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Abstract 

We give a necessary and sufficient condition for the existence of near-optimal NF-colorings of 
cycles. Troxell (preprint) studied near-optimal Nf-colorings and proved most of the result 
presented here; our contribution is to complete the proof for odd cycles. 

1. Introduction 

T-colorings were originally introduced in connection with a radio frequency assign- 

ment problem. A T-coloring of a graph is a functionf: I/ + N from the vertices of 

a graph to the non-negative integers, such that for adjacent vertices v and w, 
If(o) -f(w)l$T. Frequently T is chosen to be (0, . . . , r} for some r, in which case the 

coloring is also called an (r + l)-distant coloring. 

The T-coloring idea can be extended to set colorings of graphs, that is, to functions 

f: V + (? ), where (? ) is the collection of all k-subsets of N. A (set) T-coloring is a set 

coloring f for which Ic, - c, l$T whenever u and w are adjacent, c,, Ed and 
c, of. Define ds(A, B) to be the minimum value (over all elements of A and B) of 
la-bl. If T={O,..., I}, then a (set) T-coloring is a set coloring for which 

ds(f(u),f(w)) > r whenever u and w are adjacent. We also refer to a set coloring 
f: I/ + (F) as a k-tuple coloring. 

Finally, a no-hole, k-tuple, (r + l)-distant coloring is one for which x Ed for some 

uifandonlyifxE{O,..., c} for some c. The modification “no-hole” of course refers to 
the fact that every color in the set is used. Troxell [4] has studied no-hole k-tuple, 

(r + I)-distant colorings of graphs, determining necessary and sufficient conditions for 
the existence of such colorings. She also introduced the concept of a “near-optimal” 

coloring in this context, and obtained some results for paths, cycles and interval 

graphs. Following Troxell, we say that a graph G has an IV:-coloring if it has 
a no-hole, k-tuple, (r + l)-distant coloring. 
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The spun of a coloring is the difference between the largest and smallest colors 
actually used to color any vertex. The minimum span over all k-tuple T-colorings of 
a graph G is denoted by sp’+(G), or by spF(G) if T = (0, . . . , r}. In general, more colors 
may be required by a no-hole coloring of G than by a coloring which leaves some gaps. 
Troxell defined a near-optimal N$coloring of G as one whose span is at most sp’: (G) + r. 

2. Results 

There are graphs with N%colorings but without near-optimal ones. Troxell [4] 
constructed graphs that are “arbitrarily bad” in this regard. She also showed that 
paths, unit interval graphs and some cycles do have near-optimal colorings whenever 
they have Nf-colorings. 

Tesman [3] and Furedi et al. [l] proved the following. 

Proposition 1. spF(G) > (r + 1)(x(G) - 1) + 2(k - 1). 

Using this bound, Troxell showed the following. 

Proposition 2 (Troxell [4]). If n is even and C, has an Nf-coloring, then it has a near- 
optimal one. Zf n is odd, k < 2(r + 1) and C, has an Nf-coloring, then it has a near- 
optimal one. 

Left open was the general case for n odd, which we now proceed to settle. We will 
need one simple result about the fractional chromatic number. (There are a few 
equivalent definitions of the fractional chromatic number in wide use; the following 
definition is from [2].) 

Definition. A graph G has an (a, b)-coloring if each vertex can be assigned a b-subset 
of (0, . . . , a - l} so that adjacent vertices are assigned disjoint subsets. Thefractional 
chromatic number of G is xF(G) = inf{a/b 1 G can be (a, b)-colored). 

The next proposition is well known; we include a proof for completeness. 

Proposition 3. xF(Czm+ 1) = 2 + l/m. 

Proof. Suppose that we have an (a, b)-coloring of CZm+ r . Each of the a colors can be 
assigned to at most c((&,,,+ 1) = m vertices of C2,,,+ 1, where a(G) denotes the size of 
a largest independent set of vertices in G. Hence, 2m + 1 < am/b, or (2m + 1)/m < u/b, 
so that (2m + 1)/m < x~(C~~+~). It now suffices to exhibit a (2m + l,m)-coloring of 
C 2m+l. Suppose that CZm+i hasvertex set V = {~~,...,v~,,,+~} andedges {v~,v~,,,+~} 
and {ai, Vi+ i} for 1 < i < 2m + 1. Assign the colors {(i - l)m, . . . , im - l} to vi (inter- 
preting the colors mod2m + 1). The only condition not immediately obvious is that 
the sets assigned to v1 and v, are disjoint. The set assigned to u, is 
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(cwm, . . f 3 (2m + 1)m - l}, which is {m + 1, . . . ,2m}, clearly disjoint from 

(0, . . * 3 m-l}. 0 

Lemma. Suppose that n = 21 + 1, 1 > 2. Then spF(C,) 2 2k + r + [(k + r)/ll - 1. 

Proof. Let C, be a cycle, with vertex set I/ = {or, . . . , 0,) and edges { ur , u,> and 
{Ui, Ui+ 1 } for 1 < i < n. Suppose we have a k-tuple, (r + 1)-distant coloring of C,, 
f: V -+ (f), s = (0, . . . , s - 11. Then we claim that there is a (k + r)-tuple coloring using 
colors drawn from (0, . . . , s + r - 1 }. Accepting the claim, and using Proposition 3, 
we see that 

which (by simple algebraic manipulation) implies that s - 1 2 2k + r + (k + r)/l - 1. 
Since s is an integer, this means that s - 1 B 2k + r + [(k + r)/ll - 1, as desired. 

Now we prove the claim. By Proposition 1, s > 2k + 2r. Sincefis an (r + 1)-distant 
coloring,wecanfindsetsofcolorsD, = {u~,...,u,_~} cSand Dz = {bo,...,b,_I} 

c S such that for all j, 1 < ds(f(ur),aj) < r, 1 < ds(f(u,), bj) d r, and DInD, = 8, 

as follows. 
The set S -f(ul) -f(oz) consists of a collection of gaps, that is, of maximal sets of 

consecutive integers. Without loss of generality, suppose that the smallest element of 
f(ul)uf(uz) is inf(ui). Then at least one gap consists of at least r numbers, and has its 
lower endpoint adjacent to an element of f(or) and its upper endpoint adjacent 
to an element off(uz). If this gap contains at least 2r numbers, or if there is a second 
gap of size at least r, then it is clear that D1 and D2 may be chosen as claimed. 
Otherwise, suppose the unique gap of size at least r is {j, j + 1, . . . ,j + 2r - i - 11. 
The numbers in each of the remaining gaps may be assigned to D1 or D2, 

but not both. Assign numbers from these gaps to D, and D2 in any 
a total of i numbers have been assigned, ir of them to D, and 

(Note that S -f(ul) -f(uZ) - {j, j + 1, . . . ,j + 2r - i - l} has s - (2k t 
elements.) Assign the numbers {j,...,j+r-i, - l> to 
{j+r-i+i2 , . . . ,j + 2r - i - l> to Dz, completing the construction. 

way, until 
iz to D2. 
2r - i) > i 

DI and 

Let Dzi c S, 2 < i < 1, be a set of r colors such that 1 < ds(f(uzi), x) < r, for every 
x E Dzi. Finally, let D = Dzi+l, 1 d i < 1, be a set of r new colors. Define 
g(ui) =f(Ui)U Di, 1 d i < n. It follows easily from the definitions of the Di and the fact 
that fis a T-coloring, that g is a (k + r)-tuple coloring of C,. 0 

Remark. The bound provided by this lemma is better than the bound in Proposition 
1 only if r(k + r)/ll - 1 > r. 

Proposition 4. Suppose that n = 21 + 1, 12 2, and r < k. Then C, has a near-optimal 
Nf-coloring. 
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Proof. Let m = [(k + r)/ll, a = Ir(k + r)/ll - k - r, and s = 2k + 2r + m. The fol- 
lowing is an NF-coloring of C,, and is near optimal by the lemma. We use colors 

(0, . . . . s - l}; colors as listed should be interpreted mods. Each vertex is assigned 
a set of k consecutive colors, where we consider s - 1 to be adjacent to 0, i.e., 
“consecutive” means “consecutive mods”. Note that the gaps between color sets 
alternately contain r and r + 1 colors up to u 1 + za, after which all gaps contain r colors. 

01 0 . . . k-l 

02 k+r . . . 2k+r-1 

03 2k + 2r + 1 . . . 3k + 2r 

v1+2a a(2k + 2r + 1) . . . (k - 1) + a(2k + 2r + 1) 

v2+2a a(2k + 2r + 1) + (k + r) . . . (k - 1) + a(2k + 2r + 1) + (k + r) 

V3+2a a(2k + 2r + 1) + 2(k + r) . . . (k - 1) + a(2k + 2r + 1) + 2(k + r) 

V” a(2k + 2r + 1) + (I - a)(2k + 2r) . . . 

(k - 1) + a(2k + 2r + 1) + (1- a)(2k + 2r) 

It is easy to see that this is a k-tuple, (r + l)-distant coloring, except that it may not 
be obvious that the sets coloring u1 and u, are at distance r + 1. A little algebraic 
manipulation shows that the set assigned to V, is {k + r + m, . . . ,2k + r + m - l}, so 
the sets are indeed at distance (r + 1). (This is actually true in a stronger sense than 
needed here. Since (2k + r + m - 1) + (r + 1) = 2k + 2r + m = 0 (mods), the sets of 
colors are at distance r + 1 even when distance is measured mods.) 

It remains to be seen that this coloring has no holes; we need to show that the colors 
{k, . . . ,k+r-1) and(2k+r,..., 2k + 2r) get used. It is helpful to list the colors 
assigned to the even numbered vertices (that is, the real colors, in the range 
(0, . . . 7s - 11). 

v2 k+r . . . 2k+r-1 

k+r-(m-1)...2k+r-m 

vz+zo 

v4+2. 

v6+20 

k+r-a(m- 1) . . . 2k + r - a(m - 1) - 1 

k+r-a(m-1)-m . . . 2k + r - a(m - 1) - m - 1 

k+r-a(m- 1)-2m . . . 2k + r - a(m - 1) - 2m - 1 
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V2i+2a k + r - a(m - 1) -(i - 1)m . . . 2k + r - a(m - 1) -(i - 1)m - 1 

v21 m...k+m-1 

Perhaps the easiest way to visualize this is to think of a block of k colors sliding 
down from k + r to m in increments of m - 1 or m. Since m Q k, the block does not 
slide far enough from one step to the next to leave any gaps, so all of the colors 
between k and k + r - 1 do get used. 

Similarly, we list the colors assigned to the odd numbered vertices; for convenience, 
we list only the starting color. There are two cases; if m = 1, then the starting color for 
u3 through vl +24 is 2k + 2r + 1 = O(mods). 

03 0 . . . 

vt +2n 

v3+2a 

v5+2a 

0 . . . 

2k + 2r + 1 - (a - l)(m - 1) - m . . 

2k + 2r + 1 - (a - l)(m - 1) - 2m . . . 

v2i+ 1+2a 2k + 2r + 1 - (a - l)(m - 1) - im . . . 

271+21 k+r+m . . 

If m > 1 the list is 

V3 2k+2r+l . . . 

05 2k+2r+l-(m-l)... 

u1+2a 2k+2r+l-(a-l)(m-l)... 

v3+2a 2k + 2r + 1 - (a - l)(m - 1) - m . . . 

V5+2a 2k + 2r + 1 - (a - l)(m - 1) - 2m . . . 

V2i+l+2a 2k + 2r + 1 - (a - l)(m - 1) - im . . . 

v1+21 k+r+m . . . 
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In either case, since k + I + m < 2k + r, the colors in (2k + r, . . . ,2k + 2r) are 
used. 0 

Finally, combining this result with Troxell’s results, we get the following theorem. 

Theorem. C, has an NF-coloring if and only if 

n > 2(rr/kl + 1) + 1. 

If C,, has an Nf-coloring then it has a near-optimal one. 
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