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Abstract

We consider higher-rank versions of the standard numerical range for matrices. A central motivation for
this investigation comes from quantum error correction. We develop the basic structure theory for the higher-
rank numerical ranges, and give a complete description in the Hermitian case. We also consider associated
projection compression problems.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we initiate the study of higher-rank versions of the standard numerical range
for matrices. A primary motivation for us arises through the basic problem of error correction
in quantum computing. Specifically, the development of theoretical and ultimately experimental
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techniques to overcome the errors associated with quantum operations is central to continued
advances in quantum computing. As it turns out, the numerical ranges �k(T ), for k > 1, defined
below are intimately related to this problem of “quantum error correction”. In the paper [1] we
give applications of the results from the present paper to this problem.

Let T be anN ×N matrix with complex entries. For k � 1, define the rank-k numerical range
of T as the subset �k(T ) of the complex plane given by

�k(T ) = {λ ∈ C : PTP = λP for some rank�k projection P }, (1)

where we use the term “projection” to mean “orthogonal projection”. Observe that the numerical
range of T is obtained as

�1(T ) = W(T ) = {〈T ψ |ψ〉 : |ψ〉 ∈ CN, ‖|ψ〉‖ = 1}. (2)

In our analysis, it is desirable to explicitly find the scalars λ and the associated projections
P in Eq. (1). Thus, this “compression problem” will be the focus of this paper. A search of
the substantive literature on numerical ranges reveals connections with two lines of investiga-
tion. The “k-numerical range” introduced by Halmos in [2] is the set of all λ that satisfy λ =
Tr(PTP ) for some rank-k projection P . Evidently, this set includes the set k�k(T ), but the
reverse inclusion does not hold in general. The “kth matrix numerical range” studied by sev-
eral authors consists of the set W(k : T ) of all matrices X∗TX, where X is an N × k matrix
such that X∗X = I . The higher-rank numerical ranges �k(T ) can alternatively be formulated
as �k(T ) = W(k : T ) ∩ {λIk : λ ∈ C}. See [3–6] as examples of other entrance points into the
literature on generalized notions of the numerical range.

The rest of the paper is organized as follows: In Section 2, we discuss the basic structure
theory for the sets �k(T ). In particular, we derive an explicit characterization of these sets for all
Hermitian matrices. We state a conjecture and an open problem in the case of normal matrices.
We discuss some lower dimensional cases in Section 3, and in the penultimate section (Section
4), we present a method for constructing the associated compression projections that captures all
possible projections in the Hermitian case. In the context of quantum error correction, projections
that correspond to elements of �k(T ), for k > 1, must be explicitly identified. For instance, in
the rank-two case, such projections correspond to quantum bits of information, or “qubits”, that
can be corrected after particular quantum operations act (see Section 5).

2. Compression-values

In this section, we investigate the basic structure theory of the sets �k(T ). We shall refer to
elements of �k(T ) as “compression-values” for T , since λ ∈ �k(T ) if and only if the k × k scalar
matrix λIk is the compression of T to a k-dimensional subspace. This means that T is unitarily
equivalent to a 2 × 2 block matrix of the form

T =
(
λIk A

B C

)
, (3)

where A is a k × (N − k) matrix, B is an (N − k)× k matrix, and C is an (N − k)× (N − k)

matrix. Equivalently, T is a “dilation” of the scalar matrix λIk , or, T − λI maps a k-dimensional
subspace into its orthogonal complement.

The following set inclusions may be readily verified:

W(T ) = �1(T ) ⊇ �2(T ) ⊇ · · · ⊇ �N(T ). (4)

The following properties are also easily checked:
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(i) �k(αT + βI) = α�k(T )+ β ∀α, β ∈ C.
(ii) �k(T ∗) = �k(T ).

(iii) �k(T ) ⊆ �k(ReT )+ i�k(ImT ).
(iv) �k(T ⊕ S) ⊇ �k(T ) ∪ �k(S).
(v) �k1+k2(T ⊕ S) ⊇ �k1(T ) ∩ �k2(S).

The numerical rangeW(T ) = �1(T ) is a non-empty, compact and convex subset of the plane
that includes the spectrum of T . If T is normal, then W(T ) is the convex hull of the eigenvalues
for T . In particular, if T is Hermitian, thenW(T ) is the closed interval of the real line determined
by the minimal and maximal eigenvalues of T . The higher-rank numerical ranges can, of course,
be empty. But compactness still holds in general. The proof of the following result is elementary,
hence we leave it to the interested reader.

Proposition 2.1. Let T be an N ×N matrix and let k � 1. Then the rank-k numerical range
�k(T ) forms a compact set.

Now we give a description of the higher-rank numerical range for large values of k relative to
N .

Proposition 2.2. Let T be anN ×N matrix and suppose that 2k > N. Then the rank-k numerical
range �k(T ) is an empty set or a singleton set. If �k(T ) = {λ0} is a singleton set with 2k > N, then
λ0 is an eigenvalue of geometric multiplicity at least 2k −N. In particular, �N(T ) is non-empty
if and only if T is a scalar matrix.

Proof. Given 2k > N , assume that �k(T ) is non-empty, and contains λ0 /= λ1. Let P0, P1 be the
corresponding rank-k projections. Then the projection P = P0 ∧ P1 onto the intersection of the
ranges of these two projections is non-zero and satisfies λ0P = PTP = λ1P . This contradiction
shows that �k(T ) is a singleton set when it is non-empty.

For the second claim, the equality P(T − λ0I )P = 0 implies

T − λ0I = (I − P)(T − λ0I )+ P(T − λ0I )(I − P). (5)

Hence, rank(T − λ0I ) � 2 rank(I − P) = 2N − 2k, and so,

ker(T − λ0I ) � N − (2N − 2k) = 2k −N. � (6)

In the normal case the previous result yields more detailed information for large values of k.

Corollary 2.3. Let T be an N ×N normal matrix and suppose that 2k > N. Then the rank-k
numerical range �k(T ) is an empty set or a singleton set. In fact, the case �k(T ) = {λ0} occurs
if and only if there is a (2N − 2k)× (2N − 2k) matrix T0 such that T is unitarily equivalent to
λ0I2k−N ⊕ T0, and λ0 belongs to �N−k(T0).

We now derive a general description of the rank-k numerical range in the Hermitian case for
arbitrary k.

Theorem 2.4. Let A be an N ×N Hermitian matrix with eigenvalues (counting multiplicities)
given by a1 � a2 · · · � aN and let k � 1 be a fixed integer with 1 � k � N. Then the rank-k
numerical range �k(A) coincides with [ak, aN−k+1] which is
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(i) a non-degenerate closed interval if ak < aN−k+1,

(ii) a singleton set if ak = aN−k+1,

(iii) an empty set if ak > aN−k+1.

Moreover, �k(A) coincides with the intersection of the numerical ranges W(V ∗AV ), where V
runs through all isometries V : CN−k+1 → CN.

Proof. Let λ ∈ �k(A) and let Pk be a rank-k projection with PkAPk = λPk . If V : CN−k+1 →
CN is an isometry, then the subspace PkCN and the range space VV ∗(CN) have non-zero inter-
section. Thus, there exists a unit vector |ψ〉 ∈ CN such that |ψ〉 = Pk|ψ〉 = VV ∗|ψ〉. Let |ψ ′〉
be the unit vector in CN−k+1 given by |ψ ′〉 = V ∗|ψ〉. Then we have

〈V ∗AVψ ′|ψ ′〉=〈Aψ |ψ〉 (7)

=〈PkAPkψ |ψ〉 = λ〈Pkψ |ψ〉 = λ. (8)

Hence, we have shown that λ belongs to W(V ∗AV ). As V : CN−k+1 → CN was an arbitrary
isometry, it follows that �k(A) is contained in the intersection of all such numerical ranges
W(V ∗AV ).

Next, let {|i〉 : 1 � i � N − k + 1} be a fixed orthonormal basis for CN−k+1 and let {|ψi〉} be
an orthonormal basis for CN of eigenvectors for A corresponding to the eigenvalues a1, . . . , aN .
Consider two linear isometries V1, V2 : CN−k+1 → CN defined by V1(|i〉) = |ψi〉, V2(|i〉) =
|ψN−i+1〉.

Then V ∗
1 AV1 and V ∗

2 AV2 are operators on CN−k+1 that are diagonal with respect to the basis
{|i〉}, and we have W(V ∗

1 AV1) = [a1, aN−k+1] and W(V ∗
2 AV2) = [ak, aN ]. It follows that

�k(A)⊆
⋂
V

W(V ∗AV )⊆W(V ∗
1 AV1)

⋂
W(V ∗

2 AV2) (9)

=[ak, aN−k+1]. (10)

We complete the proof by showing �k(A) contains the set [ak, aN−k+1] when ak � aN−k+1.
Suppose first that aN+1−k > ak (and so 2k � N ). Fix λ in the interval [ak, aN+1−k]. We shall
directly construct a rank-k projection Pk such that PkAPk = λPk . Consider the set of k pairs
{ak+1−j , aN−k+j }, 1 � j � k. As a notational convenience we shall write {bj , b′

j } for the ordered
pair {ak+1−j , aN−k+j }, and so bj > b′

j . (The following construction may be easily modified for
any joint partition of the sets {aN, . . . , aN−k+1} and {ak, . . . , a1} into ordered pairs.)

We may write A, up to unitary equivalence, as a direct sum

A = ( ⊕j Aj
) ⊕ B, (11)

where each Aj is a diagonal 2 × 2 matrix with spectrum {bj , b′
j }, and B is either vacuous, or is

the diagonal matrix with diagonal entries {ak+1, . . . , aN−k}. As λ satisfies

λ ∈ [ak, aN−k+1] ⊆ [bj , b′
j ] = W(Aj ) ∀1 � j � k, (12)

we may find angles θj such that

λ = bj cos2 θj + b′
j sin2 θj ∀1 � j � k. (13)

Now define an orthonormal set of k vectors by

|φj 〉 = cos θj |ψN−k+j 〉 + sin θj |ψk−j+1〉 ∀1 � j � k, (14)
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and the rank-k projection Pk onto the subspace spanned by these vectors;

P = |φ1〉〈φ1| + |φ2〉〈φ2| + · · · + |φk〉〈φk|.
It follows that PkAPk = λPk . Indeed, observe that for 1 � j � k we have

〈Aφ1|φj 〉=cos θ1〈AψN |φj 〉 + sin θ1〈Aψ1|φj 〉 (15)

=aN cos θ1〈ψN |φj 〉 + a1 sin θ1〈ψ1|φj 〉 (16)

=b1 cos θ1 cos θj δN,N−1+j + b′
1 sin θ1 sin θj δj,1 (17)

=λδj,1. (18)

Similarly, 〈Aφi |φj 〉 = λδij for 1 � i, j � k.
The remaining case is characterized by the constraint λ :=ak = aN−k+1. If, in addition,

aN−k+2 > ak−1, then we may split the sets {aN, . . . , aN−k+2} and {ak−2, . . . , a1} into pairs
as above, and similarly define k − 1 vectors |φ1〉, . . . , |φk−1〉. As the final vector we can take
|φk〉 :=|ψk〉, and define Pk = ∑k

j=1 |φj 〉〈φj |. If aN−k+2 = ak−1, but aN−k+3 > ak−2, then we
will use |ψk〉 and |ψk−1〉 as two of the vectors. This process may be continued, if required, to
account for degeneracies in the spectrum of A around the eigenvalue ak , and construct a rank-k
projection which yields λ ∈ �k(A). The result now follows. �

For each real number r ∈ R, we write �r� for the smallest integer n satisfying n � r . From
Theorem 2.4, we see that if k � �N/2� (equivalently 2k − 1 � N ), then �k(A) is non-empty for
eachN ×N Hermitian matrixA. The following is an analogous result for a general non-Hermitian
matrix. (This result can also be derived from Theorem 3.3 of [5].)

Corollary 2.5. Let T be an N ×N complex matrix. Let k be a positive integer satisfying k �
�N/4� (equivalently 4k − 3 � N). Then �k(T ) is non-empty.

Proof. Write T = A+ iB with A = A∗ and B = B∗. Let b = b2k−1 be the (2k − 1)th small-
est eigenvalue of B. By Theorem 2.4, b ∈ �2k−1(B); and so there is a projection P of rank
2k − 1 such thatP(B − bI)P = 0. Consider the (2k − 1)× (2k − 1)Hermitian matrixA0 given
by the restriction of the compression PAP to the range of P . It follows from another applica-
tion of Theorem 2.4 that �k(A0) is a singleton set {a}, where a is the kth smallest eigenvalue
of A0. Hence, there exists a projection Q � P such that rankQ = k and QAQ = aQ. Thus,
QTQ = QAQ+ iQBQ = (a + ib)Q and �k(T ) is non-empty. �

The construction of projections that is described in the proof of the previous theorem will be fur-
ther fleshed out in subsequent sections. It is perhaps appropriate to emphasize the most important
non-trivial case of this result. Specifically, when 2k � N and the spectrum ofA is non-degenerate,
Theorem 2.4 shows that the rank-k numerical range is the interval �k(A) = [ak, aN−k+1] – see
Fig. 1, which shows generalized numerical ranges for N = 4 and N = 6. Also note that as an
immediate consequence of Theorem 2.4, it follows that the sets �k(A) are convex for all k � 1
and Hermitian A.

We finish this section by discussing the case of normal matrices. First note that property
(iii) above and Theorem 2.4 give a crude containment result for �k(T ) for arbitrary T . Indeed,
�k(T ) is a subset of the rectangular region in the complex plane {α + iβ : α ∈ �k(Re(T )), β ∈
�k(Im(T ))}. In general we can obtain a more refined containment in the normal case.
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Fig. 1. The numerical range �k(A) for a non-degenerate Hermitian operator A of size (a) N = 4 and (b) N = 6, with
spectrum {ai }.

Theorem 2.6. Let T be an N ×N normal matrix and let k � 1 be a fixed positive integer. Then

�k(T ) ⊆ ∩�(co �), (19)

where � runs through all (N + 1 − k)-point subsets (counting multiplicities) of the spectrum
of T .

Proof. The relevant parts of the proof of Theorem 2.4 can be easily extended to the normal case
to verify the inclusion of Eq. (19). �

Remark 2.7. Observe that Theorem 2.4 shows the converse inclusion of Eq. (19) holds in the
Hermitian case. We believe this inclusion holds more generally, at least in the normal case, and
we plan to undertake this investigation elsewhere.

Conjecture 2.8. If T is an N ×N normal matrix, then �k(T ) coincides with the intersection
of the convex hulls co�, where � is an (N + 1 − k)-point subset (counting multiplicities) of the
spectrum of T .

Verification of this conjecture would, of course, automatically imply that �k(T ) is convex,
whenever this set is non-empty and T is normal. We state the general case as an open problem.

Problem 2.9. Is �k(T ) a convex set whenever it is non-empty?

As a consequence of Theorem 2.6 and the proof of Theorem 2.4, the conjecture can be seen to
hold forN = 1, 2, 3, 4 and all values of k in each of these cases. Indeed, Theorem 2.6 shows that
�k(T ) is contained in the desired set, and the construction of projections in the proof of Theorem
2.4 may be adapted for N � 4. In each of these cases, �k(T ) is either the empty set, a singleton
set, or an interval, and hence can never have interior. See Fig. 2 for an illustration of some of the
non-interval cases for N = 4. (We note that the N = 4 unitary case is explicitly worked out in
[1].)

The first open case is that of N = 5 and k = 2. The cyclic 5-shift is a good test example.
This is the unitary U : C5 → C5 defined on an orthonormal basis {|ξ1〉, . . . , |ξ5〉} by U |ξj 〉 =
|ξj+1(mod 5)〉. The spectrum of U is given by zn = exp{i 2πn

5 }, for n = 0, 1, 2, 3, 4. Thus, �2(U)

is a subset of the pentagon shaped region depicted in Fig. 3. The arguments of (b) ⇒ (a) in
Theorem 2.4 may be used to show that �2(U) contains the border points of this region, and
also contains the centre λ = 0. The problem is to determine if the rest of the interior points are
included.



834 M.-D. Choi et al. / Linear Algebra and its Applications 418 (2006) 828–839

Fig. 2. Examples of the numerical range �k(T ) for a normal operator T of size (a,b) N = 4 and (c,d) N = 6, with
non-degenerate complex eigenvalues {zi }. The set �2 is contained in the subset depicted (and equal at least in the case
N = 4).

Fig. 3. Numerical ranges �k(U) for the cyclic 5-shift, with spectrum consisting of the fifth roots of unity, zn: (a) k = 1
and (b) k = 2, �2(U) is contained in this set.

3. Eigenvalue-pairing construction

The method presented in the next section shows how all the higher-rank projections may
be obtained through a generalization of the “eigenvalue pairing” approach used in the proof of
Theorem 2.4. For illustration purposes, in this section we further discuss the pairing approach in
some lower dimensional cases.

First let us recall the k = 1 case as motivation for what follows below. If aN � · · · � a1 are
the eigenvalues ofA = A∗ as above, then the numerical range ofA is given by �1(A) = [a1, aN ].
(AssumeA is non-scalar, so this is truly an interval.) Let |ψj 〉 be a choice of eigenvector for eachaj .
We may write a given λ ∈ �1(A) as a linear combination λ = a1c

2
1 + a2c

2
2 + · · · + aNc

2
N , where

�c = (ci) are real scalars belonging to the (N − 1)-dimensional simplex
(∑N

i=1 c
2
i = 1

)
. Then

the typical unit vector |φ〉 that satisfies λ = 〈Aφ|φ〉, and the corresponding rank one projection,
are given by

|φ〉 =
N∑
j=1

eiθj cj |ψj 〉 and P = |φ〉〈φ|. (20)
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Observe that there areN variables cj , with two constraints, and this givesN − 2 free parame-
ters. There is also an additional N free phases from the choices θj , for 1 � j � N . (Although it
is N − 1 free phases up to a global phase allowed in the definition of P .)

For instance, if (N, k) = (2, 1), then �1(A) = [a1, a2] where aj is an eigenvalue for the
eigenstate |ψj 〉. In this case, λ ∈ [a1, a2] may be written as λ = a1 cos2 β1 + a2 sin2 β1, and the
angle β1 may be computed via the equation

cos2 β1 = λ− a2

a1 − a2
. (21)

The corresponding projection P1 is obtained as a “coherent mixture” of both eigenstates:

|φ1〉 = eiθ1 cosβ1|ψ1〉 + eiθ2 sin β1|ψ2〉, P1 = |φ1〉〈φ1|. (22)

Next consider the case (N, k) = (3, 1). Let λ belong to �1(A) = [a1, a3]. In this case, λ may
be obtained via the equation

λ = a1 cos2 β1 + a2 sin2 β1 cos2 β2 + a3 sin2 β1 sin2 β2. (23)

In this case, β2 = β2(λ, β1) depends on both λ and β1, and hence there is a one parameter
family of solutions determined by β1. The projection is given by P1 = |φ1〉〈φ1| where

|φ1〉 = eiθ1 cosβ1|ψ1〉 + eiθ2 sin β1 cosβ2|ψ2〉 + eiθ3 sin β1 sin β2|ψ3〉
and we have three free phases {θ1, θ2, θ3} (two phases up to a global phase). In the case that
λ = a2, we may also use the solution Eq. (22) to find a vector |φ13〉 as a mixture of |ψ1〉 and |ψ3〉,
and then mix it with |ψ2〉 to obtain

|φ1〉 = cosβ2|ψ2〉 + sin β2|φ13〉.
Let us turn now to higher-rank projections obtained from the eigenvalue pairing approach in

the case N = 4. The case of interest when N = 4 is (N, k) = (4, 2). The challenge occurs when
�2(A) = [a2, a3] is a true interval. If we are given λ ∈ �2(A), we can consider all pairs {ai, ai′ }
that contain λ. Here, there are two possibilities:

(i) {a4, a2}, {a3, a1};
(ii) {a4, a1}, {a3, a2}.

Of course, in the case of arbitraryN , there will be many more possible pairings. Now we solve
the (2, 1) problem for each of the pairs separately. For instance, in the case of (i), we solve for β1
and β2 in the equations,{

λ = a1 cos2 β1 + a3 sin2 β1,

λ = a2 cos2 β2 + a4 sin2 β2,
(24)

and so

cos2 β1 = λ− a3

a1 − a3
and cos2 β1 = λ− a4

a2 − a4
. (25)

We then define coherent combinations of eigenstates grouped in pairs:{|φ1〉 = eiθ1 cosβ1|ψ1〉 + eiθ3 sin β1|ψ3〉,
|φ2〉 = eiθ2 cosβ2|ψ2〉 + eiθ4 sin β2|ψ4〉. (26)

Then write P2 = |φ1〉〈φ1| + |φ2〉〈φ2|, and it follows that PAP = λP .
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As noted above, this problem is equivalent to finding a unitary matrix U such that the
matrix A′ = UAU∗ includes a 2 × 2 block given by the scalar matrix λ1l2. In the case
A = diag(a1, a2, a3, a4), observe that one choice for such a unitary is given by U = OD, where
D = diag(eiθ1 , eiθ2 , eiθ3 , eiθ4) and O is the orthogonal matrix given by

O =




cosβ1 0 sin β1 0
0 cosβ2 0 sin β2

− sin β1 0 cosβ1 0
0 − sin β2 0 cosβ2


 . (27)

4. Higher-rank projections

In this section we consider the problem of finding all possible rank-k projections P associ-
ated with a compression-value λ ∈ �k(T ); i.e., to solve for the rank-k projections P such that
PTP = λP . We shall focus on the Hermitian caseA = A∗. Recall that in the proof of Theorem 2.4
and the discussion of the previous section we explicitly constructed certain families of projections
to show that particular values of λ belonged to �k(A). However, what we would like is a method
for constructing such projections that captures all possibilities. Unlike the standard eigenvalue
and eigenspace problem, in the generic case of this compression problem there will be infinitely
many projections. Indeed, even in the typical case for the numerical range W(A) = �1(A) this
is the case. But it is possible, and in fact easy, to write down such a method for the k = 1 case.
There are of course more complications for k � 2.

First let us note that, while the eigenvalue-pairing approach constructs a diverse set of projec-
tions, it is not sufficient to capture all projections associated with values of �k(A). Indeed, even
consider the k = 1 case of a Hermitian matrixAwith spectrum {0, 1, 2}. Here, �1(A) = [0, 2]. Let
|ψi〉, i = 0, 1, 2, be unit eigenvectors for the corresponding eigenvalues. The eigenvalue-pairing
approach for λ = 1 in this case yields the family of projections P = |ψ〉〈ψ |, where

|ψ〉 = 1√
2

(
eiθ1 |ψ0〉 + eiθ2 |ψ2〉

)
. (28)

But the set of all projections P = |ψ〉〈ψ | such that 〈Aψ |ψ〉 = 1 is the larger set given by unit
vectors of the form

|ψ〉 = eiθ1c0|ψ0〉 + c1|ψ1〉 + eiθ2c0|ψ2〉. (29)

For an arbitrary Hermitian matrix A, the rank one projections P = |ψ〉〈ψ | associated with
values λ ∈ �1(A) may be computed in the following manner. Let a1 � · · · � aN be the eigen-
values for A, and let |ψi〉, 1 � i � N , be a choice of corresponding eigenvectors. Suppose we
have a unit vector |ψ〉 = ∑N

i=1 ci |ψi〉. Then a simple computation shows that

λ = 〈Aψ |ψ〉 if and only if λ =
N∑
i=1

ai |ci |2. (30)

This constructive condition characterizes the rank one projections associated with elements
of the numerical range. Notice that there are infinitely many possibilities for such projections
whenever λ is not an eigenvalue for A. There is a corresponding characterization for arbitrary
k, though it is not constructive for k � 2. Instead, in what follows we present a constructive,
algorithmic approach to find all higher-rank projections associated with compression-values of
�k(A) for k � 2.
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Let λ ∈ �k(A). By using a translation, we may assume that λ = 0. Let P+, P0, and P− be the
projections onto the eigenspaces of A for respectively, the positive eigenvalues, the eigenvalue
zero, and the negative eigenvalues. First, we consider the case when there is no degeneracy in the
spectrum of A; that is, λ = 0 is not an eigenvalue of A. Next choose a k-dimensional subspace
V+ of P+CN . Note that this is possible by Theorem 2.4, and our assumptions λ = 0 ∈ �k(A) =
[ak, aN−k+1], and the non-degeneracy of the spectrum. By the same reasoning, P−CN is at least
k-dimensional, and hence we may choose an isometry U : V+ → P−CN . Now we define a
k-dimensional subspace of CN :

V = {
v+ + Uv+ : v+ ∈ V+

}
. (31)

Next define a k-dimensional subspace W = f (A)V where

f (x) =
{|x|−1/2 if x /= 0,

1 if x = 0.
(32)

Observe that f (A)Af (A) = P+ − P−, and hence ∀v1, v2 ∈ V we have

〈Af (A)v1|f (A)v2〉=〈f (A)Af (A)v1|v2〉 (33)

=〈(P+ − P−)v1|v2〉 (34)

=〈P+v1|P+v2〉 − 〈P−v1|P−v2〉 = 0. (35)

It follows that PW is a rank-k projection such that PWAPW = 0.
Now we show that every rank-k projection P such that PAP = 0, can be written in the form

P = PW as above. Let P be such a projection, and let V be the k-dimensional subspace V =
f (A)−1W. Then for all v ∈ V we have

0=〈Af (A)v|f (A)v〉 = 〈f (A)Af (A)v|v〉 (36)

=〈(P+ − P−)v|v〉 = ‖P+v‖2 − ‖P−v‖2. (37)

In particular, this implies that the mapU(P+v) ≡ P−v determines a well defined isometryU :
V+ → V−, where V+ = P+V and V− = P−V. Thus, V+ and V− are both k-dimensional
and V is of the form given in Eq. (31), and hence P = PW as claimed.

We have presented a constructive method to obtain projections associated with the compression-
values of �k(A), in the case that there are no degeneracies in the spectrum of A. We have also
shown that every such projection arises in this manner. Let us summarize the method:

(i) Choose a k-dimensional subspace V+ of P+CN .
(ii) Choose a linear isometry U : V+ → P−CN .

(iii) Define the k-dimensional subspace V = {v+ + Uv+ : v+ ∈ V+}.
(iv) Let W = f (A)V. Then dim W = k and PWAPW = 0.

If there are degeneracies in the spectrum ofA, the above method may be adjusted by including
part of the subspace P0CN in the subspaces V+ and V− as follows: As above, we want to
construct all k-dimensional subspaces V of CN such that

〈(P+ − P−)v|v〉 = 0 ∀v ∈ V. (38)

This can be accomplished since 0 ∈ �k(A) = [ak, aN−k+1], and so k � dim P0CN + dim P±CN .
Consider all possible pairs of non-zero integers (k1, k2) with k1 + k2 = k, k1 � dim P0CN , and
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k2 � min{dim P−CN, dim P+CN }. (39)

Choose V0 as any k1-dimensional subspace of P0CN and choose V+ as any k2-dimensional
subspace ofP+CN . LetX : V+ → (V0)

⊥ ∩ P0CN be any operator and letU : V+ → P−(CN)
be any isometry and define

V = V0 + {v +Xv + Uv : v ∈ V+}. (40)

Then W = f (A)V is a k-dimensional subspace of CN with the desired properties.

5. Concluding remark

We conclude by briefly discussing the mathematical context of the work [1], which includes
applications of the present work to quantum computing. Every quantum operation E on a given
quantum system is determined operationally by a set of operators {Ai} that act on the Hilbert
space for the system via the so-called operator-sum representation E(·) = ∑

i Ai(·)A∗
i . (See [7]

for a brief introduction to some of the mathematical aspects of quantum computing.) In the
context of quantum error correction, the Ai are often called “error operators”. It is the effects of
such operators that must be mitigated for whenever there is a transfer of quantum information
determined by E. There are numerous strategies that have been, and are being, developed for this
type of error correction. We go into detail on this subject in [1], but here we indicate how the
mathematical conditions that characterize correction in the fundamental protocol for quantum
error correction connects with the higher-rank numerical ranges. In the “standard model” for
quantum error correction [8,9], codes are identified with subspaces of the system Hilbert space,
and “correctability” of a given code subspace C in terms of an error model E is shown to be
equivalent to the existence of scalars � = (λij ) such that

PCA
∗
i AjPC = λijPC ∀i, j. (41)

Here, PC denotes the projection of the system space onto C. Thus, the problem of finding cor-
rectable codes for a given error model E = {Ai} is equivalent to finding the compression-values
inside the higher-rank numerical ranges �k(A∗

i Aj )∀i, j and ∀k > 1, along with the corresponding
projections. As indicated in [1], this problem may be reduced to a system of such problems for
Hermitian or normal operators.
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