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If a discrete subset S of a topological group G with the identity 1 generates a dense
subgroup of G and S ∪ {1} is closed in G , then S is called a suitable set for G . We apply
Michael’s selection theorem to offer a direct, self-contained, purely topological proof of the
result of Hofmann and Morris [K.-H. Hofmann, S.A. Morris, Weight and c, J. Pure Appl.
Algebra 68 (1–2) (1990) 181–194] on the existence of suitable sets in locally compact
groups. Our approach uses only elementary facts from (topological) group theory.
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All topological groups considered in this paper are assumed to be Hausdorff, and all topological spaces are assumed to
be Tychonoff.

1. Motivating background

Let G be a group. We use 1G to denote the identity element of G . If X is a subset of G , then 〈X〉 will denote the smallest
subgroup of G containing X , and we say that X (algebraically) generates 〈X〉.

Definition 1. ([2,13,8]) A subset X of a topological group G is called a suitable set for G provided that:

(i) X is discrete,
(ii) X ∪ {1G } is closed in G ,
(iii) 〈X〉 is dense in G .
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Suitable sets were considered first in the early sixties by Tate in the framework of Galois cohomology (see [2]). Tate
proved2 that every profinite group has a suitable set. This result has later been proved also by Mel’nikov [13]. Later on,
Hofmann and Morris discovered the following fundamental theorem.

Theorem 2. ([8, Theorem 1.12]) Every locally compact group has a suitable set.

Let us briefly outline main points of the proof from [8]. The authors first prove the existence of suitable sets in compact
connected Abelian groups. This is accomplished by using the full strength of the theory of free compact Abelian groups [6].
The theorem for compact connected groups then follows from the Abelian compact connected case and the result of Ku-
ranishi [11] that every compact connected simple group has a dense subgroup generated by two elements. Since compact
totally disconnected groups have suitable sets by the results of Tate and Mel’nikov (cited above), the authors of [8] then
combine connected and totally disconnected cases together to get the conclusion for all compact groups by deploying a the-
orem of Lee [12]: Every compact group G contains a closed totally disconnected subgroup K such that G = c(G) · K , where
c(G) is the connected component of G . Having proved the result in compact case, Hofmann and Morris then proceed to
deduce the general case from the compact case using some structure theorems for locally compact groups.

The main purpose of this article is to offer a direct, self-contained, purely topological proof of Theorem 2 based on
Michael’s selection theorem. Our proof is in the spirit of [18,17], and uses only elementary facts from (topological) group
theory.

Theorem 2 allowed Hofmann and Morris [8] to introduce the generating rank

s(G) = min
{|X |: X is a suitable set for G

}

of a locally compact group G . (For profinite groups, s(G) has been already defined by Mel’nikov [13].) As witnessed by
the fact that the whole Chapter 12 of the monograph [9] by Hofmann and Morris is devoted to the study of this cardinal
function (and its relation to the weight), s(G) is undoubtedly one of the most important cardinal invariants of a (locally)
compact group G .

Let G be a topological group. Following [1] define the topologically generating weight tg w(G) of G by

tg w(G) = min
{

w(F ): F is closed in G and 〈F 〉 is dense in G
}
,

where w(X) = min{|B|: B is a base of X} + ω is the weight of a space X . The two principle results of [1] are summarized
in the following

Theorem 3. Let G be a compact group. Then:

(i) tg w(G) = s(G) whenever s(G) is infinite, and
(ii) tg w(G) = w(G/c(G)) · ω

√
w(c(G)), where c(G) is the connected component of G and ω

√
τ is defined to be the smallest infinite

cardinal κ such that κω � τ .

The proof of this theorem in [1] is essentially topological and completely self-contained with the only exception of The-
orem 2 which is still necessary. Our present manuscript completes the job started in [1] by providing a self-contained,
purely topological proof of Theorem 2. It is worth mentioning that in [1, Section 9] Theorem 3 has been used to deduce (as
straightforward corollaries) a series of major results from Chapter 12 of the monograph [9] by Hofmann and Morris.

2. Necessary facts

In this section we collect (mostly) well-known facts that will be used in the proof.
Recall that a map f : X → Y is

(i) open provided that f (U ) is open in Y for every open subset U of X ,
(ii) closed provided that f (F ) is closed in Y for every closed subset F of X ,

(iii) perfect if f is a closed map and f −1(y) is compact for every y ∈ Y .

Fact 4. ([3, Proposition 3.7.5]) Assume that f : X → Y and g : Y → Z are continuous surjections and the map g ◦ f : X → Z is perfect.
Then g is also perfect.

For every i ∈ I let f i : X → Yi be a map. The diagonal product 
{ f i: i ∈ I} of the family { f i: i ∈ I} is a map f : X →∏{Yi: i ∈ I} which assigns to every x ∈ X the point { f i(x)}i∈I of the Cartesian product
∏{Yi: i ∈ I}. (More precisely,

f assigns to each x ∈ X the point f (x) ∈ ∏{Yi: i ∈ I} defined by f (x)(i) = f i(x) for all i ∈ I .)

2 This proof is extremely condensed. Detailed proofs can be found in [16] and [7].
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Fact 5. ([3, Theorem 3.7.10]) For every i ∈ I let f i : X → Yi be a continuous perfect map. Then the diagonal product 
{ f i: i ∈ I} is also
a continuous perfect map.

Fact 6. ([5, Chapter II, Theorem 5.18]) If N is a compact normal subgroup of a topological group G, then the quotient map from G onto
its quotient group G/N is perfect.

Fact 7. Let π : G → H be a continuous group homomorphism from a topological group G onto a topological group H. If π is a quotient
map, then π is also an open map. In particular, if π is a perfect map, then π is an open map.

Proof. The first statement follows from [5, Chapter II, Theorem 5.17]. To prove the second statement note that a prefect map
is a closed map, and every closed map is a quotient map [3, Corollary 2.4.8]. �
Fact 8. ([5, Chapter II, Theorem 5.11]) A locally compact subgroup G of a topological group H is closed in H.

Recall that a topological group G is compactly generated provided that there exists a compact subset K of G such that
G = 〈K 〉.

Fact 9. ([10]) If U is an open subset of a compactly generated, locally compact group G, then there exists a compact normal subgroup
N ⊆ U of G such that G/N has a countable base.

We note that in [5, Chapter II, Theorem 8.7] one finds a purely topological, elementary proof of Fact 9 that does not use the
structure theory of locally compact groups.

Definition 10. If D is an infinite set, then S(D) = D ∪ {∗} will denote the one-point compactification of the discrete set of
size |D|. (Here ∗ /∈ D .) That is, all points of D are isolated in S(D), and the family {S(D) \ F : F is a finite subset of D}
consists of open neighbourhoods of a single non-isolated point ∗.

Note that S(D) can be characterized as a compact Hausdorff space of size |D| having precisely one non-isolated point.
The relevance of this space to our topic can be seen from the following folklore fact.

Fact 11. If X is an infinite suitable set for a compact group G, then the subspace X ∪ {1G} of G is compact and homeomorphic to the
space S(X).

Proof. Indeed, X ∪ {1G } is closed in G by item (ii) of Definition 1. Since G is compact, so is X ∪ {1G }. Since X is an infinite
discrete subset of G by item (i) of Definition 1, the point 1G cannot be isolated in X ∪ {1G } (otherwise X ∪ {1G } would
become an infinite discrete compact space). Hence, X ∪ {1G } is a compact space with a single non-isolated point 1G , and
thus X ∪ {1G} is homeomorphic to S(X). �
Fact 12. Assume that X is a compact space with a single non-isolated point x and f : X → Y is a continuous surjection of X onto an
infinite space Y . Then Y is a compact space with a single non-isolated point f (x).

Proof. We are going to show first that Y \ V is finite for every open subset V of Y containing f (x). Indeed, since f : X → Y
is continuous, U = f −1(V ) is an open subset of X containing x. Since every point of X different from x is isolated, X \ U
consists of isolated points of X . Since X is compact, we conclude that the set X \ U is finite. Therefore, the set Y \ V must
be finite as well. Since Y is an infinite set, V must be infinite. Thus, f (x) is a non-isolated point of Y .

Let us show next that Y is compact. Let V be an open cover of Y . There exists V ∈ V such that f (x) ∈ V . For every
y ∈ Y \ V choose V y ∈ V with y ∈ V y . Now {V y: y ∈ Y \ V } ∪ {V } is a finite subcover of V .

Finally, let y ∈ Y \ { f (x)}. Since Y is Hausdorff, there exist open subsets W and V of Y such that y ∈ W , f (x) ∈ V and
W ∩ V = ∅. Then W ⊆ Y \ V , and hence W is finite. Since every singleton is a closed subset of Y , it now follows that y is
an isolated point of Y . �

Our next lemma, which is in a certain sense the “converse” of Fact 11, is the key to building suitable sets in (compact-
like) topological groups.

Lemma 13. Suppose that G is a topological group, X is an infinite set and f : S(X) → G is a continuous map such that f (∗) = 1G and
〈 f (S(X))〉 is dense in G. Then S = f (S(X)) \ {1G} is a suitable set for G such that S ∪ {1G } is compact.

Proof. Suppose first that f (S(X)) is a finite set. Then S is discrete, S ∪ {1G } is compact and closed (being finite), and
〈S〉 = 〈S ∪ {1G }〉 = 〈 f (S(X))〉 is dense in G . Therefore, S is a suitable set for G .
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Assume now that f (S(X)) is infinite. As an infinite continuous image of the compact space S(X) with a single non-
isolated point ∗, the space f (S(X)) is also a compact space with a single non-isolated point f (∗) = 1G (Fact 12). Therefore,
S = f (S(X)) \ {1G } is a discrete set and S ∪ {1G} is compact (and thus closed in G). Moreover, 〈S〉 = 〈 f (S(X) \ {1G})〉 =
〈 f (S(X))〉. Since the latter set is dense in G , we conclude that S is a suitable set for G . �

Note that S(N) is (homeomorphic to) a non-trivial convergence sequence together with its limit. The next fact is a key
ingredient in our proof, so to make our manuscript self-contained we include its proof adapted from [4].

Fact 14. ([4]) Let G be a compactly generated metric group. Then there exists a continuous map f : S(N) → G such that f (∗) = 1G

and 〈 f (S(N))〉 is dense in G.

Proof. Fix a local base {Vn: n ∈ N} at 1G such that V 0 = G and Vn+1 ⊆ Vn for all n ∈ N. Let G = 〈K 〉, where K is a compact
subset of G . One can easily see that G is separable, so let D = {dn: n ∈ N} be a countable dense subset of G .

Fix n ∈ N. Since {xVn+1: x ∈ G} is an open cover of G and K is a compact subset of G , K ⊆ ⋃{xVn+1: x ∈ Fn} for some
finite set Fn . Now we have

G = 〈K 〉 ⊆
〈⋃

{xVn+1: x ∈ Fn}
〉
⊆ 〈Fn ∪ Vn+1〉. (1)

By induction on n we will define a sequence {En: n ∈ N} of finite subsets of G with the following properties:

(in) En ⊆ Vn ,
(iin) G ⊆ 〈E0 ∪ E1 ∪ · · · ∪ En ∪ Vn+1〉, and

(iiin) dn ∈ 〈E0 ∪ E1 ∪ · · · ∪ En〉.

To begin with, note that the set E0 = F0 ∪ {d0} satisfies all three conditions (i0)–(iii0). Suppose that we have already
defined finite sets E0, E1, . . . , En−1 such that conditions (i0), . . . , (in−1), (ii0), . . . , (iin−1) and (iii0), . . . , (iiin−1) are satisfied.
Condition (iin−1) implies that

Fn ∪ {dn} ⊆ 〈E0 ∪ E1 ∪ · · · ∪ En−1 ∪ Vn〉,
and since Fn is finite, we can find a finite set En ⊆ Vn such that

Fn ∪ {dn} ⊆ 〈E0 ∪ E1 ∪ · · · ∪ En−1 ∪ En〉. (2)

Conditions (in) and (iiin) are clear, and (iin) follows from (1) and (2).
From (in) for n ∈ N it follows that the set S = ⋃{En: n ∈ N} forms a sequence converging to 1G . Since (iiin) holds for

every n ∈ N, we get D ⊆ 〈S〉, and so 〈S〉 is dense in G . Now take any bijection f : N → S and define also f (∗) = 1G . �
Recall that a set-valued map is a map F : Y → Z which assigns to every point y ∈ Y a non-empty closed subset F (y)

of Z . This set-valued map is lower semicontinuous if V = {y ∈ Y : F (y) ∩ U �= ∅} is open in Y for every open subset U of Z .
A (single-valued) map f : Y → Z is called a selection of F provided that f (y) ∈ F (y) for all y ∈ Y .

We finish this section with the following special case of Michael’s selection theorem [14, Theorem 2] (see also [15]).

Fact 15. A lower semicontinuous set-valued map F : Y → Z from a zero-dimensional (para)compact space Y to a complete metric
space Z has a continuous selection f : Y → Z .

3. Lifting lemmas based on Michael’s selection theorem

Lemma 16. Suppose that K0, K1 are topological groups, N is a subgroup of the product K0 × K1 , and for each i = 0,1 let qi =
pi�N : N → Ki be the restriction to N of the projection pi : K0 × K1 → Ki onto the ith coordinate. Assume also that:

(1) Ki = pi(N) for each i = 0,1,
(2) q0 is an open map,
(3) q1 is a closed map,
(4) K1 is a compete metric space,
(5) Y is a (para)compact zero-dimensional space and h : Y → K0 is a continuous map.

Then there exists a continuous map g : Y → N such that h = q0 ◦ g.
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Proof. For y ∈ Y define F (y) = {z ∈ K1: (h(y), z) ∈ N}. Note that N ∩ ({h(y)} × K1) is a closed subset of N , and so the set
F (y) = q1(N ∩ ({h(y)} × K1)) must be closed in q1(N) = p1(N) = K1 by (1) and (3). Since h(y) ∈ K0 = p0(N) by (1) and (5),
it follows that F (y) �= ∅. Therefore F : Y → K1 is a set-valued map.

We claim that F is lower semicontinuous. Indeed, let U be an open subset of K1. Since N ∩ (K0 × U ) is an open subset of
N , q0(N ∩ (K0 × U )) is an open subset of q0(N) = p0(N) = K0 by (1) and (2). Since h : Y → K0 is a continuous map by (5),
V = h−1(q0(N ∩ (K0 × U ))) is an open subset of Y . Now note that V = {y ∈ Y : F (y) ∩ U �= ∅} by definitions of F and V .

In view of (4), the assumptions of Fact 15 are satisfied if one takes K1 as Z . Let f : Y → K1 be a (single-valued)
continuous selection of F which exists by the conclusion of Fact 15.

Define g : Y → K0 × K1 by g(y) = (h(y), f (y)) for y ∈ Y . Since both h and f are continuous, so is g . If y ∈ Y , then
g(y) = (h(y), f (y)) ∈ {h(y)}× F (y) because f is a selection of F , which yields g(y) ∈ N by the definition of F (y). Therefore,
g(Y ) ⊆ N . The equality h = q0 ◦ g is obvious from our definition of g . �

In the sequel we will only need a particular case when the previous lemma is applicable:

Lemma 17. Suppose that G is a locally compact group, K0 is a topological group, K1 is a metric group, χi : G → Ki is a continuous
group homomorphism for i = 0,1, χ = χ0 
 χ1 : G → K0 × K1 is the diagonal product of maps χ0 and χ1 , and N = χ(G). Assume
also that:

(a) Ki = χi(G) for each i = 0,1,
(b) each χi is a perfect map,
(c) Y is a (para)compact zero-dimensional space and h : Y → K0 is a continuous map.

Then there exists a continuous map g : Y → N such that h = q0 ◦ g, where q0 = p0�N : N → K0 is the restriction to N of the projection
p0 : K0 × K1 → K0 .

Proof. It suffices to check that N , Y and h satisfy all the assumptions of Lemma 16. (1) follows from (a). Let i = 0,1.
Since both χ : G → N and qi : N → Ki are surjections, χi = qi ◦ χ and χi is a perfect map by item (b), qi is a perfect
map (Fact 4), and so also an open map (Fact 7). This yields both (2) and (3). Being an open continuous image of a locally
compact space G , K1 is locally compact. Since a locally compact metric space admits a complete metric, we get (4). Finally,
(5) coincides with (c). Now the conclusion of our lemma follows from the conclusion of Lemma 16. �
4. Proof of Theorem 2

If G and H are groups and f : G → H is a group homomorphism, then ker f = {x ∈ G: f (x) = 1H } denotes the kernel
of f . Obviously, ker f is a normal subgroup of G .

We are now ready to prove a specific version of Theorem 2. Our proof is based on representing a compactly generated,
locally compact group as a limit of some inverse spectra (aka a projective limit in the terminology of algebraist’s) of locally
compact separable metric groups. In order to make an exposition easier to comprehend for readers not familiar with inverse
(aka projective) limits, we have chosen the presentation using diagonal products of maps, thereby allowing for a much
simpler visualiziation of such a limit.

Theorem 18. Let G be a topological group generated by its open subset with compact closure. Then G has a suitable set S such that
S ∪ {1G } is compact.

Proof. Fix a local base {Uα: α < τ } at 1G . If τ � ω, then G is a compactly generated metric group, and hence G has the
desired suitable set by Fact 14 and Lemma 13.

From now on we will assume that τ � ω1. Let X be a set with |X | = τ . For every ordinal α < τ , apply Fact 9 to choose
a compact normal subgroup Nα of G such that Nα ⊆ Uα and Hα = G/Nα has a countable base, and let ψα : G → Hα be the
quotient map. For every ordinal α satisfying 1 � α � τ define ϕα = 
{ψβ : β < α} : G → ∏{Hβ : β < α} and Gα = ϕα(G).
For 1 � β � α � τ let �α

β : ∏{Hγ : γ < α} → ∏{Hγ : γ < β} be the natural projection, and define πα
β = �α

β �Gα
: Gα → Gβ

to be the restriction of �α
β to Gα ⊆ ∏{Hγ : γ < α}. Note that πα

β is a surjection. By our construction,

ϕα ◦ πα
β = ϕβ and πα

γ = π
β
γ ◦ πα

β whenever 1 � γ � β � α � τ . (3)

Claim 19. ϕα is a perfect map for every α with 1 � α � τ .

Proof. Each ψβ is a perfect map by Fact 6, so the map ϕα = 
{ψβ : β < α} is also perfect by Fact 5. �
By transfinite recursion on α, for every ordinal α satisfying 1 � α � τ we will define a continuous map fα : S(X) → Gα

satisfying the following properties:
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(iα) fβ = πα
β ◦ fα whenever 1 � β < α,

(iiα) fα(∗) = 1Gα ,
(iiiα) |{x ∈ X: fα(x) �= 1Gα }| � ω · |α|,
(ivα) 〈 fα(S(X))〉 is dense in Gα .

To motivate these conditions, we mention that (iiα ) and (ivα ) guarantee that fα(S(X)) \ {1Gα } is a suitable set for
Gα (Lemma 13). The other two conditions (iα ) and (iiiα) are technical and needed only for carrying out the recursion
construction.

We start our recursion with α = 1. First of all note that ϕ1 = ψ0 and G1 = H0. Being a continuous homomorphic image
of a compactly generated group G , G1 itself is compactly generated. Let N be a countable subset of X . Since S(N) and S(N)

are homeomorphic, applying Fact 14 we can find a continuous map f : S(N) → G1 such that f (∗) = 1G1 and 〈 f (S(N))〉 is
dense in G1. We extend this map to the continuous map f1 : S(X) → G1 by defining f1(x) = 1G1 for every x ∈ X \ N and
f1(y) = f (y) for y ∈ S(N). Now note that f1 satisfies properties (i1)–(iv1).

Suppose now that α is an ordinal with 1 < α � τ . Assume also that a continuous map fβ : S(X) → Gβ satisfying proper-
ties (iβ )–(ivβ ) has been already defined for every ordinal β such that 1 � β < α. We are going to define a continuous map
fα : S(X) → Gα satisfying properties (iα)–(ivα ). As usual, we consider two cases.

Case 1. α = β + 1 is a successor ordinal. Clearly, a subspace

Yβ = {
x ∈ X: fβ(x) �= 1Gβ

} ∪ {∗} (4)

of S(X) is closed in S(X). Hence, Yβ is a compact space with at most one non-isolated point. In particular, Yβ is zero-
dimensional.

We claim that K0 = Gβ , K1 = Hβ , χ0 = ϕβ , χ1 = ψβ , N = Gα , Y = Yβ and h = fβ�Yβ
satisfy the assumptions of

Lemma 17. Indeed, χ = χ0 
 χ1 = ϕβ 
 ψβ = ϕα , and so N = Gα = ϕα(G) = χ(G). (a) holds trivially. The map χ0 = ϕβ

is perfect by Claim 19, while χ1 = ψβ is a perfect map by Fact 6. This proves (b). Since fβ is a continuous map, so is
h = fβ�Yβ

. This establishes (c).
Let g : Yβ → Gα be a continuous map satisfying fβ�Yβ

= πα
β ◦ g which exists according to the conclusion of Lemma 17.

Define g′ : Yβ → Gα by g′(y) = g(y) · g(∗)−1 for y ∈ Yβ . Clearly, g′ is a continuous map and g′(∗) = 1Gα . If y ∈ Yβ , then
πα

β ◦ g(∗) = fβ�Yβ
(∗) = fβ(∗) = 1Gβ by (iiβ ), and so

πα
β

(
g′(y)

) = πα
β

(
g(y) · g(∗)−1) = πα

β

(
g(y)

) · πα
β

(
g(∗)

)−1 = fβ�Yβ
(y) · (1Gβ )−1 = fβ�Yβ

(y)

because πα
β is a group homomorphism. This gives

πα
β ◦ g′ = fβ�Yβ

. (5)

Since β � 1, from (3) we have kerπα
β = ϕα(kerϕβ) ⊆ ϕα(kerψ0) ⊆ ϕα(N0). Since N0 is compact, so is ϕα(N0). Being

a closed subspace of ϕα(N0), kerπα
β must be compact. Since kerπα

β ⊆ {1Gβ } × Hβ and Hβ has a countable base, kerπα
β is

a compact metric group.
Note that |Yβ | � ω · |β| < τ by (iiiβ ), and since τ � ω1, we can choose a countable set Zβ ⊆ X with Yβ ∩ Zβ = ∅. Since

Zβ ∪ {∗} is naturally homeomorphic to S(N), Fact 14 allows us to find a continuous map θ : Zβ ∪ {∗} → kerπα
β ⊆ Gα such

that θ(∗) = 1Gα and 〈θ(Zβ)〉 is dense in kerπα
β .

Now define the map fα : S(X) → Gα by

fα(x) =
⎧⎨
⎩

g′(x) if x ∈ Yβ,

θ(x) if x ∈ Zβ,

1Gα if x ∈ S(X) \ (Yβ ∪ Zβ).

Since both g′ and θ are continuous maps, one can easily check that the map fα is continuous as well.

Claim 20. fβ = πα
β ◦ fα .

Proof. If y ∈ Yβ , then πα
β ( fα(y)) = πα

β (g′(y)) = fβ�Yβ
(y) = fβ(y) by (5).

Suppose now that x ∈ S(X)\ Yβ . We claim that πα
β (x) = 1Gβ . Indeed, if x ∈ Zβ , then πα

β ( fα(x)) = πα
β (θ(x)) = 1Gβ because

θ(x) ∈ θ(Zβ) ⊆ kerπα
β . If x ∈ S(X) \ (Yβ ∪ Zβ), then fα(x) = 1Gα , and so πα

β ( fα(x)) = πα
β (1Gα ) = 1Gβ . Finally, (4) and (iiβ )

yields fβ(x) = 1Gβ = πα
β ( fα(x)) for x ∈ S(X) \ Yβ . �

Let us check now conditions (iα )–(ivα ).
(iα) Suppose that 1 � γ < α = β + 1. If γ = β , then Claim 20 applies. Suppose now that 1 � γ < β . Then πα

γ ◦ fα =
π

β
γ ◦ πα

β ◦ fα = π
β
γ ◦ fβ = fγ by (3), Claim 20 and (iβ ).

(iiα) fα(∗) = g′(∗) = 1Gα .
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(iiiα) From the definition of fα one has {x ∈ X: fα(x) �= 1Gα } ⊆ Yβ ∪ Zβ , and so |{x ∈ X: fα(x) �= 1Gα }| � |Yβ | · |Zβ | �
ω · |β| · ω � ω · |α| by (iiiβ ).

(ivα) Let F be the closure of 〈 fα(S(X))〉 in Gα . We need to show that F = Gα . Observe that 〈 fα(Zβ)〉 ⊆ 〈 fα(S(X))〉 ⊆ F .
Since 〈 fα(Zβ)〉 is dense in kerπα

β , it now follows that kerπα
β ⊆ F . Since both ϕα and πα

β are surjections and πα
β ◦ϕα = ϕβ is

a perfect map by (3) and Claim 19, Fact 4 allows us to conclude that πα
β is a perfect (and hence also closed) map. Therefore,

πα
β (F ) is a closed subset of Gβ . From (iα ) one gets πα

β ( fα(S(X))) = fβ(S(X)), and since πα
β is a group homomorphism, one

also has 〈 fβ(S(X))〉 = πα
β (〈 fα(S(X))〉) ⊆ πα

β (F ). According to (ivβ ), the set 〈 fβ(S(X))〉 is dense in Gβ , and since πα
β (F ) is

closed in Gβ , this yields πα
β (F ) = Gβ . Since F is a subgroup of Gα satisfying both kerπα

β ⊆ F and πα
β (F ) = Gβ = πα

β (Gα),
one obtains F = Gα .

Case 2. α is a limit ordinal. Define

Lα =
{

h ∈
∏

{Hβ : β < α}: h�β ∈ Gβ whenever 1 � β < α
}
. (6)

Claim 21. Suppose that H ⊆ Lα and {h�β : h ∈ H} is dense in Gβ whenever 1 � β < α. Then H is dense in Lα .

Proof. Let U be an open subset of the product
∏{Hβ : β < α} such that U ∩ Lα �= ∅. Pick arbitrarily g ∈ U ∩ Lα . There exist

n ∈ N, pairwise distinct ordinals γ0, γ1, . . . , γn < α and an open subset V i of Hγi for every i � n such that g(γi) ∈ V i for all
i � n and

{
h ∈

∏
{Hβ : β < α}: h(γi) ∈ V i for all i � n

}
⊆ U . (7)

Since α is a limit ordinal, β = max{γi: i � n} + 1 < α. Note that

W =
{

h ∈
∏

{Hγ : γ < β}: h(γi) ∈ V i for all i � n
}

(8)

is an open subset of
∏{Hγ : γ < β} and g�β ∈ W . Since g ∈ Lα , one has g�β ∈ Gβ by (6). It follows that g�β ∈ W ∩ Gβ �= ∅.

By the assumption of our claim, there exists some h ∈ H such that h�β ∈ W . Now from (7), (8) and the choice of β we get
h ∈ U . Thus h ∈ H ∩ U �= ∅. �
Claim 22. Gα ⊆ Lα and Gα is dense in Lα .

Proof. Let h ∈ Gα . Then h = ϕα(g) for some g ∈ G . For every ordinal β satisfying 1 � β < α one has h�β = ϕβ(g) ∈ Gβ ,
which yields h ∈ Lα by (6). Thus, Gα ⊆ Lα .

Assume that β is an ordinal satisfying 1 � β < α. Let h′ ∈ Gβ . Then h′ = ϕβ(g) for some g ∈ G . Now h = ϕα(g) ∈ Gα

and h�β = ϕβ(g) = h′ . This yields Gβ ⊆ {h�β : h ∈ Gα}. The converse inclusion {h�β : h ∈ Gα} ⊆ Gβ is trivial. This shows that
{h�β : h ∈ Gα} = Gβ .

Therefore, Gα (taken as H) satisfies the assumptions of Claim 21, so Gα must be dense in Lα by the conclusion of this
claim. �
Claim 23. Gα = Lα .

Proof. The map ϕα is open by Claim 19 and Fact 7. As an open continuous image of a locally compact group G , the group
Gα = ϕα(G) is also locally compact. Since Lα is a topological group containing Gα (Claim 22), Gα must be closed in Lα

(Fact 8). Since Gα is also dense in Lα (Claim 22), the conclusion of our claim follows. �
We are now ready to define fα : S(X) → Gα . Let x ∈ S(X) be arbitrary. Since (iβ ) holds for every ordinal β satisfying

1 � β < α, there exists a unique hx ∈ Lα such that hx�β = fβ(x) for all β with 1 � β < α. Now hx ∈ Gα by Claim 23, and so
we can define fα(x) to be this unique hx .

Let us check now conditions (iα )–(ivα ). Condition (iα) clearly holds. Since each fβ is a continuous map, so is fα . (iiβ ) for
1 � β < α trivially implies (iiα). Similarly, (iiiβ ) for 1 � β < α yields (iiiα). To check (ivα ) it suffices to show, in view of
Claim 23, that H = 〈 fα(S(X))〉 ⊆ Gα = Lα satisfies the assumptions of Claim 21. Indeed, assume 1 � β < α. Since πα

β is a
group homomorphism, from (iα) one has

{h�β : h ∈ H} = {
πα

β (h): h ∈ H
} = πα

β

(〈
fα

(
S(X)

)〉) = 〈
πα

β

(
fα

(
S(X)

))〉 = 〈
fβ

(
S(X)

)〉
,

and the latter set is dense in Gβ by (ivβ ).
The recursive construction has been complete.
According to (iiτ ), we have fτ (∗) = 1Gτ . According to (ivτ ), 〈 fτ (S(X))〉 is dense in Gτ . From Lemma 13, we conclude

that S = fτ (S(X)) \ {1Gτ } is a suitable set for Gτ such that S ∪ {1Gτ } is compact.
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Now observe that kerϕτ ⊆ ⋂{Nα: α < τ } ⊆ ⋂{Uα: α < τ } = {1G}, and hence ϕτ : G → Gτ is an algebraic isomorphism.
Furthermore, ϕτ is a perfect map by Claim 19. Finally, note that a one-to-one continuous perfect map is a homeomorphism.
Thus, G and Gτ are isomorphic as topological groups. �
Proof of Theorem 2. Let H be a locally compact group. Take an open neighbourhood U of the identity 1H that has a
compact closure U in H . Then G = 〈U 〉 is an open (and thus closed [5, Chapter II, Theorem 5.5]) subgroup of H . In particular,
U ⊆ G = G , and so G is generated by its open subset U with compact closure (in G). According to Theorem 18, G has a
suitable set S . Choose X ⊆ H \ G such that {xG: x ∈ X} forms a (faithfully indexed) partition of H \ G . One can easily check
now that S ∪ X is a suitable set for H . �
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