify the discussion, we will assume in a large part of what follows that the forcing term

does not depend on the time variable. For any o > 0, for any forcing term f in H;er, and for any

initial data ug in V3, the system (1.2) has a unique solution u € C°([0, +00), V3) (see [9,33] and
Section 2 below). Actually, this solution u(t) is in CO(R, V3). Thus, unlike the Navier-Stokes equa-
tions, the system (1.2) cannot be smoothing in finite time. However, as shown in [33], the system
(1.2) is asymptotically smooth (also called asymptotically compact). The system (1.2) defines a contin-
uous nonlinear semigroup (or dynamical system) Sq (£): ug € V3 — Sy ()ug = u(t), where u(t) is the
unique solution of (1.2). Actually, this semigroup is a continuous nonlinear group. According to [33],
Se(t) admits a compact global attractor A, in V3. We recall that A, is a compact global attractor
of Sq(t) in V3 if Ay is compact in V3, invariant (i.e. Sy (t).Ay = Aq, for any t > 0), and attracts
all bounded sets of V3, that is, for any & > 0, for any bounded set B in V3, there exists a time
T =T(e, B) such that

Sa(t)B C Ny3(Ay;€), foranyt>T,

where Ny3(Ay; €) denotes the g-neighborhood of Ay in V3.
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We remark that, if f is time-dependent and belongs to CE(R, H;er), then similar results are true.
Indeed, the existence results still hold and one can generalize the notion of global attractor and re-
place it by the notion of pullback attractor, for example. One can still study the set of all complete
bounded trajectories, that is, trajectories which are bounded for all t € R. All the results that we
present in this paper are still true in that case. We leave this easy generalization to the reader.

In Section 3, we prove the following regularity result.

Theorem 1.1. 1) Let f € ngr' If a1 =2v — 2asup,e 4, | VZ|l1 > 0, the global attractor Ay is bounded
in V4. Moreover, there exists a positive constant M4 (independent of &), which can depend on ay, such that,
forany u € Ay,

lullys + inf(1, @) ||ul3, < Mg . (13)

2) For any o > 0, there exists a positive number g > 0, B < 1, depending only on @ and the norm || f || 1, such

that, if f belongs to H},:;ﬂ , then Ag is bounded in V3P, More precisely, there exists a positive constant M*,
depending on || f || y1+¢ such that

2 ; 2
lull2ss +iInf(1, ) [[ullys4s < M™.

3) For any m > 2, there exists a positive number d,, (which is a non-decreasing function of m), such
that, for any o > 0, if f € HI’}”ef] and am = 2V — 2dpo(supge 4, |Vzll1e) > 0, then the global attrac-
tor Ay is bounded in V™3, Moreover, for any og > 0, there exists a positive constant My 3(0g) =
Mpi3(A1, v, f,m,an, og), depending only on A1, v, f, m, am and o, such that, if 0 < o < ap and ay =
2v — 2dma(supze 4, IVZll1=) > O, then, for any u € Ay,

[l sz + Ul mes < Mg 3(o)- (14)

If am—1 > 0 and am, < O, then there exists 6y > 0 such that the global attractor Ay is bounded in V™20
and, forany 0 < o < g, forany u € Ay,

2 2
||u||vm+1+90 + 0‘||U||Vm+2+eo < Mm42+46, (@0), (1.5)
where Mi4249, (0t0) = M(A1, v, f,m, 60p, am—1, o) does not depend on cx.

Remark. Let P be the Leray projection of Hp,, = (L2, (T%))? onto H, that is, the orthogonal projection

of (Lf,er(’]l‘z))2 onto the subset of divergence free vectors fields. In Section 2.2, we are going to give
various upper bounds of & sup,c 4, |Vz||1~ depending on « and || Pf| 1. These estimates show that
V — dma sup,c 4, V2|1 is strictly positive if for example o or [|[Pf||y1 are small enough (see the
estimates (2.16) and (2.33) in Section 2.2).

Theorem 1.1 will be proved by decomposing system (1.2) into two affine non-autonomous systems.
More precisely, let u(t) be a trajectory of S, (t) contained in the global attractor Ay,. We write u(t) as
u(t) = vp(t) + wy(t), where v, (t) and wy(t) are the solutions of the following two non-autonomous
affine equations

or(Vvp —Avp) — VAV +r10t(Vy — X AVp) XU+ Vph=f, t>s,, X€ ’]I‘z,
divv, =0, t>s,, X€ Tz,

Vn(Sp,x) =0, xeT?, (1.6)

and
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B (Wn — X AWy) — VAWp + 1ot(Wy — 0 AWy) X U+ VPr =0, t>sp, xe T2,
divw, =0, t>sn,xe’ﬂ‘2,

Wn(Sn, %) =U(sp, %), x€T?, (1.7)

where s, € R is an given “initial” time, which will go to —oo. Since system (1.6) has zero initial data,
we shall be able to prove that the solution of (1.6) is bounded in V™3, provided that f is bounded

in HIT;;] and « is sufficiently small. We will show that system (1.7) has a global solution w,(t) on

the time interval [s,, +00), which is exponentially decaying to 0 in V3 when t — s, goes to infinity.
Notice that related decompositions of dynamical systems into two auxiliary systems, the first system
admitting smoother solutions and the second one having exponentially decreasing solutions, have
been used in earlier papers. For example, in order to show the existence of a compact global attractor
for the damped wave equation with critical exponent, Arrieta, Carvalho and Hale have decomposed
their equation into two nonlinear equations [1] (see also [2] for similar decompositions). For more
details on the comparison between linear and nonlinear decompositions, we refer the reader to [23].
In their proofs of regularity of the global attractor, Goubet [18], Oliver and Titi [35], Moise and Rosa
[32] and Hale and Raugel [24] have also split the systems under consideration into two equations, but
in addition, they have used spectral projections. Here the difference lies in the fact that we do not
need spectral projections and that we use “linear systems” instead of nonlinear ones. Another crucial
remark is that, when estimating the solutions of (1.6) and (1.7), due to some cancellations, the “bad
terms” rot(v, —aAvy) x u and rot(w, —a Awp) x u disappear. We emphasize that these cancellations
will be used very often in this paper and that they are proved in Lemma A.1 of Appendix A.

At the end of the first part of this paper, that is, in Section 4, using the above regularity results,
we study the convergence of the solutions of Eqs. (1.2) to those of the Navier-Stokes equations and
give a VS-estimate of the difference of their solutions, for 0 < s < 3. From these estimates and the
properties of the global attractor of the two-dimensional Navier-Stokes equations, we deduce the
upper-semicontinuity of the attractors Ay at « =0 in V¥, when f belongs to the space Hf,er, that is,
we show that

lim sup inf |ug —ullys=0, 0<s<3,
=0y, e, ueAy

where A is the compact global attractor of the Navier-Stokes system with forcing term f.

In the second part of this paper, assuming that aj = 2v —4a(sup,¢ 4, [IVZ|l1=) > 0, we concentrate
on “finite-dimensional properties” of the global attractor .4,. Our main goal is to reduce the second
grade fluid equations (1.2) on the global attractor to a finite system of ordinary differential equations
with infinite delay. In particular, we want to show that every complete trajectory u(t), t € R, which is
contained in A, is uniquely determined by the low modes part of it. Here we use the construction
and the Galerkin method introduced by Hale and Raugel [24] in the general frame of semilinear
equations. As we have already indicated, in the case of the second grade fluid equations, we have to
face the problem that these nonlinear equations are not semilinear. Before stating our main results in
this direction, we will describe the strategy of the proof in the semilinear case considered in [24].

In [24], the following general equation has been considered:

us = Bu + h(u), ul) =ugey, (1.8)

where B is the generator of a C semi-group on a Banach space Y and h is a nonlinear C'-map from
Y into Y. Assume that Eq. (1.8) admits a compact global attractor A in Y. Let P, be the projector
onto an appropriate subspace of Y of dimension n (usually P, is a spectral projection), such that
P, converges strongly to the identity as n goes to infinity. For sake of simplicity, we assume that
BP, = P,B. We set Q, =Id — P,. If u(t), t € R, is a complete trajectory contained in the global
attractor A, v(t) = Pu(t) and q(t) = Q,u(t) satisfy the equations
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ve = Bv + Pyh(v +q),
t

19
) = f e IBQuh(v(s) +q(s)) ds, (19)
-0
which means that q(t) is a fixed point of the map
t
weCp, (R, QpY) — / e@9BQuh(v(s) + w(s))ds € CJ, (R, QnY), (1.10)
—o0

where Cl?u (R, Q,Y) denotes the space of all bounded, uniformly continuous functions from R into
Q,Y. In [24], the authors have proved that, under some additional hypotheses, for any v(t) in the
subset C,(J)u R, N) of Cl?u (R, P,Y), where N is a neighborhood of P, A, in P,Y, the map defined by
(1.10) is a strict contraction and thus admits a unique fixed point g, in a small neighborhood of 0
in Cgu(R, QnrY), provided n is large enough. We remark that, by construction, q,(t) depends on v(s),
s < t. This implies that, on .4, Eq. (1.8) reduces to the following finite-dimensional system of retarded
functional differential equations with infinite delay

ve = Bv + Prh(v 4+ qy).

The above construction can somehow be considered as a generalization of the construction of an
inertial manifold and an inertial form (in the case of parabolic equations, see the generalization of
inertial manifold of Debussche and Temam [10]).

Here we follow a similar strategy. However, our proofs are more complex because of the presence
of the nonlinear term —rot(cxAu(t)) x u(t). We point out that our construction of the fixed point
differs somehow from the previous one. Indeed, due to the special properties of the quadratic non-
linearity in the system (1.2), g, will be the fixed point of an appropriate affine time-dependent map
instead of a nonlinear map as in (1.10).

Among other properties, in Section 5, we shall prove Theorem 1.2 below. We recall that P denotes
the classical orthogonal projection of (L, (T?))? onto the subspace H of L?-divergence-free vector
fields. In what follows, we introduce the orthogonal projection P, in H onto the space spanned by
the eigenfunctions corresponding to the first n eigenvalues of the Stokes operator A = —PA. Finally,
we introduce the projection Qn = I — Py,. Hereafter, B y3(0,r) denotes the ball of center 0 and radius

r>0in Q,V3, where Q,V3 is equipped with the norm (| - H‘Z/2 +al - ||‘2/3)%. Let B be a bounded

subset of a metric space X; we denote CE(R, B) (respectively Cgu(R, B)) the space of bounded and
continuous (respectively uniformly continuous) functions from R into B.

Theorem 1.2. Let f be givenin H} 9,0 <d < 1.
We assume that a3 = 2v — 4 (SUp,c 4, V2| 1) > 0. Then, there exist an integer N1 and a small positive
constant r such that, for n > N1, each solution u(t) of (1.2), which belongs to the attractor A, fort € R, can

be represented as

U=vy+q"(vn), Vn€ PnAg,
where q" maps the subset C) (R, N) of C)(R, P,V 3*) into C)(R, By, y3(0, 1)) and where N is an appropri-
ate neighborhood of Pn Ay in P,V 314, Furthermore, g"(v,)(t) depends only upon v, (s), s < t and Egs. (1.2)

on A, reduce to the following system of n retarded functional differential equations

(Vo — € Avyp) — VAV, + PpP(rot(vy +q" (Vi) — @A (Vi + qn(vn))) x (va +q(vn))) = Py Pf.
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In the case where d vanishes, the following slightly weaker property holds (see Section 5 for more
details).

Remark 1.1. Assume now that f is given in Hlf¢ with d =0 (that is, f € H},,) and that af =
2V — 4 (sup,e 4, IIVZll1o) > 0. Then, there exist an integer N1 and a small positive constant r such
that, for n > Ny, the properties described in Theorem 1.2 hold, provided that 0 < @ < o, where «;, is

a small positive number, which may depend on n.

Theorem 1.2 will be made more precise in a series of lemmas in Section 5.

Like in [24], we deduce from Theorem 1.2 the so-called “finite number of determining modes
property” for the system (1.2), when « is small enough. The property of “finite number of determining
modes” was introduced and proved for the two-dimensional Navier-Stokes equations by Foias and
Prodi in 1967 [14]. This property tells that the asymptotic behavior in time of the second grade fluid
system depends only on a finite number of parameters (called the determining modes).

From Theorem 1.2 and from the proof of Theorem 2.7 in [24], we at once deduce the following
result

Theorem 1.3. Let f be given in Hj3¢, d > 0.

We assume that 2v — 4o (sup,e 4, | Vz|[1) > 0. Then system (1.2) has the property of finite number of
determining modes, that is, there exists a positive integer No such that, for any ug, u; in V3, the property

| PNgSar ()0 — Py Sac (D1 |3 =t 400 0
implies that
ISa(®)ti0 = Ser (®O)u1 ]| 3 =t 100 0.

We point out that we also could directly prove Theorem 1.3, without applying Theorem 1.2, by
performing appropriate a priori estimates. But, showing Theorem 1.3 as a consequence of Theorem 1.2
and of the proof of [24, Theorem 2.7] is much shorter.

The paper is organized as follows. In Section 2, we recall the global existence and uniqueness of
solutions of (1.2) in V3 and the existence of a compact global attractor A, in V3. We give various
estimates of the solutions of (1.2), which improve the previously known estimates. We also prove
different estimates for appropriate non-autonomous affine equations associated to (1.2). We use these
estimates to show the property of propagation of regularity for the second grade fluid equations, that
is, we prove that, if the initial data are more regular, then the solution of (1.2) is uniformly bounded
in a smoother space. Section 3 is devoted to the regularity properties of the compact global attractor.
In particular, we show that there exists 8 > 0 such that 4, c V3*# if the forcing term f belongs to
Hll,:;’s . Furthermore, we prove that 4, C V™3 provided that the forcing term f belongs to HI’J'QLl,
m > 1, and that the material coefficient « is small enough. These arguments also lead to another
proof of existence of the compact global attractor (see Remark 3.2). Section 4 deals with the upper
semicontinuity of the attractors A,, when o goes to zero. In Section 5, we show that the high modes
component of any solution on the attractor is uniquely determined by the low modes component and
prove that the dynamics on the attractor can be completely described by a finite-dimensional system
of retarded ODE’s with infinite time delay.

2. Global existence of solutions and compact global attractor
2.1. Global existence of solutions and group property
The first result of existence and uniqueness of global solutions of Eqs. (1.2) is due to Cioranescu

and Ouazar [9]. Before stating it, we recall a few notations and the definition of strong solutions
of (1.2).
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We recall that V™, m € N denotes the closure of the space

{u € [C"o(’I[‘z)]2 ’ u is periodic, divu =0, /udx: O},

T2

in H™(T2)? and that we simply write H = V°. We equip the space V™ with the classical H™-norm,
denoted || - ||ym = || - ||ym. We denote by (-,-) the usual L2(T?)2-scalar product. We also introduce the
space

W ={ueV'|rotu —aAu) e *(T?)},

equipped with the scalar product

U, w)w = /(u - W+ rot(u — e Au) - rot(w — o Aw)) dx.

T2

As already remarked in [8], if u belongs to W, then u is in V3. Moreover, there exists a positive
constant Cg independent of « such that, for any u € W,

IVull?, + 2l Aull?, + a?(|VAu2, < Corot(u — aAu)||f2. (2.1)
In what follows, we will use this inequality, without further notice.

Definition 2.1. For given f € L°°((0, T); H;er) and ug € V3, we say that the vector field u = u(t, x) is
a strong solution of Eq. (1.2) on the interval [0, T], T > 0, if u € CO([0, T1; V3), d:u € L®((0, T), V?2),
u(0) = up, and the following equation holds, for any w € H,

(9 (u(®) — aAu(t)) — vAu(t) + rot(u(t) — aAu(t)) x u(t), w) = (f(t), w). (2.2)

In 1982, Cioranescu and Ouazar [9] showed the global existence and uniqueness of a solution
u(t) of (1.2) in L*°((0, +T), V3) (with d:u € L>°((0, T), W’)), when ug belongs to V3 and f is in
L*®((0,T), V') (in the three-dimensional case, they showed local existence and uniqueness of the
solution). When f and ug are more regular, then these solutions are classical, as shown by Galdi
and Sequeira in [15] (see also [16] for example). In [8], Cioranescu and Girault proved that, in the
three-dimensional case, if the data are small enough, then the solution is also global.

In summary, using the existing results and their proofs, one can easily deduce the following exis-
tence and uniqueness results.

Theorem 2.1. et > 0and T > 0.

1. For any f € L®°((0, T); Hy,,) (respectively any f € L°((0,400); Hp,,)) and any uq € V3, there ex-
ists a unique (strong) solution u in C°([0, T], V3) N W1-2°((0, T), V?) (resp. u € CP([0,00), V3) N
W12((0, 00), V2)) of system (1.2). Moreover, for any t € [0, T, the map ug € V3 — u(t) € V3 is con-
tinuous.

2. Likewise, if f € L*°([—T,0]; H}Jer), then, for every ug € V3, there exists a unique strong solution u(t) €
Co([—T,0]; V3))NW 12 ((=T, 0), V2) of Egs. (1.2) for t € [—T, 0], with initial data u(0) = ug. Moreover,
forany t € [—T, 0], the map ug € V3 — u(t) € V3 is continuous.
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As indicated, the global existence and uniqueness of the solution u(t) € L>((0, T), V3) of (1.2) are
proved in [9], for T > 0. The existence and uniqueness results for negative times are straightforward
and are shown in [33], by reversing the time in system (1.2). The fact that the solution u(t) belongs
to CO([0, T), V3) has been proved in [33, Section 4.1]. Note that the continuity property with respect
to t of u(t) in V3 follows from the continuity of the norm lu)llys and from the fact that u(t) is
weakly continuous from [0, +00) into V3. The continuity of the V3-norm is a consequence of the
following “energy equality”, valid for any t € [0, T],

[ (rottu — e aw) @)[[72 = =" | (rot(u — ) @) |

t
+/e—2a—”(f—$) <2 rot f(s) + ZO[_v rotu(s), rot(u — ozAu)(s)) ds. (2.3)
0

In Theorem 2.3, we will give another proof of the continuity of u(t) with respect to the time variable t.
The continuity of the map ug € V3 — u(t) € V3, where u(t) is the solution of system (1.2) is also
shown in [33, Section 4.1] and uses the energy equality (2.3) as well.

Notice that the second statement of Theorem 2.1 rules out the possibility of a smoothing effect in
finite time for Egs. (1.2), when « > 0. This is an important difference with the Navier-Stokes equa-
tions.

In the largest part of what follows, we assume that the forcing term f is independent of t. In
this case, Theorem 2.1 implies in particular that the map Sy (t) : ug — u(t), where u(t) is the strong
solution of (1.2) with initial data ug, defines a continuous flow (or C°-nonlinear group) on V3. Ap-
plying the method of functionals introduced by ]. Ball in 1992 (see [3,4]), Moise, Rosa, and Wang [33]
have shown that the dynamical system S, (t) is asymptotically smooth in the sense of Hale [22] or
asymptotically compact in the sense of Ladyzenskaya. This property together with the fact that S, (t)
admits a bounded absorbing set in V3 implies that S, (t) admits a compact global attractor in V3. For
more details on the notions of asymptotic smoothness, asymptotic compactness, absorbing sets, etc.,
see [2,21,22] or [36] for example.

Theorem 2.2. Assume that f belongs to H;er and does not depend on the time variable. Then, for any o > 0,

S« (t) has a compact global attractor Ag in V3.

In Section 3 below, we will prove that Egs. (1.2) have an asymptotic smoothing effect, namely, that
the global attractors .4, are more regular if the forcing term is more regular. We will show that these
global attractors are as smooth as one wishes, provided that the coefficient « is sufficiently small
and f is sufficiently regular. In Section 3, we will also give another simple proof of the asymptotic
compactness of Sy (t) if f belongs to H},jrd, d > 0 (see Remark 3.2).

2.2. Various a priori estimates

In this section, we show a few a priori estimates, which are more or less contained in earlier
papers (see [9,33], as well as [15] and [8] in the three-dimensional case). We will also show that
the norm || - ||y2 + (inf(1, o/@))| - ||y3 is uniformly bounded on the global attractor .4, by a positive
constant C, which is independent of «.

Let Ap, n > 1, be the eigenvalues (in increasing order) of the Stokes operator A = —PA corre-
sponding to the eigenfunctions in V3. Since the considered eigenfunctions have mean value zero, A
is strictly positive. In particular, we have, for any u e V1,

lull?, + ellVul?, < (A7 +a)IVul%. (24)

In what follows, we will establish several formal a priori estimates. All these a priori estimates can
be rigorously justified by the use of a classical Galerkin method. Thus, without loss of generality, we
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may assume here that u is regular enough. Taking the inner product in L?(T?)? of Eq. (1.2) with u
and applying (2.4), we get the following inequalities, for any t > 0,

1 2 2 v 2 1 2
Eat(llulle +oz||Vu||L2) + EIIVUIILz < 20y 1Nz, (2.5)
and,

1
a(lull?, + ol Vul?,) + (lull?, + | Vul?,) < mufnfz.

(VSR

Integrating the previous estimate and using the Gronwall inequality, we obtain, for t > 0,

Ju®): + el Fuo)f < exo( - ) 1w+ vuo)|7)

O+
('t a)

+
V234

1F 1o 12 (2.6)

where, for any Banach space X, L°(X) denotes the set L*°((0,t), X), while L>°(X) denotes the set
L*°((0, +00), X). In particular, if f does not depend on the time variable, any element u € A, satisfies
the following estimate

200 + )

2 2
u +a||Vu <
lullfz + @ Vulll; < =5

1£112,. 2.7)

We remark that the estimate (2.7) together with the Poincaré inequality imply that the norm |ju||;2
is bounded by a constant independent of o > 0.

Integrating the inequality (2.5) from t to t + 7, T > 0, and taking into account the estimate (2.6),
we also get, for t >0,

t+71
”u(t+r)\|f2+aHVu(t+r)||f2+v/Hw(s)”fzds
t

vt 2 2 A +o T
< eXp(—W—M))(Hu(O) |2 +e|Vu©|) + <1‘)2—M + V—M>||f||§w). (2.8)

We next want to obtain a priori estimates of the H2 and H> norms of the solutions of Eqgs. (1.2).
Assume that u(t) is a smooth enough solution of (1.2). Taking the vorticity of the first equation
in (1.2), we obtain the equation

drot(u — e Au) — vArotu + rot(rot(u — o Au) x u) =rot f. (2.9)

Taking the L?-inner product of (2.9) with rot(u — «Au) and using the identities (A.2) and (A.5) of
Appendix A lead to the following equality

%8t |rot(u — ozAu)Hi2 + 1)(||Vrotu||f2 +a||Arotu||fz) = (rot f, rot(u — ¢ Au)).  (2.10)

Remarking that,
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Irotull?, + 2a [V rotu%, + o[ ArotullZ, < (A7 ' +2e) (I Vrotu?, + aef|Arotul%,), (211)

we deduce from the previous equality (2.10) that, for t > 0,

3 | rot(u — otAu)Hi2 + ) [rot(u — otAu)Hi2 + (||Vrotu||f2 +ot||Arotu||%2)

Vv v
20" + 20 2

T+ 20)
< ot fllz. (2.12)

Integrating this inequality and using Gronwall Lemma, we obtain, for t > 0 and for any 0 < Sy <
Vv

20:  +20)”

[rotu(t) ”iz + 2« || Vrotu(t) ||i2 +a?| Arotu(t)|| fz

t
+ g / exp(Bo(s — ) (|| V rotu(s) Hiz —i—ot||Arotu(s)Hiz)ds
0
Al 42
< exp(—fot) |rot(u(0) — a Au(0)) %, + ]Tva 170t £ 2 - (213)

The continuous Sobolev embedding V3 ¢ (W1-°°(T?))? implies that, for t > 0,

o Vu(t) |, < Cs (exp(—%t) [rot(u(0) — o Au(0))]|

AT 4200\ 12
+<(1ﬁ041)°{)) ||rotf||L[oo(Lz)>. (214)

In particular, if f is time-independent, any element u € A, satisfies the following bound,

2
[rot(u — aAw)| 7, = lIrotul|?, + 2||V rotu||?, + (| A rotu |17,

20071 + 20)2
< ————lIrot .. (215)

We at once deduce from (2.15) and the Poincaré inequality that, for any u € Ay, the norm |[rotu||;>
is bounded by a constant depending only on | rot f||;2, and that, for o > 0, we have

ﬁ(xl

|Arotul» < —( = —|—2>||rotf||Lz,
V 07

a||Vu| e <

V207" + 20
c5+ [rot f,2. (2.16)

Integrating the estimate (2.12) between t and t + 1, we deduce from the inequality (2.13) that
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t+1
[rot(u — arAu)(t + I)Hi2 + g / (|| v rotu(s) ||i2 +a | Arotu(s) ||i2)ds
t

vt 2
< exp(—f> [rot(u — ar Au)(0)||;2
2(0] +2m)
T+ 2a) 207+ 200)
+ (1 + = 10t flIfoe (12 (217)
Vv vV t+1

If f depends on the time variable and is square-integrable in time, the estimate (2.13) is simply
replaced by the following one. Integrating the estimate (2.12) between 0 and t, we obtain, for t > 0,

¢
[rot(u — a Au)(t) ||i2 + %/(HVrotu(s) Hiz + a| Arotu(s) Hfz)ds
0

1

Al 20
< Jrot(u(©) — € Au©) 2 + “———lIrot £ 12, . (2.18)

When orq < 1 for example, the estimates (2.13) and (2.15) can be improved. Indeed, taking the L2-
inner product of (2.9) with —A rotu and noticing that, by the properties (A.2) and (A.5) of Appendix A,

(rot(rot Au x u), rot Au) =0, (2.19)
we get,
13 (IIV rotul|?, + || Arotu|%,) + v||Arotul|?, — (rot(rotu x u), Arotu)
2%t 12 12 12 ’
= —(rot f, Arotu). (2.20)

The properties (A.2) and (A.3) in Appendix A imply that

2
(rot(rotu x u), Arotu) = Z /ajuiAu,-Auj dx.
ij=172

Using the Gagliardo-Nirenberg and Young inequalities, we thus obtain,

|(rot(rotu x u), Arotu)| < C[|Vul| 2|V rotu||?, < C|Vull 2|V rotu||%,

< ClVul| 2| Vrotul ;2| Arotul| 2. (2.21)

The properties (2.20) and (2.21) together with the condition ox1 < 1 imply that
3 (IVrotul?, + o Arotul?,) + U—M(HVrotullz +alArotul?,) + E||A rotu||?
t 12 12 4 12 12 P 12
< 2 rot fl2 g2, + S IVulZ IV rotull? (2:22)
X v L?O(Lz) v L2 L2 .

Let

VA1

- (2.23)
4(1 + 20 @)

B1
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Integrating the inequality (2.22) and applying Gronwall inequality, we get, for t > 0,

t

|V rotu(t) ||i2 + o || Arotu(t) ||i2 + %/exp(,& (s—1))||Arotu(s) ||i2 ds

0
2
< exp(—pr1t) (|| V rotu(0) ||f2 + o | Arotu(0) ||i2) + mllrotf”f?oaz)
c t
+5 IIVuIIf?O(B) / exp(Bi1(s — )| Vrotu(s)|| fz ds. (2.24)

0
Taking into account the estimate (2.13), we deduce from the previous inequality that, for t > 0,

t
|V rotu(t) Hfz + a| Arotu(t) ”iz + %/exp(,& (s —1))| Arotu(s) Hiz ds

0
2
<exp(—p10)(|Vrotu(0)| 1, + | Arotu(0)] 3,) + LA
C 4 COT'42a)2
+ -3 [rot(u(© —aau @) > + }%anotfnfgo“z). (2.25)

To prove that ||Vrotu(t)||f2 + allA rotu(t)||f2 decays exponentially fast to some constant when
t — +o00, we can apply the uniform Gronwall inequality. We recall that if, for t > 0,

d
d—{(t) <g®y(®) +h(),

where y(t), g(t) and h(t) are non-negative locally integrable functions, then, for t > 0 and r > 0,

(1 t+r t+4r t+r
yit+r)< F/y(s)dsjt/‘h(s)ds exp/g(s)ds. (2.26)
t t t

Integrating the inequality (2.22) from t to t 4+ 1, applying the uniform Gronwall inequality and using
the estimates (2.13) and (2.17) yield, for t > 0,

t+1
”Vrotu(t—i—])”iz—i—ocHArotu(t—i—])Hiz< /(HVrotu(s)”fz+ozHArotu(s)Hiz)ds
'
t+1

c
+;/||Vu(s)||i2 | Vrotu(s)| 7, ds
t

2
= 2
+ v ”rOtf”Loo(LZ)’

and thus,
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2 2 _2 C 14 20k 5
[V rotute+ D, + o Arotute+ D, < S( 14 SEO ) EO + — =10t i
2 2
+35 [Irot fll7oo 2y (2.27)
where
VAt 2 2(142ar)? 5

E(t) =exp| —=—————— | ||rot(u —aAu)(0 ——————||rot . (228
® p( 2(Hml))H (U —aAu) )| + vz ot Iy (228)

The Brézis-Gallouét inequality (see [5]) implies that, for t > 0,

||Arotu(t>||§z>>

2 2
Vu(t < Cpg || Vrotu(t 1+In(1
V4Ol < Cocl[vro ”()””( " “( v otu o,

IV rotu()|7, + el Arotu(®)ll?, )) (2.29)

2
< Cpg || Vrotu(t) 2(l—i—ln(l—i—
” I: ||V rotu(t)||,

Since the function xIn(1 + %) is an increasing function of x (where 0 < x < y), we deduce from the
inequalities (2.29) and (2.25) that, for t > 0,

1
| Vu® | < Cae (1 + 1n<1 + &)) (exp(—ﬁﬁ)(”Vrotu(O) |? + | Arotu]?)
2
p1v

CO 1+ 20)2
Bivt

We also infer from the inequalities (2.29) and (2.27) that, for t > 0,

| Vue + 1) < Cao (1 + ln<1 + l)) (3<1 + 95@))
o v Vv

14+ 20Aq 5 2 5
X |:E(t) + T ”rOtf”Loc(LZ)] + ;”rOtf”LOO(LZ) . (23])

C
510t f I g2+ 5 [ r0t(u(0) — rAu(0)) I

||rotf||‘L‘§,o(L2)>. (2.30)

When u(s) is a bounded solution of (1.2) on the whole line R, the above estimates become much
simpler. If f is time-independent, in the case oA < 1, the estimates (2.25) and (2.30) together with
(2.15) imply that every element u € A, satisfies

1 1
2 2 2 4
[Vrotull;, +allArotul|;; < C0<—v2A1 lrot fl72 + —vs)\? ||r0tf||Lz>, (2.32)
and also,

1 1 1
2 2 4
Vullfeo < CoCpe (1 + 1n<1 + &>) (WIIFOthILz + VG—}L?IIFOthILz) (2.33)

where Cy is a positive constant independent of @ and f.
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The Poincaré inequality and the estimates (2.16) and (2.32) show in particular that, if u belongs
to the global attractor 4., the quantity |[Vrotu| ;2 and thus [|uly2 can be bounded by a constant,
which is independent of « and depends only on ||rot f ;2.

Remark 2.1. The estimates (2.13), (2.14) and (2.18) still hold if u(t) is a smooth enough solution of
the following non-autonomous affine equation

3 (U —aAU) — VAU + 1Ot — AU x u*+Vp=f, t>0, xeT?,
divu=0, t>0, xeT?,

u(0,x) = ug(x), xeT?, (2.34)

where ug is an element of V3 and u* belongs to C%([0, +00), V2).
In the case i1 < 1, the estimate (2.24) is still valid for the solution u of (2.34) provided the term
||VU||L[00(L2) is replaced by ||Vu*||L?o<Lz) in (2.24). And the inequality (2.25) is replaced by

t

|V rotu(t) Hiz + ocHArotu(t)Hi2 + g / exp(Bi1(s — 1)) | Arotu(s) ”iz ds
0

2

< exp(—p1t) (|| V rotu(0) ||f2 +a||Arotu(0)||iz) + By

2
“rOtf”L?C(LZ)

C AT+ 20
+-3 ||Vu*||§?O(L2)<exp(—,31t) [ rot(u(0) — aAu()]7, + 1‘)7” rotf||ioo(L2)). (235)

B1

Likewise, the inequality (2.27) is replaced by

| Vrotu + 1|3, + | Arotut + D7,

2/ Cy .02 1+ 200 5 2 ,
< ; (l + ; ||Vu ”L?«OH (L2)> |:E(t) + T”rOtfHLOO(LZ) + ; ”rOtf”]_oc(LZ)' (236)

2.3. Case of smoother initial data: V4-regularity

In the next two sections, we assume that the initial data ug belong to V™3, m > 0, and that f is
in Hl’f;l. We prove that the solution u(t) of (1.2) is then in V™3 and we give uniform estimates in
t under additional conditions. To this end, we consider the following auxiliary affine problem,

d(W* —aAw*) —vAW* +rot(w* —aAw*) x u* +Vp*=f, t>0, xeT?,
divw*=0, t>0, xeT?,

w*(0,x) = ug(x), xeT?, (2.37)

where f e Hjpt! and u* € L((0, +00), V™+2) N CY([0, +00), V2). Once we have proved regularity
results and appropriate estimates for the solution w* of (2.37), we set u* =u in the above equations
in order to deduce the regularity properties and corresponding estimates for the solution u of (1.2).
We begin with the case m = 1. Arguing as in the case of the nonlinear equation (1.2), one easily
shows that, for any ug € V3, there exists a unique global solution (in the sense of Definition 2.1)
w*(t) € CO([0, +00), V3) of (2.37), which also satisfies the inequality (2.13). In what follows, we are

going to prove that actually w*(t) belongs to C%([0, +o00), V4). Notice that the propagation of the
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V4-regularity has already been proved in [8] for the local solutions of the system (1.2) in the three-
dimensional case.

Theorem 2.3. Assume that f and u*(t) belong respectively to the spaces L*°((0,+00), H;er) and
L®((0, +00), V3) N €O([0, +00), V2). Then, for any « > 0 and for any ug € V*#, there exists a unique so-
lution w* € C2([0, +00), V*) of (2.37).

Furthermore, if a1 = 2v — 2a||Vu*|| oo (1) > 0, w* belongs to the space CI()’([O, +00), V4, that is, w* is
uniformly bounded in V4, for t > 0 and the estimates (2.51) and (2.53) below hold. In the case where w*(t)
and u*(t) belong the global attractor and a1 < 1, the estimate (2.53) is replaced by the better estimate (2.61).

If 2v — 20 || Vu*|| oo 1oy < O, then w* belongs to the space CS([O, +00), V319, for any 0 satisfying the
condition (2.70) below and the estimates (2.72) and (2.74) below hold.

Finally, if moreover f and Vu* belong to L*((0, +00), Hp,,) and L*((0, +00), L) respectively, then, for
any o > 0, w* belongs to C9([0, +00), V4) and the inequality (2.63) below holds. In particular, if f is in
L?((0, +00), H,,), for any ug € V4, for any o > 0, the solutions u(t) of (1.2) belong to C([0, +00), V4) and
the estimate (2.65) below holds.

Proof. In this proof, we shall mainly discuss the uniform boundedness of w*(t) in V4. We will prove
the property that t — w*(t) € V* is a continuous map at the end of this proof.

Arguing as in [8, Section 5], one can prove the V4-regularity of the solution w* of (2.37). For this
reason, we shall not give the details of the proof, but emphasize the a priori estimates that we need
for the purpose of this paper. In order to show that, if f and ug are more regular, the solution w*(t)
is also smoother, we begin by performing a Galerkin scheme. We denote by wj(t) = P,w*(t) the
solution of the equation

d (W) — aAW}) — VAW + Py P(rot(w), — e Aw}) x u*) = PyPf, t>0, xeT?,
divw; =0, t>0,xe T2,

wi(0,X) = Pyug(x), xeT?, (2.38)

where P, is the orthogonal projection (in H) onto the span of the eigenfunctions of the Stokes oper-
ator —P A, corresponding to the first n eigenvalues 0 <A1 <Ay < A3 < - < Ay
Considering the vorticity of this equation, we obtain the equality

d rot(wy, — e Awy) — vArot PpPwj, + rot Py P{rot(w;, —aAwy) x u*} =rot P,Pf. (2.39)
Taking the L2-inner product of this equation with —rot(Aw}; — aA?w;), using the equality (A.2),
and remarking that, by (A.5), the term (rot(rot Aw;; x u*), rot Aw;}) vanishes, we get the following
equality,

1
Eat |V (rot wy — arot Aw?) ||i2 + (]| Arotw} ||i2 +af|Aawy Hfz) + (Awj x u*, rot Aw},)
— (AW} x u*, ot A?w}) + o (A2w x u*, rot A2w})
= —(rot Py Pf, rot(Aw; — a A?w})). (2.40)

We begin with the estimation of the term o (A2w; x u*, rot A2w). We first recall the equality (A.3)
of Appendix A,

2
(v xu,rotv) =— Z /aiujvivjdx, (2.41)
i j=1p2
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valid for any smooth enough vectors v and w. Using this equality with u =u* and v = Azwf,, we
obtain the following bound

@2|(A2w; x u*, rot A?wr)| < o | Vur| o | AZWE |2 (2.42)

Likewise, using the equality (2.41) with u =u* and v = Aw};, we can write,

[(Aw: x u*, ot Awz)| < | Vu*| o | AW ]2 (2.43)

1]

Performing an integration by parts, we get the following estimate for the term «o|(Aw} x u*,
rot A2w})|,

al(awy xu, rot A?wi)| < er([[u oo [VAWR] 2 + [ VU] o | AW ] 2) [A% W3] 2 (244)
Finally, we estimate the term containing the forcing term as follows,
|(rot PP, rot(Aw}; —a A?w}))| < [[rot Pf |2 [rot Aw} | + | APSIl 2 [ A2w} | 5. (2.45)

The equality (2.40) and the estimates (2.42) to (2.45) imply that, for t > 0,

3 ||V (rotwi — arrot Awy) ||i2 + v||Arot w ||f2 + (2 - Bo)var|| A2w}, Hiz

3 2
< oo (I T VAW G + 90 [ | Awg 2 + 1APFIE) + S ot PY 1,
1
#2079 2w s 2min (1,50 9 ) |9 e [l 246)

where 0 < 8, < 2.
We notice that, taking the L2-inner product of Eq. (2.39) with rot Azw,’; and arguing exactly as
above, we also obtain the following inequality, for t > 0,

o ([ror awy 72 + e A7w3 ) + @~ Boyv ]| a’wi

3
< ﬁz—v(llu*llfoo [vaws [z + [ vu* [ [aws [z + 1APFI:)
-"_ZCUHVU*HLOQ ”AZW:”in (247)

where 0 < 8 < 2.
Now, in the inequalities (2.46) and (2.47), we have to distinguish two cases according to the sign
of the quantity a; =2v — 2o || Vu™* || oo (ro0).

First case: a; = 2v — 2a|| Vu™* || oo (po0y > 0.
In this case, we choose B, =a;/2v in the inequality (2.46) and we obtain the following bound, for
t>0,

ajo

1| a2wg 2,

3|V (rot wy; —ozrotAw,’j)”i2 + v|rot Aw; ||i2 +
6
< f(“”*”im [vawi |5 + [V 7 | Awi ]G +1APSIR.)

. 1 2
+2m1n(l, - ||Vu*||Loc> [V | 8w |2 + Zirot s, (2.48)



3712 M. Paicu et al. /]. Differential Equations 252 (2012) 3695-3751

Remarking that

|V (rot w} — o rot Awy) ||i2 < (A" +20)(|rot Aw; ||i2 +alAa’w; ||i2) (2.49)

and integrating in time the inequality (2.48), we get, for t > 0,

t
|V (rot wi (1) — o rot Awji(t)) ||f2 +/exp(ﬂg(s—t))(%”rotAw:(s)Hfz + %” A2w;§(s)||i2>ds
0
< exp(—p t)||V(rotw*(O)—arotAw*(O))”z +6—a||APf||2 —i—illrotPsz
S EXPLPs n ne s ran T g, L2

t
6
+ 52 [ explps - 0) (a0 | [vawio) o + [ 0 e awio [ ds
0

t
1
+2/exp(ﬁ3(s—t))min<1, M—v||Vu*(s) ||Loo>||Vu*(s) | | AWE©) |72 ds, (2.50)

where 0 < 83 < In the case where u* is a general smooth divergence-free vector field, we

a
407 +20)
proceed as follows. Taking into account the estimate (2.13) (see also Remark 2.1) and the fact that
2v — 20 || Vu*|| oo 1y > 0, we derive from the inequality (2.50) that, for t >0,

t
|V (rot wii (t) — arot Awii(t)) | iz + / exp(B3(s — 1)) <g [rot Aw?i(s) || 52 + alTa [a2wis)| f2> ds
0

< exp(—B3t) || V(rot wji(0) — o rot Aw;(0)) ”iz
240 (A7 + 200) 87! +2a)
+ AP {2y + ————IFOL Pf[Fc )

1

2V — 312y — 2V —
+ 2 al[(v al)(){]—l—a)—i-Zmin(l Y a1>]

oV a o T 2000

40" + 2a)?

x (exp(—ﬂgt) [rot(w}i(0) — a Aw;i(0)) ||f2 + ||rotf||f?o(L2)), (2.51)

where 3 = a1()»]’1 +2a)~1/4 and C is a positive constant, independent of e, ug, f and u*.

The inequality (2.51) shows that wj(t) is uniformly bounded in V4, for t > 0. Performing the
Galerkin procedure in the classical way, we deduce that the solution w*(t) of (2.37) belongs to
L®((0, +00), V*4) and satisfies the bound (2.51) (we leave to the reader all the classical arguments
concerning the Galerkin procedure). We notice that the inequality (2.51) is a good estimate, uniform
in o, when « is bounded away from zero.

Notice that, if we choose B, = ay/2v in the inequality (2.47) and argue as above, we obtain the
following bound, for t > 0,

t
[rot Aw (t) ||i2 +o | A%wi (D) ||i2 + %1 / exp(B3(s — b)) | A%w;; ||i2 ds
0
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~ 6
< exp(—Bst) (| rot AwE (0|2, + o A2wE(0) | 2,) + muwfnimz)

t

6 ~
ta / exp(Bs(s —0) (Ju* [ | VAw; 7+ [V 7 fawp ) s, (252)
0

where E3 < ay/4. Like above, we derive from the inequality (2.52) that, for t > 0,

t

[rot AWz (|5, + e A2wi©) |2 + il / exp(Bals — )| A2wi |2, ds

4
0
6
< exp(—Bat) (| rot AWE ) |7, + ]| A2 w2 0) | %) + AT
CQv —aq)? 2 (A4 20)
a (exp(—ﬁ4t) [rot(w}i(0) — AW O) |7, + anotfniocm)),

(2.53)

where 0 < B4 < inf( 4) and C is a positive constant, independent of «, ug, f and u*.

2 +2 o)’
Actually, we are mamly interested in the special case where u*(t) = Sy (t)ug is a solution of the
nonlinear system (1.2). In this case, according to (2.14), the condition

V2071 + 200
V

v— c5<||rot(u3 —aAuf)|,. + ||r0tf||Loc(Lz)> >0, (2.54)

implies that a; > 0. In the case where f does not depend on the time variable and uj belongs to the
global attractor Ay, due to (2.16), the condition

207 + 20
v— cs%nrotﬂm >0, (2.55)

is sufficient to imply that a; > 0. When o)y <1 and u*(t) = S¢(t)ug is a solution of the nonlinear
system (1.2), one deduces from (2.30) that the condition a; > 0 is satisfied if

12
v—aCy? <1 +ln(1 + &)) [HVrotuz;H2 +af| Arotuy|” + % |rot(uf — ceaug) |,

1/2
1 1
+ CO( ”rOtf”Loo(LZ) +—= 6 4 ||r0tf”Loo(L2)>:| > 0 (256)

Moreover, in the case where f does not depend on the time variable and uj belongs to the global
attractor Ay, due to (2.33), the condition a; > 0 holds if

172 ~1/2 1\\"?/ 1 1 12
v —aC, C/<1—|—ln<1+a>> (—llr f||L2+ ||r0tf||L2> >0. (257)

In the above estimates, the positive constant Cop depends only on the constants appearing in the
Poincaré and Sobolev inequalities.
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As we already noticed, the estimate of ||A2w,*;||Lz in the inequalities (2.51) or (2.53) is not uniform
in o, when « goes to zero. We next want to improve the estimate of ||r0tAw,’;(t)||f2 +Ol||A2W,>;(t)||%2
(and thus of ||rot Aw*(t)l@2 +O(HA2W*(t)||i2) in the case where ai; < 1, when u*(t) = Sy (t)u}, is a
solution of (1.2). First we deduce from (2.52) that, for t >0,

t
[rot Aw (t) ||§2 +afAtwi) ||f2 + %1 / exp(Bs(s — D) | A%w} ||f2 ds
0

6
< exp(—Bst) (| rot Aw* (0|2, + & AZW*(0) | 2,) + AP I )

B
c t
+ a—f|: s<up (|au*cs) ||i2) / expBs(s —t) [ VAW (s) ||f2 ds
<s<t
0
t
+ sup (||Aw,’;(s)||f2)/exp,ﬁs(s—t)||VAu*(s)||f2 ds], (2.58)
<s<e
0

where 0 < 85 < inf(81,a1/4), with g1 = 4(14]:7;])»10:)‘ and Cs is a positive constant coming from the
classical Sobolev embeddings. Taking into account the estimates (2.13), (2.25), and (2.35), we deduce
from the inequality (2.58) that, for t > 0,

t
[rot Aw}(t) ”iz +a|A%wi) ||§2 + %]/exp(ﬁs(s —0)| a%w; ||i2 ds
0

6
< exp(—Bst)(|rot Aw*(0) |7, + | AZw*(0) | 2,) + T | AP

a1 B
Cs 2 200 4202
+ v—a]Ll |:L2 + L3<||rot(u*(0) —aAu*(0)]; + — 15— 7z ||rotf||ftoo(L2)>], (2.59)
where
L = |Vrotu*©)? Arotu*(0)|I? 2 ¢ 2
1= |90t O+ | Aot @)+ St 1
¢ Cy '+ 20)?
+ 3 [rot(u*(0) — a Au*(0)) ”212 + (ZSTHrotfH‘thw(Lz),
2
Ly = | Vot w*(0) Hfz + a|| A rot w*(0) ”iZ + ﬂs—vnrotf”im(m,
¢ AT+ 2a
L3 = F(Hrot(w*(o) —aAw ) |, + 5 ||rotf||iw(L2)>. (2.60)

Performing a classical Galerkin method, we obtain the same estimates for the limit w*. If f does
not depend on t and that u*(t) = S, (t)up and w*(t) = Sy (t)wo belong to the global attractor, the
estimate (2.59) can be simplified. Indeed, one then deduces from the estimates (2.58), (2.15), (2.32),
and (2.25), that, for t >0,
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t
[rotaw* © % + e A2w* @) |2, + %/exp(ﬂs(s ) a%w* | ds

0
* 2 2. % 2 6 2
< exp(—Bst)([rot Aw*(0) |2 + | A*w (O)”Lz)‘f‘m”APf”Lz
C1Cs 1 2 4
La| L ——||rot ——||rot R 2.61
+ o 4[ 4+ﬂ5vll f”Ler,Bgv“A% Irot f1I}, (2.61)

where C; is a positive constant independent of «, f, t and w*(0) and where
Le = ——lIrot £11%, + —— lrot |
= ——1/ro —||ro .
4TV, L2 Vo] L2

We next consider the second case, that is, the case where a; <O0.

Second case: a; =2V — 2o || Vu* || oo (1) < 0.
In this case, setting 8, = 1/2 in the inequality (2.46), using the Young inequality, taking into account
the inequality (2.49) and integrating from O to t, yields, for t > 0,

t
|V (rot w — o rot Aw;s) (t) ||i2 + A;lﬁ / |V (rot w; — a rot Aw;s) (s) ||i2 ds

< |V(rot w) — arot Aw) (0) ||f2 ||APf|| ||rotPf||

? (L2 L3(L2)

t

6 6
+ / |V (rot w; — a rot Aw};) (s) Hiz (; [u*(s) Hioo + " inf(Al_l,a) [ Vu*(s) ”iw
0

. o . 1
+ Z[mf(l, S [Vu*(s) ||Loo> + mf(l, o [vu*(s) ||Lm>] [ Vu*(s) ||L°°> ds. (2.62)
Applying the Gronwall inequality to the estimate (2.62), we get, for t > 0,
|V (rotwj; — arot Aw?) (0 || iz

< (Hv(rotw;‘; — arot Aw};) (0) Hfz ||APf||L2(L2 ||rot Pf||L2(L2 )

t
. _ 2
"( 2 +0/ (Sl + 2 inter . a) 9o

1
+ 2[inf<l, = Jvaes ||Loo> + inf(l, Pl ACAO ||Loo>] |vu*(s)] Lm) ds). (2.63)

For any fixed T > 0, the inequality (2.63) shows that wj(t) is uniformly bounded in V4, for 0 <
t < T. Performing the Galerkin procedure in the classical way, we deduce that the solution w*(t)
of (2.37) belongs to L*((0, T), V*), for any 0 < T < +o0, and satisfies the bound (2.63). If f and Vu*
belong to L*(Hp,,) and L*(L?) respectively, we conclude that w*(t) belongs to L((0,400), V*). If
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this hypothesis is not satisfied, the estimates (2.63) do not allow to conclude that w*(t) belongs to
L®°((0, +00), V), since the right-hand side of (2.63) is exponentially growing.

If @ > o9 > 0, the inequality (2.63) implies an estimate of |W* || ((,T),v4), Which is uniform in c.
When adq < 1, the estimate of [|W}l o (.1),v4) (@nd of [[W* || (0 1y.v4)) can be improved by going
back to the inequality (2.47). Indeed, arguing as above, setting S = 1/2 in the inequality (2.47),
integrating from 0 to t and, using the Gronwall lemma, we obtain, for t > 0,

[rot Aw @[ + | a2wic0)

< (Jrotaw @}, + | Aw @[5 + 1A I, 1)

t

6 67!
x exp(—vt—i—/(;”u*(s) ||fOo + Tl [ vu*(s) ||iOC
0

+2 inf<1, ?vures ||Loc> [vu*(s) ||Loc) ds). (2.64)

We remark that, in the special case where f belongs to the space LZ(ngr). we immediately deduce

from the estimates (2.18) and (2.63) that, for any « > 0, any ug € V4, the solution of the nonlinear
equations (1.2) is bounded in CE((O, +00), V4). Indeed, these estimates imply that, for t >0,

|V (rotu — o rot Au)(t) | fz
< <”V(rotu0 -« rotuo)Hiz ||APf||Lz(Lz ||rot Pflle(Lz )

AL+ 20
v

C 2
X exp - (Hrot(uo —aAu) |}, + [|rot Pf||fz(L2)), (2.65)

where C is a positive constant independent of «, f and ug. In the case where o > 0 is small, this
estimate can be improved by using the inequality (2.64) instead of (2.63). We leave the details of this
improvement to the reader.

We now go back to the general case where f does not belong to the space Lz(Hper) According
to Remark 2.1 and the estimates (2.13), the V3-norm of w; (t) decays exponentially fast to some
constant. On the contrary, according to the estimate (2.63), the V#-norm of w; (t) could grow ex-
ponentially fast. These properties imply that, in some interpolated space, we still have exponential
decay.

To show it, we proceed as follows. We set f equal to zero in Eq. (2.38), that is, we consider the
following equation in the finite-dimensional space P,V?3, for t > s,

dwn —v(I +aA) ' PaAwy + (I +aA) " PP (rot(wy — e Awy) x u*) =0,
Wn(s,X) = Wy n(x) € P, V3, (2.66)

where P is the Leray orthogonal projection in L%(T2)2 onto H and A = —PA is the classical Stokes
operator. We denote X ,(t,s)ws the solution of Eq. (2.66). According to the estimates (2.13) and
(2.63), we have the following inequalities:

| Zan(t, $)Wn(s) — €A Zgn(t, $)Wn(s) |1 < Cpexp(—po(t —3)) [Wa(s) —aAwn(s)| 1 (2.67)
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and also
H Loan(t, )Wn(s) — ¢ AXg n(t, s)Wn(s) ” v2

6C
<Cp exp([—yo + (2 + TP [vu* ||L°°(L°°)> [Vu* HLOO(LOO)](t - s))

X | wn(s) —aAwn(s) | 2. (2.68)

where Cp is a positive constant depending only on the constant A]’] and yp = m.
1

Interpolating between the Hilbert spaces V! and V2, we conclude that, for any 0 <6 < 1, we
obtain,

| Zan(t, $)wn(s) — A Zy n(t, H)Wa ()| 140

6C
< crexp([ -0+ 0(24 ST gy ) 19 € 9)
X [wa(s) —aAwn(s)|110- (2.69)

Thus the norm of || Xy n(t, S)Wn(s) — @A Xy n(t, s)Wy(s)|ly1+e decays exponentially fast, if

6C
= +9<2 + % ||Vu*||Lw(LOO)> 96 ey <0. (2.70)

v

407"+ 200)
We now go back to the solution w*(t) of Eq. (2.38) and choose 6y so that (2.70) holds for 6 = 6.
We notice that, since wj; is a solution of the finite-dimensional system (2.38) of ordinary differential

equations, w;, is given by the Duhamel formula (or variation of constants formula), that is, w}; can be
written as

t
Wi (t) = Zg.n(t, 0)Paig + / Yan(t, ) +aA) 1P, Pf(s)ds, (2.71)
0

which implies, by (2.69) that, for t > 0,

Wi — @AW (©) || 110, < eXP(—Yaet) o — Aol 1+ + Vg, IPf ooy 140y (2.72)

Next performing the Galerkin procedure in the classical way, we deduce that the solution w*(t) of
(2.37) also satisfies the inequality (2.72).

Remark 2.2. The dependence with respect to « in estimate (2.72) is very good when « is bounded
away from 0. At first glance, the dependence with respect to « is less good when « tends to 0. But,
actually, when « is very close to 0, we will never consider this estimate, since then a; > 0 and we
use the estimates (2.59) and (2.61).

Notice also that from estimate (2.72), we deduce that, for t > 0,

C
Iw*© 2100 + Vet [W O 310, < —= eXP(—=Yoo1) U0 — Aol 145

Ja

¢ 1
+ ﬁVGO ||Pf||LDO(V1+90)~ (273)
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We derive from the inequality (2.73) and the condition a; <0 (that is, ! < v™! [IVu*| oo (rocy), that,
for t >0,

[W*© 2100 + V| WO 3100 < VTV V05|12 ) (XP(—yipDl1t0 — 02 Attgl 124

+ Yoo JIPS Il ooy 1460 - (2.74)

It remains to prove that w*(t) is a continuous function from [0, +o00) into V4. To this end, for any
integer m, we decompose w*(t) into a sum of two functions w*(t) = vy, (t) + z (t), where vy, (t) and
zm(t) are the solutions of the following systems of equations

3 (Vm — @AVR) — VAVy + P(rot(vm — € Avp) x u*) = Py Pf,
Vm(0, X) = Ppuo(x), (2.75)

and

0 (zm — A Azm) — VAZy + P(rot(zm — ot Aziy) x u*) = (I — Pp) P,

Zm(0,x) = (I — Pp)uo(x). (2.76)

Let to > 0 and n > 0 be fixed. We can choose an integer m;, such that, for m > m,, (I — Py)uo and
(I — Pp)Pf are small enough and that, according to the estimate (2.63), we have, for 0 <t < 2to,
mzmy,

2 suptHZm(t) lys <n/2. (2.77)

0<s<

Arguing as in the proof of Theorem 2.1 (by using a Galerkin method, see [33]), one shows that
vm belongs to CO([0, +00), V?) at least. Furthermore, since Pug and P, Pf belong to V> and
L ((0, +00), ngr) respectively, we can show by arguing as above (see also the proof of Theorem
2.4 below) that the solution v,; of system (2.75) belongs to L*((0, 2tp), V>). By interpolation, we
deduce that vy, belongs to C°([0, 2to), V*). In particular, vy, belongs to C°([0,2t0), V*) and there
exists a positive real number §; such that, if |t —to| < 8y, then

[Vin, ) = Vi, (t0) | ya < 1/2. (2.78)

The estimates (2.77) and (2.78) imply that |w*(t) — w*(to)lly4 < n. The continuity in V4 is shown
and thus Theorem 2.3 is proved. O

Remark 2.3. We point out that, in Theorem 2.1, we can prove, in the same way, that the solution u(t)
of (1.2) is continuous with values in V3. Indeed, in the proof of Theorem 2.1, the Galerkin method
easily implies that u(t) belongs to C9([0, +00), V2) (see [33]). Thus, the same arguments as above
allow to show that u(t) actually belongs to CO([0, +-00), V3). We leave the details to the reader.

2.4. Case of smoother initial data: V™3 -regularity, m > 2

We next assume that f belongs to the space L°°((O0, +oo),HI’}7;1) and that u* belongs to

L*®((0, +00), V™*2) N CO([0, +00), V2), for m > 2. If ay = 2V — 2dpma || Vu*|| o100y > O, where dp > 0
is defined in the proof of Theorem 2.4 below (see (2.84)), we will show that, for any ug € V™*3, the
solution w* of Eq. (2.37) is uniformly bounded, with respect to t > 0, in the space V™3,
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In the case where a,; < 0, we can still prove that w* is uniformly bounded, with respect to t, in the
space V™3 if moreover f and u* belong to the space L*((0,+o0), Hjst!) and L2((0, +00), V™F2).
More precisely, we show the following theorem.

Theorem 2.4. Let @ > 0 and m > 2. Assume that f and u*(t) belong to the spaces L°°((0, +00), H;”J‘) and

L®((0, +00), V™2) N CO([0, +-00), V2) respectively. Then, for any @ > 0, for any ug € V™3, the unique
solution w* of (2.37) belongs to C%([0, +00), V™+3),

Moreover, if am = 2v — 2diot || VU™ || poc 1oy > 0, where d, > 0 is a non-decreasing function of m, then w*
belongs to the space CJ ([0, +o00), V™+3) and satisfies, for t > 0

t
[ e+ [ W O e + - [ exp(=Bmts = 0) [w* () s ds
0

2 2
< ”u0||vm+2 + a||u0||vm+3 + Km||f||,_to<>(Hm+1)

m—3

+ 2 (ItolFmea—i + eltolGms—i + Km—illFll o0 gyms1-s))
i=1

i i
2 2
x < 1—[ KmHJ') ( 1_[(””* ”L?O(vmﬂff) +oau* ||L$°(vm+3j))>
j=1

j=1

+<Wﬂ@+awﬂ%+KﬁH$m%

+Ka [ exp(—pa(s — D) (@[ W*®) [1a [u*©) [7a + [ W S 4] u*®)] 1) ds)

o

m—3 m—3
X ( H Km+1—j)< H (H”*”Z”(vmﬂ—f) +°‘||”*||i§>°(vm+3—j)))v (2.79)
j=1

j=1

where K; are positive constants depending only on i and a;, and where 0 < 8; < a; /4.
If am—1 > 0 and a;;, < 0, there still exists @ > 0 such that w* is uniformly bounded in V™+1+¢,
In particular, if ap, > 0 and u*(t) = Sq (t)ug, the following estimate holds

t
[W* e+ [ WO [gmes + T [ exp(=Bun(s —0) [w* ) [ ds
0

2 2
< ||u0||vm+2 + a”u0||vm+3 + Km “f”L?O(Hm'H)

+QmX2, .. Xmg1, Y2, ooy Ym15 215 -+ -5 Zm),s (2.80)
2
wherexj=||uo|| +a||uo||\,]+1,y1 IIuOII i Haluglly i 2j = 11 f e iy and where Qm (X2, . .., Xm1.,
Y2, .ees Ym+1, 21, - - -» Zm) 1S a polynomial ofxz, s Xmt1, Y25 -+ Ym+1, and z1, . .., zm, Whose coefficients
dependonlyonmanda;,i=1,...,m.

Proof. Assume that m > 2. We will prove the propagation of the regularity and the estimate (2.79)
by recursion on m. The propagation of the V¢*+3 regularity and the estimate (2.79) have been proved
in Theorem 2.3 for ¢ = 1. Assume now that the propagation of the V¢*3-regularity and the estimate
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(2.79) have been proved for £ <m — 1, with m > 2, and let us prove these properties for £ =m. As
in the proof of Theorem 2.3, we need to use a Galerkin method and first obtain estimates for w;}
in V™3, To simplify the notation, we denote w; by w* and we assume that m is an odd integer. The
proof is similar in the case where m is even.

Taking the inner product in L?(T?) of Eq. (2.39) with rot A™+1w*, we obtain the equality

1d ”rotA fw le—f-a”A H +vHAm w HL2 (Aw* x u*, rot A™FTw*)

+a((A*w* x u*), rot A" w*) = (rot P, Pf, rot A™ T w*). (2.81)

On the one hand, performing several integrations by parts, using the Leibnitz formula, the equal-
ity (A.5) of Lemma A.1, and the classical Sobolev embeddings (or the Moser inequalities), we get,

(Aw* x u*, rot A" w*) = (AT+ (Aw* x u*), rotAmTHw*)

m+1

((AA"7 w*) x u*), 1ot A"5 w*) 4+ B = B, (2.82)

where

m+1

B=(A"7 (Aw" xu*) — ((AAmTHw*) x u*),rotAmTHw*)

+

m+1
< Clm) (AW o [u ymsr + [ W e [ VU] ) [V A2 w7 2

+1

< Com) (1w e [ L ggmer + 1" | g " ) [V ATF w7, (2:83)

and where C1(m) and C,(m) are positive constants depending only on m.

On the other hand, again integrating by parts, using the Leibnitz formula, and the equality (A.5) of
Lemma A.1 as well as classical Sobolev and interpolation inequalities, we deduce that, for t > 0,

a((Azw* x u*), rot N w¥)

2
=—Za(A&_1a (A*w* x u*¥), rotAmTHB,-w*)
i=1

2
-« Z((A@),«A"‘T“W*) ¥, rotAmTHaiw*) _ uB*

2 2

—admzz ((aa " *) x 9ju*, rot A s 8, )

j=1i=1
2 +1
—(aB*—l—admZZ w*) x 8ju*,rotATBiw*)> (2.84)
j=1i=1
where

2
aB*<aCsm)y Y |(D'A%w* x DPu* rot A" gw)|
i=1 |a+b|<m, |b|>2

+

<aCam (W [y [z + [ [y ) [ A w7 285)

and where dp;, C3(m), and C4(m) are positive constants depending only on m.
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The estimates (2.83), (2.85), and the equalities (2.81), (2.82) and (2.84) imply that, for t > 0,

(||A " rot w* ||L2+a|} T+3W*HLz)-i-V(2 B )”AmHW*”iZ

302Cy(m)? 2 2 2 2
< T(” W[ allw [z + W [miz ([ 4)

+3

2 PFI s + 20 | V0 o | A" e

ﬂ*
+2Cm(|w[yau™[yme + W [ymeau[vs) [w* | ymea. (2:86)

where 0 < * < 2. If a =2v — deot||Vu*||L?o(Lec> > 0, we choose B8* =ap/2v and, from (2.86), we
deduce the following estimate, for t > 0,

+. m+3 2

||A T rotw* |7, + | AT wH %) +—||A_ w2

< 602C4q(m)?
am

+2Cm(|w[yalu™[yme + W [ymea[u[ys) [w | ymea- (287)

6
(W Bl s + 1w e ¥[G4 + 0P W
m

Integrating in time the inequality (2.87), we obtain, for t > 0,

||A " rotw (t)||L2 +ot||A w (t)||L2

t
Tm/ ﬂ(s—t))”A *w (s)||L2ds
0

+

<exp(—B0O(| A" rotuo|), + | A" uo|%,) + mnpfnftmmmﬂ)

f exp(B6 —0) (W © [y [z + [W* O [z [u* ) [14) ds
0
t

+Cn [ exp(Bs = 0)(|W O |4 | e
0

+w @ [ymea[u @ [ ys) W) |yme- ds, (2:88)

where 0 < 8 <ap/4 and Gy, is a positive constant depending only on m. The estimate (2.79) is now
a direct consequence of (2.88) and of the estimates (2.79), with m replaced by ¢,2<Z<m—1.

If am <0, one proceeds like in the proof of Theorem 2.3, that is, we set 8* =1/2 in the es-
timate (2.86). Integrating then the resulting estimate, using the Gronwall lemma as well as the
recursion hypothesis that w* belongs to L.((0, +-00), Vm+2) e prove that w* is actually in the
space Lloc((O, +00), Vm+3). The obvious details are left to the reader. If a;; <0 and ap—1 > 0, then
proceeding by interpolation like in the proof of Theorem 2.3, one shows that there exists 6§ > 0 such
that w* € L°°((0, +00), V™T21+9)_ The details are also left to the reader.

The continuity of w* : t € [0, +00) — w*(t) € V™3 is proved by using the same arguments as in
the proof of Theorem 2.3. O
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Inequality (2.80) is also proved by recursion. The estimate (2.80) is a direct consequence of (2.88),
(2.53) and (2.61) when m = 2. Assume now that the inequality (2.80) is true for £ < m — 1. Then the
estimate (2.80) for ¢ =m is a direct consequence of the estimate (2.79) and the inequalities (2.80) for
£<m-—1.

3. Regularity of the global attractor in V3™ m > 0

In this section, we shall prove Theorem 1.1 about the regularity of the global attractor A, if f

belongs to Hffej], m > 0. As explained in the introduction, we shall prove it by decomposing the

system (1.2) into two affine non-autonomous systems. Let u(t) be an orbit of Sy (t) contained in
the global attractor Ay. We decompose u(t) as u(t) = vn(t) + wy(t), where v,(t) and wy(t) are the
solutions of the following non-autonomous affine equations

or(Vvp — 0 Avy) — VAV, +r10t(Vy — X AVy) XU+ Vpy=f, t>s,, X€ Tz,

divv, =0, t> sy, xeT?,

Va(sn,X) =0, xeT?, (3.1)

and

3 (Wn — AWp) — VAW, + 10t(Wy — @ AWy) X U+ VPr =0, t>s,, xe T2,
divw, =0, t> sy, xeTZ,

Wn(Sn, X) =u(sp,x), xeT?, (3.2)

where s, € R is a given initial time, which will go to —oc.
For sake of clarity, we shall distinguish the case where the forcing term f belongs to Hlt? 0 <

per
0 <1 from the case where f belongs to HITJ], m> 1.
Theorem 3.1. The following regularity properties of the global attractor A, hold.

1) Assume that f € ngr and that ay = 2v — 2a(supzc 4, [1Vzll1=) > 0, then the global attractor Ay is

bounded in V*. Moreover, for any u € Ay,

lull?s +inf(1, @) l[ul?, < Ma, (33)

where Mg = M4(M1, Vv, f,aq) does not depend on c.
2) For any ¢ > 0, there exists a positive number 6y, 0 < 6p < 1, depending only on o and the norm || f || 1,

such that, if f belongs to H;eteo, then Ag is bounded in V3+%_ Moreover, for any u € Ay,

Ul 240 +InfCL, ) [Ul1? 5160 < M35, (34)
where M3y g, = M344,(A1, v, f) does not depend on c.

Proof. Let u(t) be a trajectory on the global attractor. Due to the uniqueness of the solution of
Egs. (1.2), we at once notice that u = v, + wy,. We also remark that v, (resp. wy) is the solution
of the system (2.37) with u*(t) = u(t) = S¢ (t)u(0), vu(sp, x) =0 (resp. wy(Sn, X) = u(sp, x)) and forc-
ing term f (resp. 0). Then, by Remark 2.1, v, and wy, satisfy the inequality (2.13). In particular, the
following estimate holds for wy,
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|rot(wa(6) — @ Awn (D) 117, < exp(— |rot(u(sn) — @ Au(sn)) |-

;(t _s )) ‘
20 4200

< exp(— (t— sn))K(l +a?), (3.5)

v
200" +20)

where, according to the bounds (2.16) or (2.32) satisfied by the elements on the global attractor,
K =K(|fllg1) is a positive constant depending only on | f|[y1.

Assume first that 2v — 2 sup,c 4, V2|1 > 0. Then, by Theorem 2.3 and its proof, v,(t) belongs
to Cl?([sn, +00), V%) and the inequality (2.51) implies that, for t > s,

|V (rotva(H) — arot Ava() [

2
L0+ [ﬁ“Afnfz + (1 At a +a)>||rotf||fz], (3.6)
aq a ajo o

where C = C(A1, V) is a positive constant independent of «, f, a; and vy, but depending on A1 and v.
If A1 <1, taking into account the estimate (2.59), we can improve the previous estimate and
replace it by the following inequality,

2
[rot Ava(®)|2; + ]| A2va (0] 1> < #[anfz + [Irot £11,(1+ ||rotf||fz)2<1 + %) } 3.7)
where C = C(A1, V) is a positive constant independent of «, f, a; and v,, but depending on A1 and
v, and where 8 =inf(ay, 1).

The properties (3.5) and (3.6) (or (3.7)) imply that v, (t) converges to u(t) in V3 as n goes to infin-
ity and that v, (t) is uniformly bounded in V# with respect to n. Therefore there exists a subsequence
Vp, (t) which converges weakly to u(t) in V4. Hence, u(t) belongs to V* and satisfies the estimate
(3.6) (or (3.7)), where v, is replaced by u(t). Statement 1) of Theorem 3.1 is proved.

To prove statement 2), one proceeds in the same way. But, since

a;=2v —Za( sup ||Vz||po) <o,

zeAy

one cannot longer prove that v, is bounded in V#. However, by Theorem 2.3 and its proof (see
condition (2.70) and estimate (2.74)), for any 6y € (0, 1) such that

6Cp
+0() sup |:<2+ T”VZ”LOO>||VZ”LDO:| <0 (38)

Voo =———7———
A0 20)  zed,

holds, vy (t) belongs to CJ([sy, +00), V3T%) and the inequality (2.72) implies that, for t > sp,

[Va(®) = Ava() | 1406 < Voo IPSf 140 (3.9)

In the case where o > 0 is very close to zero (in particular A1 <1 and o < 1), one argues as follows.
The inequality (2.73) of Remark 2.2 implies that

c _
[ @210 + V& llys10 < =70, 1Pyt (310)
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Now one distinguishes two cases. If

1\ /2
v —a<l +ln<1 + &>) Ko(llrotflle) >0,

where
1212 1 2 1 4 12
Ko(llrot f2) = Cy/“Cp 1)2—)\1||1'0tf||Lz + WHTOtfHLz ;
1

then, by the estimate (2.33), a; > 0. In this case, we already proved that 4, is bounded in V* and
that the estimate (3.3) holds. If

1\ 172
v—a(l—l—ln(l—i——)) Ko(llrot f1l;2) <0,
o

then,

1\ 172
ﬁ?cw(l—i—ln(l—i——)) cob
o

z
Ko(llrot f|l;2)
where cg is a positive constant, and therefore

CKo([lrot f1;2)

-1
cov Yoo I1PFlly1+oo- (3.11)

” Vn(t) “ v 2+ + '\/&H Vn(t) || v 3+fo <

Finally, one concludes the proof like in the case 1). O
Theorem 3.1 and the estimates (2.16) and (2.33) at once imply the following corollary.

Corollary 3.2. Let o > 0. Assume that f € H2, and that, either

per

v —

V2071 4 2
cs P22 ot 2> 0

or, when al1 < 1, that

- 12, ; 12
v—aC/Co(1+In[1+— —|Irot f||%, + — |rot f|* >0,
0 BG( + < +oe>> (VZM l f||L2+v6A;l|| f||L2>

holds, then the global attractor Ay, is bounded in V* and the estimate (3.3) holds.

Remark 3.1. If one is only interested in the V“*-regularity of a given trajectory u(t) C Ay, one can
replace the condition v — a/(Sup,c 4, )| Vz|l1 > 0 by the weaker hypothesis

V= || Vu®) | oo ooy > 0-

Under this condition, one shows as above that the trajectory u(t) is uniformly bounded in V4.

One easily generalizes the previous regularity result to the case where f belongs to HITJ], m2>2.
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Theorem 3.3. For any m > 2, there exists a positive number dp (which is a non-decreasing func-
tion of m), such that, for any o > 0, the following regularity properties hold. If f € Hg‘ejl and ap =

2V — 2dmo(sup,e 4, 1VZl|1) > O, then the global attractor Ay is bounded in V™+3. Moreover, for any
op > 0, there exists a positive constant M3 (0g) = Mm+3(A1, v, f,m, am, ap), depending only on A1, v, f,
m, ay, and o, such that, if 0 < a < g and apm = 2V — 2dma (sup,c 4, [1Vzll1) > 0, then, for any u € Ay,

M2 s + o Ull3mis < Ming3 (o). (312)

If am—1 > 0 and an, < O, then there exists 6y > 0 such that the global attractor Ay is bounded in V™20
and, forany 0 < @ < o, forany u € Ag,

2 2
||u||vm+1+90 + a||u||vm+2+eo < Mm42+46, (@0), (3.13)
where Mm42+46,(ct0) = M(A1, v, f,m, 0p, am—1, o) does not depend on c.

Proof. The proof follows the same lines as the proof Theorem 3.1; but, instead of only using The-
orem 2.3 in order to estimate the solution v, of (3.1), one applies Theorem 2.4 together with
Theorem 2.3. O

Remark 3.2. We conclude this section by pointing out that, if f belongs to H;Q;‘i, d > 0, then we

can prove the asymptotic compactness by using a decomposition similar to the one introduced in the
proof of Theorem 3.1. Assume first that f is in Hf,er; for any ug € V3, we write S(t)ug = v(t) + w(t) =
Lo(t)ug + Ko(t)ug, where v(t) and w(t) are the solutions of the following systems
or(v —aAv) —vAv +rot(v —axAv) x u+ Vp = f, t>0xeT?,
divv=0, t>0, xeT?,

v(0,x) =0, xeT?, (3.14)

and

(W —adAW) — VAW +r1ot(W — Aw) xu+Vp=0, t>0, xeT?,
divw=0, t>0, xeT?,

w(0,x) =up(x), xeT?. (315)

Like in the proof of Theorem 3.1, applying Remark 2.1, we show that w satisfies the following expo-
nential decay, for t >0,

vt

f) | rot(uo — ot Aug) | . (3.16)
20"+ 20)

[rot(w(t) —aAw(®))]| iz < exp (—
On the other hand, we deduce from the estimates (2.63) and (2.13) that, for t > 0,

[V rot(v(t) — aAv(t)) ||i2 < C1)|Pf |17, exp(Cat (||rot(uo — ozAuo)||f2 + ot f1%,)). (3.17)

where C; = Cq(A1, v, &) is a positive constant depending only of A1, v and «. This shows that S(t)ug
can be written as the sum of two maps Lo(t)ug and Ko(t)ug, where Lo(t) is asymptotically contracting
and Ko(t) is a compact map. Thus S(t) is asymptotically smooth (see for example [22]). Since S(t)
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admits a bounded absorbing set in V3 (by the property (2.13)), we can conclude that S(t) admits

a compact global attractor A, in V3. If f belongs only to H;g;d, 0 <d < 1, using an interpolation

argument between V3 and V*# as in the proof of Theorem 2.3, we can replace the estimate (3.17) by
the following inequality

[v©) —adv©®) |5 < C2lIPS 112,144 exp(Cat (|| rot(uo — alhug) |2, + ot f11%,)),  (3.18)

where C; = C(A1, v, &) is a positive constant depending only of A1, v and «. This again implies that
Ko(t) is a compact map.

4. Convergence to the Navier-Stokes equations

If we set @ =0 in Egs. (1.2), we recover the Navier-Stokes equations. The Navier-Stokes equations
are not only a “formal” limit of Eqgs. (1.2), as it has already been remarked by Iftimie, who proved
a weak convergence result in [30], in any space dimension. In this section, we want to compare the
strong solutions of the second grade fluid equations (1.2) with those of the corresponding Navier-
Stokes equations when o goes to zero. We also want to give upper-semicontinuity results for the
corresponding global attractors. We assume here that the forcing term f belongs to C? (H},er), where
0 <6 < 1. Let us recall that the Navier-Stokes equations

dUu—vAu+rotu xu+Vp=f, t>0, xeT?
divu=0, t>0, xeT?,

u(0,x) = ug(x), xeT?, (4.1)

have a unique global solution Sq(t)ug = u(t) € C2([0, +00), V3)NCL([0, +o0), V1) if ug belongs to V3.
Moreover, if f does not depend on the time variable, So(t) admits a compact global attractor .4g
in V3. If f belongs to C?(H},), 0 <6 <1, then So(t)ug is in CO([0, +00), V) N CO((0, +00), V) N
C1((0, +00), V2). If, in addition, ug belongs to V#, then So(t)ug is in C([0, +00), V*), and in the
autonomous case, the global attractor A in V3 is actually also the compact global attractor in V4.
If ug(t) = Sq(t)ug is the solution of the grade two fluid equations, then z = u, — u satisfies the
following equations

0t(z—aAz) —VvAz+r10tZ X Uy +TOtU X Z+ V(Do — D)
=AU+ o TOt AUy X Uy, >0, xeT?,
divz=0, t>0, xeT?,
2(0,x) =0, xeT?. (4.2)
Taking the inner product in L%(T?) of (4.2) with z, applying the Young inequality and using the
classical Sobolev inequalities, we obtain the following estimate

1
iat(nzniz +a|Vzl%,) + v Vzld,

2a? 2 VY 2 | 2 2 2
< TllarVUIILz + ZIIVZIILz + ;||uoz||L4||Z||L4

+aflrot Aug |2 |uelip4]1z]l 4
202 5 v , 2C¢
< = 19eVUIlL + 211VzlE + —= el 2 Vue 212121Vl 2

1/2
12

1/2
12

1/2
2

1/2

2
+ aCsllrot Aug |2 [ugll 12

Vuell "Nzl 2" [TVl
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2a? 2 VY 2 ch 2 2 2
< TllatVUIILz + §||VZ||L2 + 7IIUaIILzIIVUaIILzIIZIILz
24
aCs t Al |12 v LI
+ 5 lrot Aug I}z [lua 2 I Vuall2 + 7 Izl

From the above estimate and the Poincaré inequality (2.4), we deduce that, for t > 0,

|z + ol V2O 1) + o= (0 + el 2011

402 1 16c
<%uafwmniz+(;+75||ua<r>||iz ||wa<r>niz)||z<r>||iz

+a?CE|rot Aug O |5 [ ua © | 12 | Vita @) ] - (43)

Integrating the inequality (4.3) from O to t and using the Gronwall inequality, we obtain, for t > 0,

t
4 2
ol +alvzo < (2 [asuo e
0

t
atct [ e [ o0 )
0

t
1 16C8
xexp( / <;+ vzs||u0,<s>|ﬁ2||wa(s)||f2)as>. (44)
0

When oA < 1, the inequality (4.4) together with the estimates (2.8), (2.18), (2.22) and a classical
estimate for the solution of the Navier-Stokes equations imply that, for t > 0,

2 2
|22 + | V2©) |2 < @®Ko(llrot fll 2y, IV rotuoll?, + al| A totuol| 7, )
x exp(1+ Ky (|Irot fllee(s2), luoll?, + @l VuollR))e,  (45)
where Ko and respectively K; are positive constants depending only on ||rotf||Ltoc(,_z) and on

||Vrotu0||i2 + o:||Arotuo||%2 (respectively ||uo||f2 + oz||Vu0||%2). The property (2.25) and analogous
properties of the solutions of the Navier-Stokes equations imply that, for t > 0,

||Vrotz(t)||f2 + a|| Aot z(t) ||f2 < Ka(lIrot fll e 2, IV rotugl|?, + arl| Arotug|?,),  (4.6)

where K> is a positive constant depending only on ||1'0tf||L[x(L2) and on ||V1'otuo||f2 + oA rotuo||%2.
Thus, by interpolation, we obtain, for 0 <s<2 and t >0,

|20 + 20|00 < 2K (|10t f e 12). 11V Tot g%, + | A ot ug[12,)

1—s/2
x Ko "2 (lIrot fll e 2). IV rotuo|%, +atl| Aot ug||2,)

S
x exp(] - 5)(1 + Ka (lIrot fll o2y uoll?, +all Vuol %))t (4.7)
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Let us now assume that f belongs to C?((0, +00), Hp,,), 6 > 0, and that ug is an element in V4.

Then, the solution So(t)ug of the Navier-Stokes equations (4.1) belongs to the space Cl?([O, +00), V4).
Moreover, for a > 0 small enough so that 2v — 2a||Sq (H)ug|lio(y > 0, the solution Sq(t)ug of
Eqgs. (1.2) is bounded in V4, for t >0, as described in (2.59). We thus obtain, for t >0,

[rot Az(t) |7, + | A% rotzt) |2 < K3 (Il flle 2. Irot Auol%, + | A%ug 7). (48)

where K3 is a positive constant depending only on ||f||L[00(H2) and on ||rot Auo||%2 + a||A2u0||%2. In-
terpolating between the inequalities (4.8) and (4.5), we obtain that, for 0 <s <3 and t >0,

|25 + |20 s <@ TDK (1 Fll e g2 lrot AuolZ, + ]| A%uo )

1-s/3 2 2
x Ko~ (IIrot £ | 12y IV ot ug |1, + erl| Aot uo|2,)

N
x exp(1 - §)(1 + K1 (IIrot flle(z2), llwollfz + @ Vuolifz))e. - (4.9)

We can improve the estimate (4.9) by arguing as follows. Taking the inner product in L2(T2)
of (4.2) with —Az, using the equality (A.5) of Appendix A, applying the Young inequality and using
the classical Sobolev inequalities, we obtain the following estimate

(19212, + alAzi) +vIAzIE < (@ 1o AulR, + o rot Aug P g
+ [Irotul| 41 112,)
< %(azuatAuniz +a’CElrot Atta |17, || Atta 7
+ CSllAul?, 1Vzl3,),

where Cs is a positive constant coming from the Sobolev inequalities. From the above estimate and
the Poincaré inequality (2.4), we infer that, for t > 0,

VA1

2 2
mﬂvz(t) |2 +elazo])

(V207 + o azo)]z) +
3 2 2 2,2 2 2 4 2 2
< (a [oc Au(t) |12 + @ C||rot Aug (1) | 12 | Aua (®) |12 + C5 | Au®) | 12 | V(D) | 12)- (410)

Integrating the inequality (4.10) from O to t and using the Gronwall lemma, we get, for t > 0,

t

3
[v2@ [z +e]az0]5 < ;(az [ (aau@|f: + Glrotsuaof, ||Aua<r>||iz)dr)
0

t
X exp(C‘S‘/”Au(r)Hi2 dr). (411)
0

When aAq < 1, the inequality (4.11) together with the estimates (2.18), (2.22) and the regularity
properties of the solution u(t) of the Navier-Stokes equations (4.1), imply that, for t > 0,
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2 2
V2|12 + ]| Az©) |2 < @®Ka(l fll o a2y, 1V T0t Uo7, + | A totugll7,)
x exp Ka (1| fll o 12y, IV Tt Uo7, + e Arotuoll)t,  (4.12)

where I(4(||f||L?0(H2), ||Vr0tuo||%2 +oz||Arotuo||%2) is a positive constant depending only on ||f||L[00(H2)

and ||V rot uo||f2 +alA rotuo||%2. By interpolation, we deduce from the estimates (4.8) and (4.12) that,
fort >0, for 0 <s <2,

20 s + |20
1% "4
<21 K (1l ey, Irot Auoll?, + ]| A%uo | 7,)
1-s/2

x Ky~ (I fllpzo a2 1V 10t U, + | A rotuo|l7,)

x exp[(1—5/2)(Ka(Il f | o a2, 1V 10tuoll 7, + ll Arotuoll?,)t)]. (413)
We have thus proved the following result.

Theorem 4.1. Assume that aiq < 1.
1) Assume that f belongs to C?((0, 4+00), Hp,), 6 > 0, and let ug € V3. Then, for every 0 <'s < 2, the
following estimate holds

|So(®)uo — Sa (Otio |55 + || So (Ot — Sar(®io |1

<a? 2 expt Ks(|Irot f <2, |V rotuollf, + llArotug|?,), (4.14)

where Ks5(||rot f ||L§>0(L2), IV rotug ||f2 +a||Arotug ||f2) is a positive constant depending only on || rot f||L§C(L2)
and ||V rotuo||2, + || A rotuo|2,.

2) Assume moreover that f belongs to C?((0, +00), le,er), 6 > 0, that o« > 0 is small enough and that ug
isin V2. Then, for every 0 < s < 2, the following estimate holds

|So(®)uo — Sa(Outo]| 1 + || So(®)uo — SaOuo] s
< @?1-5/2 exp tKe (Il fll e 12y, | A Tot uoll?, + o A2u0||f2), (4.15)

where I<6(||f||L?o(Hz), || A rot u0||f2 + o:||A2u0||f2) is a positive constant depending only on ”f”LtOO(HZ) and
lATotuollF, + all A%uoll?,.

This theorem at once implies the upper-semicontinuity of the global attractors in V5, for 0 <s <2
(respectively 0 < s < 3).

Corollary 4.2. 1) Assume that f belongs to H}, . Let Aq and Ay be the compact global attractors of Eqs. (4.1)

per:
and (1.2). Then, the attractors A are upper-semicontinuous at o« = 0 in V5, for 0 < s < 2, that is

lim sup inf |ug —ulys=0.
a—=0y,eA, ueAg

2) Assume moreover that f belongs to H 12)er' then the attractors A, are upper-semicontinuous at @ = 0in V5,

for0<s <3.
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Proof. Although the proof of this corollary is classical, we give it for the reader’s convenience. Assume
that x; < 1. Then, the global attractor A, is bounded in V2 by a positive constant C, independent of
«. Let n > 0 be a small positive number. Since Ay is the compact global attractor of the Navier-Stokes
equations in V3 and in V2, there exists a positive time T, such that, for any ug € Agy, So(t)ug belongs
to the 1/2-neighborhood of Ag in V2, for t > T,. By Theorem 4.1, since ||r0tuo||f2 +alA rotuo||f2 is
uniformly bounded by a constant C3 independent of «, for any s, 0 <'s < 2, there exists a5 > 0, such
that, for 0 < o < «, for any ug € Ay, we have,

ISo(Ty)uo — Se (Tyuo| s <

NS

The above properties imply that Sy (T;).Ag is included in the n-neighborhood of Ag in V*. Since A,
is invariant under Sy (t), we deduce that A, is included in the 5-neighborhood of Ag in V*.

The second statement of the corollary is proved exactly in the same way. But now, we use the
fact that, by the results of Section 2, |[rot Aug||Z, + o[ Augl|?, is uniformly bounded by a constant
C4 independent of «, for any ug € Ay. O

More generally, by using the regularity results of the global attractors A, of Section 3, we can
prove the following upper-semicontinuity result, the proof of which is left to the reader.

Corollary 4.3. Assume that f belongs to Hl'?er, m > 1. Let Ag and Ay be the compact global attractors of
Egs. (4.1) and (1.2). Then, the attractors A, are upper-semicontinuous at o = 0in V5, for 0 <s <m+ 1, that

1S

lim sup inf |ug —ullys =0.
a—0y,ed, UEAD

5. Determining modes and asymptotic dynamics

The main goal of this section is the proof of Theorem 1.2 and its consequences. Theorem 1.2 will
be proved in several steps and will be the consequence of several lemmas. Except in Lemma 5.1, we
will need to impose the condition 2v — 4o sup,¢ 4, |VZz|[1 > 0.

Before entering into the details of the proof of Theorem 1.2, we quickly explain the lines of its
proof and the construction of the map q(v). As we have already explained in the introduction, here
we follow the strategy developed by Hale and Raugel in [24]. We have to face an additional difficulty
due to the low regularity of the nonlinear term. Let n > 1 be a fixed integer. We recall that P denotes
the Leray orthogonal projection of L2(T2)2 onto H and that P, is the orthonormal projection in H
onto the space generated by the eigenfunctions corresponding to the first n eigenvalues of the Stokes
operator A and that Q, =1 — Pp. As in [24], we remark that, if u(t) € C?(R, V3) is a solution of (1.2),
contained in the attractor Ay, then v(t) = Pyu(t) and q(t) = Qnu(t) are solutions to the following
systems, for all t € R,

(v —aAv) —vAvV + Py P({rot(q+ v —aA(@+ v)) x (v +q)}) = Py Pf, (5.1)

and

(g —aAq) —vAq+ QuP({rot(g+v —aA@@+v)) x (v+q)}) = QuPf. (52)

We will see below that, if n is large enough, for every “bounded curve” (also called bounded trajec-
tory) v(t) € CJ(R, Pp.Ay), there exists a unique solution g, (v)(t) € Cp (R, Q,V?) of Eq. (5.2) and that,
if v(t) = P,hu(t) where u(t) is a solution of (1.2) contained in the attractor Ay, then g, (v)(t) = Q,u(t)
(to simplify the notation, we write g,(v)(t) = q(v)(t) below). In Theorem 1.2, we want to show that
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Egs. (1.2) reduce to a finite system of ordinary differential equations with an infinite delay term in-
volving q(v). In order to give a sense to this reduced system, we have to define the mapping q(v) not
only for trajectories v(t) contained in P, Ay, but also for all “curves” contained in a neighborhood V;
of Pp Ay in P,V3*t4 d > 0. The most natural idea is to define q(v) as “the” solution of Eq. (5.2). We
will show below that, for any element v € Cg(R, V), and for n large enough and « small enough, the
solution q(v) € CS(]R, QnV?3) of (5.2) is obtained as the (unique) fixed point of the contraction map-
ping defined as follows. Let w(t) be given in CJ(R, Q,V?) N L®(R, Q,V?), we consider the problem:
to find g € CJ(R, V3) such that,

3@ —aAq) —vAq+ QuP({rot(g+ v —aA(@+v)) x (v+w)})=Q,Pf, teR. (53)

In a first step (see Lemma 5.1 below), we show that, if f belongs to H;er, and if v and w belong
to CJ(R, PpV?) and CJ(R, Q,V?) NL®(R, Q,V?) respectively, Eq. (5.3) has a unique solution g ,, in
the space CS(]R%, 0.V3) (to simplify, we write qv,w instead of gy ,, if there is no possible confusion).
In a second step, we assume that f belongs to H;;rrd, d > 0, and we show that, if v belongs

to CO(R, Np, y3+a(PnAy.10)), Where Np y34a(PpAqg.To) is the ro-neighborhood of Py.Ag in p,v3td,

equipped with the norm (| - ||‘2/2+d +of - II%/M)%, and where ry > 0 is small enough, then, for n large

enough, for R = R, > 0 large enough, and for « small enough, the map w € W, (R,) — q?,’w € Wr(Ryp)
is a strict contraction and thus has a unique fixed point g,(v) = q(v) € W, (Rn), where W, (Ry) is
defined in (5.16) below. Moreover, we prove that the map v — q(v) is Lipschitz-continuous. These
properties allow us to reduce system (1.2) on the attractor A, to a system of ordinary differential
equations containing an infinite delay term. This system is well-posed since it satisfies the hypotheses
of the Cauchy-Lipschitz theorem.

5.1. Proof of Theorem 1.2
5.1.1. Step 1 of the proof of Theorem 1.2

The first step consists in proving that Eq. (5.3) has a unique solution in C,?(]R, Q,V3). In this step
we do not need any smallness assumption of «.

Lemma 5.1. Let f € H],, be fixed. We assume that v(t) and w(t) belong to the spaces C)(R, P,V?) and

per
C,?(R, QnV?) N L® (R, Q,V3) respectively. Then, for any integer n, there exists a unique solution 4w €
C,?(R, QnV?) of Eq. (5.3). Moreover, qy.w (t) depends on the values v(s) and w(s), for s <t only.

Proof. The proof consists in three steps.

a) Existence of a solution: As usually, we show the existence of a solution g in CO(R, Q,V3) by
considering a Galerkin approximation of Eq. (5.3):

9 (qm — A AQm) — VAGm + P QuP{rot(qm — aAqm) X (v + W)} =gm, teR, (5.4)
where
8n=PmQnPf — PnQuP{rot(v — ¢ Av) x (v + w)}.
Eq. (5.4) can be rewritten in the equivalent form
¥qm + Am(Oqm = ([ +aA) " 'gm(t), teR, (5.5)
where

An(®O)Gm = —v(I + @A) ' PrnQuAgm + (I + ¢ A) ' PnQnP{rot(gm — aAgm) x (v + w)}.
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Note that (5.5) is a system of linear non-autonomous ODE's in the finite-dimensional space H=
PmQnPH3(T?) = Py Q,a V3, that Ap(t) € CO(R, L(H)) is a continuous matrix-valued function and that
gn(t) € CO(R, H). Consider the Cauchy problem for the matrix-valued function Uy (t, s)

#Um +AnOUn =0, t>s,  Un(s,s)=1. (5.6)

As is well known from the theory of linear ODE’s, this problem admits a unique continuous solution
Un(t,s) € C(D, L(H)) where D = {(t,s) € R?: t >s}. We remark that, for any t € R, for any U € £(H),

(rot(I + ¢ A) A (t)U, rot(U — a AU)) = u(||AU||f2 + a||VAU||§2).

Therefore, using the inequality (2.11), we deduce from the above equality that the solution U, (t, s)
of (5.6), satisfies, for any (t,s) € D,

2 v 2
3 |rot(Um — ¢ AUm) |12 + ———|rot(Um — «AUm)|;2 <0, (5.7)
Ao t2a

and therefore
[rot(Um(t, s)g0 — ¢ AUm(t, s)qo) ”iz <e "9 |rot(qo — ¢ Aqo) | iz, (t,s)eD, (5.8)

where y; = —%—. It is easy to see now that the function
M 2

t
%m=/UMmm+wr@mMs

—00

is well defined on R, belongs to the space C!(R, H) and satisfies (5.5). We remark that g, (t) depends
on the values of v(s) and w(s), for s <t only. Moreover, the estimate (5.8) implies that

[rot(gm — a Agm)(®) | 2

t
< / e— 39 [rot(f — (rot(v(s) — Av(s))) x (v + w)(5)) | 2ds < C, (5.9)

where C is a positive constant, which does not depend on m. We have thus proved that the sequence
gm(t) is uniformly bounded (with respect to m) in the space L°(R, V3). Applying standard Galerkin
approximation arguments, we infer that there exists a weak limit g} , =q € L°(R, V3) which satis-

fies (5.3). Arguing as in Remark 2.3, one shows that q(t) belongs to the space CO(R, V3).

b) Remark: We note that Q,q = q, where q is any solution in L*°(R; V3) of Eq. (5.3). To prove this
property, it suffices to show that P,q = 0. But P,q is the solution of the following linear equation

or(Prq —aAPpq) —vAP,q=0.

Taking the inner product in H of this equation with ¢ in H, we get

1
> (I Pagllf + et lIrot Paglif,) + viirot Paglif, =0, ¢ €R.
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This implies that, for some positive constant y > 0, we have, for t > s,

| Paa(®)])?, + & |rot Pag(®) |7, < e” 0 (| Pag(s)||* + et rot Pag(s) ).

Since q(s) belongs to the space L®(R, V3), P,q belongs to the same space and the above inequality
implies that P,q(t) =0 for all t e R.

c) Uniqueness of the solution: Assume now that there exist two solutions q1(t), q2(t) of problem (5.3),
which belong to the space Cj,(R, V2)NL®(R, V3). Writing the equation for the difference q* = q; —qs,
we obtain the equality

(0" —aAq*) —vAG* 4+ QuP(rot(q* — aAg¥) x (v+w)) =0, VteR. (5.10)

Taking the vorticity of the equality (5.10), we get the equation,

drot(q* — e Aq*) — vrot Ag* +rot Q; P(rot(q* —aAq*) x (v+w)) =0, VteR. (5.11)

Formally, taking the scalar product in H of this equation with rot(q* — ¢ Aq*) we obtain,
Ly *_aAg)|? Ag*|? Ag*|*) =0, VteR
Sdrot(a” —aag) | +v(fagt|” +arotaq ) =0, VeeR,
which implies, after integration in time, that, for t > s,
[rot(q*(©) — aAg* () ]| 7, < eV 9| rot(q*(s) — wAg*(5)) |22

where y is a positive number. Since g*(s) belongs to L®(R, V?3), by taking s — —oo, one deduces
from this inequality that g*(t) =0, for all ¢ € R. We emphasize that, arguing in the same way as
above, one shows that the solution q(t) of (5.3) depends on the values of v(s) and w(s), for s <t
only.

In order to justify the above formal computation, we proceed as follows. For any integer N, for any
g € L*(T?), we introduce the operator

n N s
Ing= Z (p('z—[\l)gne’(”“‘l*”m),

n=(ny,ny)

where g, is the Fourier coefficient of order n of g and ¢ is a classical truncation function. For ex-
ample, we choose a symmetric function ¢ € C*°(R, [0, 1]) such that the support of ¢ is contained
in [—4/3,4/3] and such that ¢ =1 on [—3/4, 3/4]. In the same way, we define the operator Jy for
vectors in L2(T?2)2. For any vector u € L%(T?)%, we introduce the operator

i X (g e
2

n=(ny,ny)

Applying the operator Jy to Eq. (5.10) and taking the vorticity of the resulting equation, we get the
equality

drrot(Jng* — oA Jng*) — vrot A Jng* + rot(rot(Jng* — @A NG*) x (v 4+ w)) =hy (5.12)
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where
hy =rot(rot(Jng* — A JNG*) x (v + w)) —rot Jy(rot(q* — a Ag®) x (v 4+ w)).

Then, we take the inner product in H of Eq. (5.12) with rot(Jyg* — @A Jng*) and we perform the
same computation as above. We obtain, for t > s,

[rot(Jng*(©) — @A ING* () |7, < e 9 [rot(Jng*(s) — 2 A NG (5) | 1
t

+ / e V0 (hn (7). rot(Jng* — A Jng*) (D)) dT. (513)

N

We note that

/hN'TOt(JNq* —aAJNG*) = _/(]N(b xa)—b x Jya) - rot Jna,

T2 T2

where b= v + w and a = rot(q* — o Aq*) € L>(T?). Arguing as in [7] for example, one proves the
following commutator estimate

| In(b x @) —b x Jna| ;> < C27Nall 2| VDI,
which implies that,
|(hn. rot(Jng* — A Jng®))| < €27V rot Jyall 21| Vbl [lall 2.

Using Parseval theorem together with Lebesgue convergence theorem, we easily show that, for every
a e L3(T?), 2*N||V]Na||Lz converges to zero when N goes to infinity. Using this property and taking
the limit as N — oo, we obtain the justification of the above computations. O

Remark 5.1. If one does not wish to introduce the above operator Jy and to use commutator in-
equalities, one can also prove the uniqueness (under some restrictions on the size of w and on «) as
follows. These conditions are not really restrictive, since they will be satisfied in the next steps.

Let A, > 0, n > 1, be the sequence of eigenvalues of the Stokes operator A. Let Rg > O,
po > 0 be given positive constants. Let R,, n > 1, be a sequence of positive numbers such that
Rn)\i;:/z, 8 > 0, converges to zero when n goes to infinity. Assume that v(t) and w(t) belong to
C(R, Bp,y3(0, Ro)) and L®(R, By, y3(0, Ry)) N CP(R, V2) respectively and that ||V | oo oo (r2y2) <
Po, with 2v — 4apg > 0.

Taking the inner product in H of Eq. (5.10) with g*, we get, for any ¢,

(g Ol + 20 Ve © ) + [ Va" ©
< 2|(rot(g* () — e Ag*(®)) x (v(t) + w(b)), g*())]. (5.14)

Using the equalities (A.4) and (A.6) of Appendix A and classical Sobolev imbedding theorems, we
obtain the following estimate,
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|(rot(q* — aAg*) x (v +w), q")| < | q* Hfz [V(v+ W)HLOo +alq* ”L4 |vg* ”Lz(IIAv + AWl
20|V | IVl + [V wile)

< Csi 1 [Va* |72 (Ro + Rn)

—-1/4 2 —~1/4
+ O‘CS)‘n-r{ Iva* ||L2 (Ro+ )‘n-&-{ Rn)
5—1/2 2 2
+20Cs sh 1| Va* |72 R + 20| Va* | 0, (5.15)
where Cs, Cs s are positive constants coming from the Sobolev estimates. Since fo =v — 200 > 0,
that A, goes to infinity and that Rnkﬁ_l/z goes to zero, when n tends to infinity, one deduces from

the inequalities (5.14) and (5.15) that there exists ng large enough so that, for n > no,

la*®1” + o va'©[* <e 9 (g 6| +afrotg*©)|*). Vs,
Since q*(s) belongs to L(R, V3), this inequality implies that g*(t) =0, for any t € R.

5.1.2. Step 2 of the proof of Theorem 1.2
For any integer n, we introduce the space

Wi =Wn(Rp) =W
={wel®(R, Q,V’) NCOR, V?) | [AW|{oom ) + X I VAW |y < R2}.  (5.16)

where R, > 0 is a large enough positive number, which may depend on n. We endow W with the
topology induced by the norm
2 2 1/2
(IWIE g ) + X NTOEWIIZo g 1)
which makes VW a complete metric space.

In this step, we need to assume that 2v — 4a sup,c 4, [IVz|l1= > 0. Under this assumption, we
know by Section 3, that, if f belongs to V174 0 <d < 1, then the attractor is bounded in V3*¢. Here
we prove that, for a fixed element v(t) in CO(R, anvs+d(PnAa, o)), where rg > 0 is small enough,
there exists ng large enough so that, for n > ng, for R, > 0 large enough, the map w e W qy w =
qy ,, € W is a strict contraction, provided « is small enough. We recall that Npﬂvm(Pn.Aa, o) is the

ro-neighborhood of P, A, in P, V314, equipped with the norm (| - ||‘2/2+d +ol - ||‘2/3+d)%

Lemma 5.2. Assume that f € H},j,d, 0 <d < 1andthat2v — 4a sup,c 4, 1VZ| 1 > 0.

There exist a real number ro > 0 small enough, an integer ng large enough and, for n > ng, a large enough
number Ry, such that, for n > ng, for v in CO(R, anvs+a(P,~,Aa, r0)), the map w €e Wy + ¢y ,,, where qy ,
is the unique solution of (5.3), is a strict contraction on W, and thus admits a unique fixed point q"(v) in

W, N CO(R, V3). Moreover, q"(v) depends on the values v(s), for s < t only.

Proof. a) Remark that the condition aj = 2v — 4a sup,c 4, [|Vz|l1= > 0 implies that we can assume
without loss of generality that « < g, for some adequate o.

Let 8o <1 and &1 < 1 be two small fixed positive constants, which will be made more precise later.
We assume that §g is so small that

8ay/*80 < ai. (5.17)
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If f belongs to H;jrd, 0 <d < 1, then, by the results of Sections 2 and 3, there exists a positive

number pg such that, for any u € A,, and thus, for any integer n

2 2 2
||u||vz+d +a||u||va+d <P

1Paull2 5 0 + ol Pattl| 5,4 < 0F- (5.18)

Since A, is compact in V3, there exists an integer ng such that, for any integer n > ng, for any
element u € Ay,

8o
a2 QnVul = < N (5.19)
and, therefore,

2V — 4| Py V|| > at — al/28. (5.20)

We will also choose ng large enough so that, for n > ny,

A< <1, (5.21)

and

82
1QnPflf2 < - (5.22)

We choose rg > 0 small enough so that, for any n > ng, for v € CO(R,NPHVHa(PnAa, 10)),

3
20 — 4| Vv |~ > at — 2a1/25) > Za;‘. (5.23)
b) We set
2 -1 3 2 leup(CZ, Cé,d) 4 1—d 2
R2 = (27" + o) ﬁnrotflle g (po+10) (1+aor) ™)) +208, (5.24)

where Cs is the positive constant in the Sobolev estimates below and where Cs 4 is the positive
constant in the Sobolev estimate,

Ul < Cs,allUllgi+d, (5.25)

valid for any U € H1*4,

Let v be fixed in CO(R,Nans+d(P,,Aa, r0)). Due to Lemma 5.1 and to the choice of Ry, there exists
an integer nq, such that, for n > ny, for w € W, Eq. (5.3) has a unique solution gy ,,. We first prove
that there exists an integer ng > ny such that, for n > no, the solution g} ,, belongs to V. To simplify
the notation, we set g =q} ,,. The following a priori estimates on q can be rigorously justified by a
classical Galerkin method (we let the details to the reader). For this reason, we can assume without
loss of generality that q is regular enough. Then, applying the curl operator to Eq. (5.3), taking the
inner product in H of the resulting equation with rot Aq, and using the equality (A.5), we obtain the
following equality
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1
S (IVrotq|l” + @l Arotql|?) + v| A rotq]?
= (rot f, Arotq) + (Aq x (v + w), Arotq)
— (rot(rot(v — Av) x (v 4+ w)), Arotq). (5.26)

Using the equality (A.3) of Lemma A.1 and applying the classical Sobolev estimates, we obtain, for
teR,

|(Ag x (v 4+ w), Arotq)| < |AqL|| V(v +w)|

—-1/2
< CEa 1 (00 + 1o + Ay )2 Ra) | Aot g%, (5.27)

where Cs is a constant coming from the Sobolev inequalities.
Next we estimate the term |(rot(rot(v — ¢ Av) x (v + w)), Arotq)|. Using the equality (A.2), we

can write, for t € R,

| (rot(rot(v — aAv)) x w, Arotq)| < (”V”VZHW”LOO +af| A%y wlli<)llrot Agll 2

1/246 1/2
Cs.5(IVIly22 270 + a2 llysan/* A 1) Rallrot Aq]l 2
2468
Cs.5(po +10)Rn )»n+4 ot Al 2
ZCZ 1426
—||r0tAq||Lz + —(po+ro) RaA T2, (5.28)

where Cs s > 0 is the constant in the Sobolev estimate ||w| i~ < Css||w| y1+s. Arguing in the same
way, we obtain, for any t € R,

| (rot(rot(v — ¢ Av) x v), Arotq)| < (l|vIly2 +a||A2v||L2)||v||Loo [rot Aql| ;2
< Cs.a(lvilyz 4+ allvilys+ain -z JIviyzlirot Aq|l 2

< Csaloo+102(1+@2,7 )rot Aql 2
v 4C3 4 _
< §||Arotq||f2 +—(po +ro)*(1+arl™). (5.29)
Finally, we have, for t € R,

1% 2
|(rot £, Arotg)| < g llATotqllf, + S irot f7,. (5.30)

From the equality (5.26) and the estimates (5.27) to (5.30), we deduce that, for t € R,

1 5 ~1/2 1
5at(||Vrotq||§z+oe||Arotq||§z)+(gv—@m{ (o +10+ Ay 1" Rn) ) I ATOt |,
2 4c?, ~ 2C%
< Slirot fligs + —>% (00 +10)* (1 + @dy ™) + — 224 [ Ri oo + o). (5.31)

We first remark that, due to the choice of R;, there exists a positive constant Ry such that, for any
integer n,

dj2—1/2

)‘n+1

Rn < Ro. (5.32)
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We now set § = 1/4 for example. We next choose the integer ng large enough (and §; small enough)
so that, for n > ny,

~1/2 Vv
A1 €300 + 1o+ Ro) < 87C3 (o0 + 10 + Ro) < 5.
4C3 505+ o) ) , 400+, , 1
————.1 (Po+10)" < —————87(00 +10)" < 5. (5.33)
V2 + 2 2

Taking into account the conditions (5.33), the definition (5.24) of R, and the inequality (2.4), we
deduce from (5.31) that, for t € R,

% v
3 (IVrotq|?, + ol Arotql?,) + )\_7(||Vrotq||f2 +allArotq]?,) < A_]iR,%. (5.34)

11+a | to

Integrating the inequality (5.34) from —oo to t, we obtain finally that, for t € R,

2 2
[Vrotq(t)|}, +a|Arotqt)] ;2 < R, (5.35)
which proves that the mapping w +— qy,w maps Wj into itself.

b) Next we prove that the map w € Wy — qv.w € W, is a strict contraction. Let w1 € Wy, wy € W,
and let q1 =qv,w;,» 92 = qv,w, be the corresponding solutions of Eq. (5.3). The difference g* =q1 —q>
satisfies the following equation, for any t € R,

¥ (a* — aAgq*) — vAG* + QuP(rot(q* — a AG¥) x (v + wy))
= —QnP(rot(v — @Av) x (W1 — w3)) — QuP(rot(q2 — 2 Aq2) x (Wi — w3)).  (5.36)

Taking the inner product in H of the equality (5.36) with g*, we obtain the following inequality, for
any t € R,

1
So(la* 72 +el Ve |2) + v Va2 <[ (rot(q” — e ag”) x (v 4+ wi).q")|

+ | (rot(v — ¢ Av) x (W1 — w2), q*%)]

+|(rot(@2 — ¢ Aga) x (w1 —w2),q)|.  (537)

In order to bound the three terms in the right-hand side of the estimate (5.37), we proceed as follows.
Using the classical Sobolev inequalities, we easily show that, for t € R,

|(rot(v — ¢ Av) x (w1 — w3),q%)]

< (IIrotviiallwi — wall2 +ellrot Avlwi — walla)||q*| 4

< Vet 2 CR>lwa — wall 2 [VIy2 + a1 | Vws — wa) | 2 lirot Avil;2)
1)
< 31 |Va* |2, + 81CE(Iw1 — wall% + 83| V(w1 — w) |5 (ro + po). (5.38)

Likewise, using classical Sobolev estimates and the inequality (5.32), we have, for t € R,
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|(rot(q2 — @ Ag2) x (W1 — w2), q%)]

< (lIrotqzllallwir — wall2 + ef|rot Aga 2 [wi — wallps) | 0% 4

<Ci 2 Var | 2 (12l 2 llws — wall2 + alirot Agz 2 | V(we — wa) | 2)
< a1V 2 Ru(lws = wallp2 +a' 2 [ V(ws —wa) | 2)
VG | + A PP RECE (Iwr = w2l + @[ V(wy — wo)15)
[V 72 + 2 P RECE (Iwh = w22, + e[ V(ws = wa) [ 12). (5.39)

It remains to bound the term |(rot(q* — o Aq*) x (v +w1), ¢*)|. Using the equality (A.4) of Appendix A
and the classical Sobolev embeddings, we can write

[(rotq* x (v+wn),q*)| < |a*| 2 [ 4[| 4 [ VO +wi) | 4

< Ve 1522224 G (o 4 po) + 215 Rn). (540)

Next, using the equality (A.6) of Appendix A and the classical Sobolev embeddings, we estimate the
term «|(rot Ag* x (v 4+ wq), q")| as follows,

o|(rot Ag* x (v +w1), q%)|

N

| Va* | o | o (1AL + 1AW 1 s) + 20| Vg™ |5 (19 VIl + Vw1 llie)

<[ Va* T2 1 CE (ro + po + Ay 4 FRa) + 20 VY [l + 20120 PR Cs 5] (5.41)

We choose § =d/4. From the estimates (5.37) to (5.41) and the inequality (2.4), we deduce that, for
teR,

(|’ +OfIIVq”‘ %)+ (" ) @v — el Vol — D(la | + e va'|)

d 2 2
<2C¢ (1 o+ p0) + A, PR2) (Iwi — w2l + || V(wy — w) | 12), (5.42)
where
—-1/4 —d/2 —3/4 1/4
L= )‘n+{ + 2)‘n+4 + 2)‘n+{ C3 ((ro + po) + )‘n-&-{ Rn)
22 (1) (o + po) + Ay P Ra) 4+ 2220 117V RACs 5], (5.43)

Due to the condition (5.23), we have

20 —4a|| Vv — L > af — 21?89 — L. (5.44)

We recall that g/zl l/an is bounded from above by a positive constant Ryg. We now choose the

integer ng large enough so that the following two inequalities hold, for n > ny,

—-1/4 d/2 1/2 —1/4 d/2
A 292 2 22 (3 1 (o + p0) + Ay 1 Ro)

n+1 +22

—1/4 d a
+2[a 22 (n A (o + po) + 2, 2P Ro) + 223 Y *RoCs 5] < <+ (5.45)
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and

a*
2040 Mg + po)2 + A PR < —— 1 (5.46)
S( n+1 n+1 O) 4()»1_]4-0[)

The estimate (5.42), together with the property (5.44), the conditions (5.17), (5.45) and (5.46), implies
that, for t € R,

*
ol O + | Va* O ) + — 3 (|g*©) | + | Vg* © |
a0l +alva O ) + 5 S0l +efve ol
at 2 2
< 4‘@;—11 o (w1 = w0z el (Von —w2) O] z). (547)
Integrating this inequality from —oo to t, we finally obtain that, for t € R,

1
la*®” +efva®]* < 3 sup (| (w1 — w2)(5) 1%+ a|Viws = wa)s)|5)s

which means that the map w e W, — q"}’w € W, is a strict contraction and thus admits a unique
fixed point q"(v) € W,. Lemma 5.2 is proved. O

Remark 5.2. In general, if 0 <d < 1, the fixed point q(v) could be not uniformly bounded in V3 with
respect to n. If Pf belongs to V2, then d is equal to 1 and R, = R is independent of n, that is, g"(v)
is bounded in V3, uniformly in n, for n > nog.

Remark 5.3. In order to simplify the proofs, we have assumed in Lemma 5.2 that the forcing term f
belongs to H;g;d with d > 0. Looking carefully at the proof of this lemma and replacing the Sobolev
inequality (5.25) by the Brézis-Gallouét inequality, one easily shows that, if f belongs only to Hgl)erv
the properties of Lemma 5.2 still hold provided that 0 < o < a,, where oy satisfies the following

condition

-1/2 1/2

Apat Rn(1+ " In(1 + Ang1)) <61, (5.48)

where, in the definition of Rp, the constant Cs 4 has been replaced by the constant of the Brézis-
Gallouét inequality.

5.1.3. Step 3 of the proof of Theorem 1.2
In this step we prove that the map v+ ¢"(v) is a Lipschitz-continuous map.

Lemma 5.3. We assume that the hypotheses of Lemma 5.2 hold. One can choose the integer ng large enough so
that, for n > ng, the mapping v € CO(R,NPH‘/BM(PnAa, 10)) = q"(v) € W is Lipschitz-continuous. More
precisely, for vi and vy in CO(R, anv3+d (Pp Ay, 10)), we have the estimates, for any t € R,

sup (| (¢"(v1) — 4" (v2)) ) 12, + | V(g"vi) — g (v2)) )] 7.)

C
< aTLz[sip(H(vl V)| + |V —v2) )| 5) +a sup|[A(vi = O[] (549)
1SSt s<t

and
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sup(| V(¢"(v1) — " (v2) ®) || 12 + @ | A (@ (1) — 4" (v2)) )| >2)

s<t
C
<51+ oRy)[sup (| (v1 = v2)(s) 152 +af (vi = v 5s)]: (5.50)
1 St

where C; = Cy(ro, po) is a positive constant depending on ro and pg and where pg has been defined in (5.18).
Proof. 1) We begin by proving the inequality (5.49). To simplify the notations, we set
qi(9) =q"(vi(s)), i=1,2, v ) =vi(s) —va(s),  q°()=q1(s) — q2(5).

The difference g* satisfies the equation

3 (q" — aAq*) — vAG* + QuP(rot(q" — aAg¥) x (g1 + V1)) + QnP(rot(q2 — @ Aga) x (g% + v*))
= —QuP(rot(v* — ¢ Av*) x (q1 4+ v1)) — QP (rot(va — @Avy) x (¢* +v*)) — Vp*.  (5.51)

Taking the inner product in H of Eq. (5.51) with ¢*, we obtain the following inequality, for any t € R,

o (|a | + e Va'[*) +2v] ve" |
< 2[|(rotg* x (g1 + v1), q*)| + | (ot Ag* x (q1 + v1).q%)]
+ |((rotqz) x v*, q*)| + a|(rot Agz x v*, q*)]
+ |(rot(v* —a Av*) x (vi +q1),q*)| + |(rot(va —aAva) x v, q*)|]. (5.52)
Now we proceed like in the proof of Lemma 5.2 to estimate the various terms in the right-hand side

of the inequality (5.52). Due to the condition (5.21) and the property (5.32), the first term |(rotg* x
(q1 +v1), Agq™)| is estimated as follows, for any t € R,

|(rotq* x (q1 +v1).q*) O] < |¢°©) [ 4 [rotg*©) [ 2 (Jv1 O | 14 + [91®)] )

< CE|Va © 122 4 (o + po + 2 1 Ra)

< C2|Vg*© 581 (ro + po + 11" Ro). (5.53)

Using the equality (A.6) of Lemma A.1 and the classical Sobolev embeddings, and taking into account
the property (5.32), we can write, for any t € R,

o|(rot Ag* x (g1 + v1),q%)(®)|
<a| Vg O] 2 (|a* O] s A0t +a0® 4+ [VE* O] [ V1 + a0 © ] 1)
< IVa Ol 2 1 0+ po + 2511 Re) + 0 [V O] @2 C g2 2 Rl
< |Va* Oz [0y 0 + p0) + 2,51 Ro)
+af| Vv +a1/2c5,d/zxj1Ro]. (5.54)

Applying classical Sobolev embeddings and using the property (5.32) again, we obtain, for any t € R,
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|((rotgz) x v*,q) ©)] < " © ] [ rota2 ] o [v*© [
<A Ral VO [V ©] 12

< Ch RV O] v @] o (5.55)

Likewise, we get, for any t € R,

4

a| (10t Agz x v*,0°) 0] < arot Aq2(©) 2 " O e, [v*(©)] 4
<C i VG O] 2R VYO 12

<€ i RV ) 2o 2 V0] . (5.56)

where 55 d/4 is a constant occurring in the Sobolev estimates depending on d/4. We next estimate

the term |(rot(v* —a Av*) x (v1+4q1), q")|. Integrating by parts, using classical Sobolev estimates and
the property (5.32) yields, for any t € R,

|(rot v x (v1 +q1),q%)(®)|
<Ol (Ve O 2 1 +a0O | + 10O Y01+ a0 2)

_1,d _
< v ©| 2 [ Va* ©] 12 ((Cs +C2)(ro + po) + Cs.ajphn s * Rn+ C22y )1 Rn)

_d _d
< v ® | 2 [ Ve*©] 2 ((Cs + C2)(ro + po) + Cs.d/2r 71 Ro + CE1, 4 Ro). (5.57)

The estimate of the term | (rot Av* x (v1+q1), g*)(t)| is the only one, involving the norm of [|Av*| ;2

in the right-hand side. Integrating by parts, using classical Sobolev inequalities, the property (5.32)
once more and the fact that A, /Ap+1 < 1, we obtain, for any t € R,

| (rot Av* x (vi +q1), q%) (0)]
<a[av @ [|ve* O] 2 V1 + a0 O] 1« + [a*© | 4| Y1 +aD @] 4]

<all? lav ||L2 |Va*@© ||L2 [o‘]/z(CS + c§)(ro +00) + Cs.1tdj2hy

194 4 iR
< Ve O pla|avi© |2 (Cs + C3) o+ po)
+ Coa 2| Vv (O] o Ro(Cs aj2hy 14* + €20 93] (5.58)

Finally, we consider the term [(rot(vy — o Avy) x v¥*,g*)|. Due to the classical Sobolev estimates, we
can write, for t € R,

|(rot(va — Avy) x v*, g*)(0)]
< [rotva O pala* O 4 [V © 2 + e[ rot Ava )] 2 [v*©) [ s[4 ©) ] 14

<Cro+ p) it VO 2 (v O | 2 + [ Vv )] 12)- (5.59)

Using the Young inequality 2ab < n~1a? + nb?, with n = Z—é we deduce from the estimates (5.52) to
(5.59) that, for t € R,
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a(la* O +a| Ve ©|*) + ki HVq*(t) I°

K
2(||v O[5 +a| Vv |h) +

where Cq is a positive constant depending only on the Sobolev estimates, where

—1/4

1
K1=2v — 20 sup|| Vvi(s)| .« —2C3A, (ro+ po+ An+{ Ro) — 2a'/%Cs. d/z)LH{
S
1202 (5~ 1/4 d/2 aj
— 20" 2CE (M) (o + po) + M) Ro)—6<E>
a;  _qya
=2v -2« sgp”Vw(s)”Lm - §] = hpet KT

and

K = 48[(CE+ €4 4.1 2R3 +4(Cs + (1 4 1) o+ p0)?

2 2 —d/4 2, —d/2y2
+R5(2+C5)(Cs.aphnss + Cshpn ) |-
We remark that, by the condition (5.23),

Ll
n+1

37 a4 aa
Ki> -2 -2 K > K.
—d/4

Clearly, we can choose ng large enough so that A,

K§ < aj/8, which implies that

*

a
Ky > —L.
125

The estimates (5.60) and (5.64), together with the inequality (2.4), imply that, for any t € R,

a(|a* ] + e var©]*) + (le® ) +a|ve©|?)

2(rl +a)

K C
< (ol +a|vvolq) + —;‘j‘ | Av*©) |20+ po)?,
1 1

which, after integration in time from —oo to t, yields, for any t € R,

K
lo* O + ol V0 O <2657 + o0 75 sup(lv* @+l 9 @)1
1 B

C10l2 2
+ a7 (ro + po)? ii'f” AVE(s) | L2]~

The inquality (5.49) is thus proved.

Ro

3743

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

2) In order to prove the inequality (5.50), we take the inner product in H of the equality (5.51)

with —Aq* and obtain the following inequality, for any ¢ € R,
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o(|va"|” +elag|’) +2v]|ag |’
< 2[|(rotg* x (g1 + v1), Aq*)| + | (rot Ag* x (q1 + v1), Aq¥)|
+ | (rot(qz + v2) x g*, Aq*)| + a|(rot A(gqz + v2) x q*, Ag¥)|
+ | ((rotgz) x v*, Ag*)| + e[ (rot Agz x v*, Aq*)|
+ | (rot(v* — @ Av*) x (vi +q1), Ag*)| + | (rot(va —aAva) x v¥, Ag¥)|].  (5.67)

Since the terms on the right-hand side of the inequality (5.67) are estimated by arguing in the same
way as for estimating the terms in the right-hand side of the inequality (5.52), we do not give the
details.

The proof of Lemma 5.3 is completed. O

Remark 5.4. Like in Lemma 5.2, in order to simplify the proofs, we have assumed that the forcing
term f belongs to H},j;d with d > 0. Looking carefully at the proof of Lemma 5.3 and replacing the

Sobolev inequality (5.25) by the Brézis-Gallouét inequality, one easily shows that, if f belongs only
to H},,, the mapping v € CO(R; Np, y3+4(PnAg.10)) = q"(v) € Wy is still Lipschitz-continuous.

5.14. Step 4 of the proof of Theorem 1.2

Under the hypotheses of Lemma 5.2, we can choose the integer ng large enough (in Lemma 5.2)
so that, for any 0 < o < «, if u(R) C Ay, then, for any n > ng, the “trajectory” w, = Quu = (I — Pp)u
belongs to W, and, thus, by uniqueness of the solution of the system (1.2), u is represented as

u(t) = Pau(t) + Quu(t) = Pau(t) +q" (Pnu()), (5.68)

where ¢"(-) is the fixed point defined in Lemma 5.2 and where v, is the solution of the finite-
dimensional system (5.1); that is, v, = Ppu satisfies the system

3V = Pn(I +aA) ' PaP(vAV, —10t(vy +q(ve) — @A (Ve +q" (V) x (v +q"(v)) + f)
= Fa(vn), (5.69)

where A denotes the Stokes operator —PA.

Since the map v — q"(v) € W, is defined for any v € CO(R,NP"‘/3+d(Pn.Aa,r0)) and, by
Lemma 5.3, is even a Lipschitzian mapping, the map Fp(v) is well defined and, as we shall see
below, is also Lipschitzian. Therefore, it is interesting to study the finite-dimensional system (5.68) for
“ continuous curves” v with values in anv3+d(Pn.Aa,r]) where 0 <r; <1p. As in [27] and in [24],
one approach consists in considering the following differential equation

osv = Fp(v), v(0) = vy, (5.70)

in the Banach space CO(R, P,V3t9). Since F, is a Lipschitzian map (see Lemma 5.4 below),
by the classical theorem of existence of solutions, for any vg € CO(R,anv3+d(PnAa, r0/2)),
there are a positive constant s* and a unique solution v* : (vq,s) € CO(R,Nanerd(PnAa,ro/Z))
%[0, s*) = v*(vg)(s) € CO(R,NPnV3+d(PnAa, 2rp/3)) of (5.70). Let now ug(t) = Pyug(t) + Quuo(t) C
Ay be a solution of (1.2) and let z(s)(t) = Pyug(t + s). By assumption, z(0) = Phuo(t) € CO(R,
/\/’ang+d(PnAa,ro/2)). One easily checks that z(s) is a solution of (5.70) and, thus, by uniqueness
of the solution of (5.70), z(s)(t) = Ppug(t +5) = v*(vo)(s)(t) for any s € R. This point of view allowed,
in [27] and in [24], to prove time-regularity results for the trajectories contained in compact global
attractors, in the case of general dissipative dynamical systems.

Since the map ¢q"(v) depends on the values v(s), for s <t only, we may also consider the system
(5.69) as a system of differential equations with infinite delay in the following way.
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Lemma 5.4. Assume that the hypotheses of Lemma 5.2 are satisfied. Then, for any n > ny, there exists a time
To(n) > 0 such that, for any vo € CO((—o0, 0]; anv3+u(PnAa, r0/2)), the following finite-dimensional sys-
tem of differential equations

v ="Fu(v), 0<t<Ton),
v(s) =vo(s), s<0, (5.71)
where

Fn(v) = Po(I + @A) PaP(VAVy —rot(vy +q(vp) — aA(ve +¢"(v))) x (v +4"(vn)) + f).

admits a unique solution v € C°((—oo, To(n)]; anv3+d (Pn Ay, 2r9/3)). Moreover, the dependence of v with
respect to the initial data v is continuous.

Remarks 5.5. 1) In Lemma 5.4, we have taken oy =0 as initial time. Of course, due to Lemmata 5.2
and 5.3, the same well-posedness result holds if 0 is replaced by any real number oy.

2) As we have remarked at the beginning of this section, we can choose ng large enough so that,
for any 0 < o < v, if u(R) C Ag, then, for n > ng,

u(t) = Ppu(t) +q" (Pau(t)),

where v(t) = P,u(t) is the solution of the finite-dimensional system (5.71). This allows to say that, on
the global attractor, Egs. (1.2) reduce to the functional-differential equation (5.71) with infinite delay.
For the properties of functional-differential equations with infinite delay, we refer the reader to the
book [28] for example.

Proof of Lemma 5.4. Since this lemma is proved by using the strict contraction fixed point theorem
in a very classical way, we will not give all the details of the proof and let them to the reader. First,
we remark that the system (5.71) is equivalent to the following integral system

t
v(t)=v0(0)+/Fn(v(a))da, 0<t<To,
0
v(s) =vo(s), s<O0. (5.72)

We emphasize that, due to Lemma 5.2, for any T, the map Fj(v) is well-defined if v belongs to
Bo((—co.11: Pyv3+d)(PnAa, To). We also remark that Lemma 5.2 at once implies that there exists a

positive number Mg(n) such that, for any T and for any v € CO((—oo0, T];anv3+d(Pn.Aa,T0)), we
have the following bound

Slil;” Fa(v(0))]y3+a < Mo(n). (5.73)

<

We next choose a positive time To = To(n) satisfying the condition
T
ToMo(n) < §O (5.74)
as well as the condition (5.76) below.
Let vg be fixed in CO((—o0, 0]; /\/’anm(PnAa, 10/2)). In view of solving the integral system (5.72),

we introduce the convex subset

Eo = {v € C%((—o00, Tol; Np y3:a(PnAq, 2r0/3)) | v(s) = vo(s), Vs <0},
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of the Banach space Et, where Et is the Banach space Cg((—oo,T]; P,V3td), endowed with the
norm

IvIiE; =sup|v(s)|2-
s<T
One next introduces the mapping Fo from Eg into Et,, defined for any y € Eq by
Foy)(®) =vo(t), t<0,

t
fo(yxt):vo(o>+/Fn(y<o))do, 0<t<To.
0

Since Tq satisfies the condition (5.74), Fp is a mapping from Eg into Eg. If in addition Fy is a
strict contraction from Eg into Eg, the strict contraction fixed point theorem will imply that Fy has
a unique fixed point in Ep and thus we will have proved the existence of a solution of (5.72). In
order to show that Fy is a strict contraction, we prove that, for any T, F, is a Lipschitz-continuous
mapping from N = C%((—oo0, T];anvs+a(PnAa, rp)) into Er. More precisely, we will show that, for
any elements vq, vy in N,

|Fa(vD) = Fav2) | g, < Mi@mllvi = vall,, (5.75)

where M1 (n) does not depend on T, but may depend on n.
If we choose Ty satisfying the condition (5.74) and the inequality (5.76) below,

ToM1(n) < (5.76)

1
>
we will have shown that Fy is a strict contraction from Eq into Eg.

It thus remains to prove the property (5.75). We set v =v; — vy, ¢ =¢q"(v1) —q"(v2), and q; =
q"(vi), i=1,2. The map Fp(vq) — Fn(v3) satisfies the equality

Fa(v1) — Fa(v2) = Pa(I + € A) ' Py P(vAV —rot(q + v — ¢ A(q + v)) x (g1 + V1)
—rot(q2 + v2 — a0 A(q2 + v2)) X (@ + V). (5.77)
Clearly, for any v € P,H, we have
[+ aA) P PAV| . < C@)|VIlj2. (5.78)

Next, using Lemma 5.2, the inequality (5.50) of Lemma 5.3 as well as the inequality (A.9), we obtain
that, for any t < T,

|1+ aA)~ Py P[rot(q(t) + v(t) — a A(q(t) + v(D))) x (q1(1) + vi(®)]| 2
C
< —(12010] 2+ [Avi©O]2)|a®© +v©O —aa(@® +vo)] 2

C
< S Ratro+ o) ([vO 2+ av©] L +[a@ ] +af2a@]2)

1/2

C C
gW(Rn+ro+po)stipHv(s)HL2[(l+aAn)+ L (1+aR§)”2(A,%+aA,§)”2]. (5.79)
s<t 1
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In the same way, we obtain, for all t < T,

|1+ aA) " Py P[rot(gz(t) + va(t) — a A(g2(t) + v2(D))) x (g®) +v(©®)]|

C
S laz® + vat) —aA(q2®) +va®) | 2 (| Aq®) | 2 + | AvD) | 2)

C R c”? 1/2 1/2
<W<ﬁ +ro+po>§t<l[t)||v(s)”L2|:)»n+ (;{ (1+aR2) (A2 +ard) } (5.80)
n+ =

The equality (5.77) and the estimates (5.78), (5.79), and (5.80) imply the Lipschitz property (5.75).
The proof of the uniqueness and continuity with respect to the initial data are really elementary
and classical and are left to the reader. Lemma 5.4 is proved. O
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Appendix A. Proof of auxiliary equalities and estimates

We first recall some formulas of vectorial calculus. For any vectors u = (u',u? u?){, v =
v1,vZ, vt in R3, the vector product w =u x v is defined as follows.

¢
w= (v —udvi udv! —ulv3 ulv? —u?vl)
For any vector u = (u!, u?, u®)! in R3, we define the curl of u as follows

curlu =rotu = (azu3 — 83u2, 83ul — 81u3, 81u2 — azul)t.

We recall that, in this paper, all scalar and vector fields functions are defined on T2. We identify
the 2-component vector field u = (u', u2)! with the 3-component vector field i = (u',u?, 0)!. The
scalar w is identified with the 3-component vector w = (0, 0, w)t.

Since the vectorial functions u considered here do not depend on the x3-variable, d3u! = 83u? = 0.
Consequently,

rotu = (0,0, dyu® — dpu')".

For any m € N the iterated operator rot™! is defined as rot™*! u = rot(rot™ u), rot! u = rotu.
In the case where divu =0, we notice that

rot(rotu) = —Au. (A1)
Throughout this paper, we frequently use the following identity

rot{rotu x v}=—Au x v, (A.2)

which holds for any (regular enough) divergence-free vector fields u and v.
Throughout this paper we also often use the following identities, without mentioning it explicitly.
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Lemma Al Let u = (u', u?)t, v = (v, v2)! be smooth periodic divergence-free vector fields defined on T2.
With the above conventions, the following identities hold:

2
(v x u,rotv) = — Z diulvividx, (A.3)
ij=15
(rotv x u, v) = /(Bwl (v])2 + (Bu® + dut)viv? + 32u2(v2)2) dx, (A4)
T2
(rot{rot v x u}, rotv) = —(Av x u,rotv) =0, (A.5)

(rot Av x u, v) =/rotv(Au]v2 - Auzvl)dx+2[rotv(Vul -vv2 —vu?.vvl)dx, (A6)
T2 T2
(Au x u, A%rotu) = 2(AVu x Vu, Arotu), (A7)

where
AVU x Vu=—Vu' . VAu? +vu? . vAau'l,
Proof. 1) Integrating by parts and taking into account the property divv =0, we get

(v x u,rotv)

= /(u1v282v1 +uv'av? —ulvZiv? —u?vlov!)dx

'EZ
= —/<u1v182v2 +utvZa v + vIv2eu? + vivigu! + %u131 (v2)2 + %uzaz(vl)z) dx
T2
- —/(sz + dpu')vlvidx + % /(uli)] (vl)2 +u232(v2)2 - u181(v2)2 - uzaz(vl)z) dx.
T2 T2
(A.8)

The second integral in the right-hand side is equal to
/({—am1 + Bzuz}(vl)2 +{ou' - azuz}(vz)z) dx = —2/(81u1 (v])2 + azuz(vz)z) dx.
T2 T2
Combining both equalities, we obtain (A.3).
2) A similar calculation gives (A.4).
3) A direct calculation yields
Av xu=u?Avl —u'AvVZ = —u282 rotv — u181 rotv.
Therefore,

1
(Av x u,rotv) = 3 /‘(rotv)2 divudx =0.

T2
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4) Integrating by parts, we get

(ot Av x u, v) =/‘Arotv(u1v2 —u2v1)dx=/r0th(u]v2 —u?v')dx

T2 T2
:/rotv(Aulv2 — Au2v])dx+2frotv(Vu] -Vv2 —vu? . vvl)dx
T2 T2
+ / rotv(u - V)rotvdx.
T2
The third integral in the right-hand side is equal to
—% /(rot v)2divudx = 0.
T
5) Due to (A.5) and to the identity Au x Au =0, we can write
(Au xu, A2 rotu) = (Azu x u, Arotu) +2(AVu x Vu, Arotu) + (Au x Au, Arotu)
=2(AVu x Vu, Arotu).
Thus Lemma A.1 is proved. O
Lemma A.2. Let u, v be smooth periodic divergence-free vector fields and let
w=(1 +aA)_1P{rotu X v},
where A = —P A is the Stokes operator. Then there exists a positive constant C such that

IwliZ, + o Vw2, < ClIVul2; AV,
Wi, +allVwF, < gnunfznmniz. (A.9)
Proof. We take the L%-inner product of the equation
(14+aA)w = P(rotu x v)
with w in L%(T?)2 to get
IwlZ, + Vw2, = (rotu x v, w). (A10)

On the one hand, the first inequality in (A.9) is a direct consequence of (A.10) and the classical Sobolev
inequalities. On the other hand, performing an integration by parts yields
(rotu x v, w) = /(wlvz(azu1 — 81u2) + w2yl (81u2 — 82u1)) dx
']1*2
= /((—32W1V2 +oowvl —wlav? + Wzazvl)ul
T2

+ (E)1w1v2 —wivl +wlov? — w281v1)u2) dx.
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Therefore, (A.10) implies that

2 2
Wl +allVwil}; < /(lVV| Awl 4 v] - IVw))uldx < (IVVIigallwliga + VI IV wil2) lull 2
']1*2
2
o 2 o 2 2
<collull2llAv]i2[[Vw] 2 < EHVWIILz+£||UI|L2||AV||L2~

The lemma is proved. O
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