Note

No-hole k-tuple $(r+1)$-distant colorings of odd cycles

David R. Guichard
Department of Mathematics, Whitman College, Walla Walla, WA 99362, USA

Received 11 January 1994; revised 30 August 1994

Abstract

We give a necessary and sufficient condition for the existence of near-optimal N_{r}^{k}-colorings of cycles. Troxell (preprint) studied near-optimal N_{r}^{k}-colorings and proved most of the result presented here; our contribution is to complete the proof for odd cycles.

1. Introduction

T-colorings were originally introduced in connection with a radio frequency assignment problem. A T-coloring of a graph is a function $f: V \rightarrow \mathbb{N}$ from the vertices of a graph to the non-negative integers, such that for adjacent vertices v and w, $|f(v)-f(w)| \notin T$. Frequently T is chosen to be $\{0, \ldots, r\}$ for some r, in which case the coloring is also called an $(r+1)$-distant coloring.

The T-coloring idea can be extended to set colorings of graphs, that is, to functions $f: V \rightarrow\binom{\mathbb{N}}{k}$, where $\binom{\mathbb{N}}{k}$ is the collection of all k-subsets of \mathbb{N}. A (set) T-coloring is a set coloring f for which $\left|c_{v}-c_{w}\right| \notin T$ whenever v and w are adjacent, $c_{v} \in f(v)$ and $c_{w} \in f(w)$. Define $\mathrm{ds}(A, B)$ to be the minimum value (over all elements of A and B) of $|a-b|$. If $T=\{0, \ldots, r\}$, then a (set) T-coloring is a set coloring for which $\operatorname{ds}(f(v), f(w))>r$ whenever v and w are adjacent. We also refer to a set coloring $f: V \rightarrow\binom{\mathbb{N}}{k}$ as a k-tuple coloring.

Finally, a no-hole, k-tuple, $(r+1)$-distant coloring is one for which $x \in f(t)$ for some v if and only if $x \in\{0, \ldots, c\}$ for some c. The modification "no-hole" of course refers to the fact that every color in the set is used. Troxell [4] has studied no-hole k-tuple, ($r+1$)-distant colorings of graphs, determining necessary and sufficient conditions for the existence of such colorings. She also introduced the concept of a "near-optimal" coloring in this context, and obtained some results for paths, cycles and interval graphs. Following Troxell, we say that a graph G has an N_{r}^{k}-coloring if it has a no-hole, k-tuple, $(r+1)$-distant coloring.

The span of a coloring is the difference between the largest and smallest colors actually used to color any vertex. The minimum span over all k-tuple T-colorings of a graph G is denoted by $\operatorname{sp}_{T}^{k}(G)$, or by $\operatorname{sp}_{r}^{k}(G)$ if $T=\{0, \ldots, r\}$. In general, more colors may be required by a no-hole coloring of G than by a coloring which leaves some gaps. Troxell defined a near-optimal N_{r}^{k}-coloring of G as one whose span is at most $\operatorname{sp}_{r}^{k}(G)+r$.

2. Results

There are graphs with N_{r}^{k}-colorings but without near-optimal ones. Troxell [4] constructed graphs that are "arbitrarily bad" in this regard. She also showed that paths, unit interval graphs and some cycles do have near-optimal colorings whenever they have N_{r}^{k}-colorings.

Tesman [3] and Furedi et al. [1] proved the following.
Proposition 1. $\mathrm{sp}_{r}^{k}(G) \geqslant(r+1)(\chi(G)-1)+2(k-1)$.
Using this bound, Troxell showed the following.
Proposition 2 (Troxell [4]). If n is even and C_{n} has an N_{r}^{k}-coloring, then it has a nearoptimal one. If n is odd, $k<2(r+1)$ and C_{n} has an N_{r}^{k}-coloring, then it has a nearoptimal one.

Left open was the general case for n odd, which we now proceed to settle. We will need one simple result about the fractional chromatic number. (There are a few equivalent definitions of the fractional chromatic number in wide use; the following definition is from [2].)

Definition. A graph G has an (a, b)-coloring if each vertex can be assigned a b-subset of $\{0, \ldots, a-1\}$ so that adjacent vertices are assigned disjoint subsets. The fractional chromatic number of G is $\chi_{F}(G)=\inf \{a / b \mid G$ can be (a, b)-colored $\}$.

The next proposition is well known; we include a proof for completeness.
Proposition 3. $\chi_{F}\left(C_{2 m+1}\right)=2+1 / m$.
Proof. Suppose that we have an (a, b)-coloring of $C_{2 m+1}$. Each of the a colors can be assigned to at most $\alpha\left(C_{2 m+1}\right)=m$ vertices of $C_{2 m+1}$, where $\alpha(G)$ denotes the size of a largest independent set of vertices in G. Hence, $2 m+1 \leqslant a m / b$, or $(2 m+1) / m \leqslant a / b$, so that $(2 m+1) / m \leqslant \chi_{F}\left(C_{2 m+1}\right)$. It now suffices to exhibit a $(2 m+1, m)$-coloring of $C_{2 m+1}$. Suppose that $C_{2 m+1}$ has vertex set $V=\left\{v_{1}, \ldots, v_{2 m+1}\right\}$ and edges $\left\{v_{1}, v_{2 m+1}\right\}$ and $\left\{v_{i}, v_{i+1}\right\}$ for $1 \leqslant i<2 m+1$. Assign the colors $\{(i-1) m, \ldots, i m-1\}$ to v_{i} (interpreting the colors $\bmod 2 m+1)$. The only condition not immediately obvious is that the sets assigned to v_{1} and v_{n} are disjoint. The set assigned to v_{n} is
$\{(2 m) m, \ldots,(2 m+1) m-1\}$, which is $\{m+1, \ldots, 2 m\}$, clearly disjoint from $\{0, \ldots, m-1\}$.

Lemma. Suppose that $n=2 l+1, l \geqslant 2$. Then $\operatorname{sp}_{r}^{k}\left(C_{n}\right) \geqslant 2 k+r+\lceil(k+r) / l\rceil-1$.

Proof. Let C_{n} be a cycle, with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edges $\left\{v_{1}, v_{n}\right\}$ and $\left\{v_{i}, v_{i+1}\right\}$ for $1 \leqslant i<n$. Suppose we have a k-tuple, $(r+1)$-distant coloring of C_{n}, $f: V \rightarrow\binom{S}{k}, S=\{0, \ldots, s-1\}$. Then we claim that there is a $(k+r)$-tuple coloring using colors drawn from $\{0, \ldots, s+r-1\}$. Accepting the claim, and using Proposition 3, we see that

$$
\frac{s+r}{k+r} \geqslant 2+\frac{1}{l}
$$

which (by simple algebraic manipulation) implies that $s-1 \geqslant 2 k+r+(k+r) / l-1$. Since s is an integer, this means that $s-1 \geqslant 2 k+r+\lceil(k+r) / l\rceil-1$, as desired.

Now we prove the claim. By Proposition $1, s>2 k+2 r$. Since f is an $(r+1)$-distant coloring, we can find sets of colors $D_{1}=\left\{a_{0}, \ldots, a_{r-1}\right\} \subset S$ and $D_{2}=\left\{b_{0}, \ldots, b_{r-1}\right\}$ $\subset \boldsymbol{S}$ such that for all $j, 1 \leqslant \mathrm{ds}\left(f\left(v_{1}\right), a_{j}\right) \leqslant r, 1 \leqslant \mathrm{ds}\left(f\left(v_{2}\right), b_{j}\right) \leqslant r$, and $D_{1} \cap D_{2}=\emptyset$, as follows.

The set $S-f\left(v_{1}\right)-f\left(v_{2}\right)$ consists of a collection of gaps, that is, of maximal sets of consecutive integers. Without loss of generality, suppose that the smallest element of $f\left(v_{1}\right) \cup f\left(v_{2}\right)$ is in $f\left(v_{1}\right)$. Then at least one gap consists of at least r numbers, and has its lower endpoint adjacent to an element of $f\left(v_{1}\right)$ and its upper endpoint adjacent to an element of $f\left(v_{2}\right)$. If this gap contains at least $2 r$ numbers, or if there is a second gap of size at least r, then it is clear that D_{1} and D_{2} may be chosen as claimed. Otherwise, suppose the unique gap of size at least r is $\{j, j+1, \ldots, j+2 r-i-1\}$. The numbers in each of the remaining gaps may be assigned to D_{1} or D_{2}, but not both. Assign numbers from these gaps to D_{1} and D_{2} in any way, until a total of i numbers have been assigned, i_{1} of them to D_{1} and i_{2} to D_{2}. (Note that $S-f\left(v_{1}\right)-f\left(v_{2}\right)-\{j, j+1, \ldots, j+2 r-i-1\}$ has $s-(2 k+2 r-i)>i$ elements.) Assign the numbers $\left\{j, \ldots, j+r-i_{1}-1\right\}$ to D_{1} and $\left\{j+r-i+i_{2}, \ldots, j+2 r-i-1\right\}$ to D_{2}, completing the construction.

Let $D_{2 i} \subset S, 2 \leqslant i \leqslant l$, be a set of r colors such that $1 \leqslant \mathrm{ds}\left(f\left(v_{2 i}\right), x\right) \leqslant r$, for every $x \in D_{2 i}$. Finally, let $D=D_{2 i+1}, 1 \leqslant i \leqslant l$, be a set of r new colors. Define $g\left(v_{i}\right)=f\left(v_{i}\right) \cup D_{i}, 1 \leqslant i \leqslant n$. It follows easily from the definitions of the D_{i} and the fact that f is a T-coloring, that g is a $(k+r)$-tuple coloring of C_{n}.

Remark. The bound provided by this lemma is better than the bound in Proposition 1 only if $\lceil(k+r) / l\rceil-1>r$.

Proposition 4. Suppose that $n=2 l+1, l \geqslant 2$, and $r<k$. Then C_{n} has a near-optimal N_{r}^{k}-coloring.

Proof. Let $m=\lceil(k+r) / l\rceil, a=l\lceil(k+r) / l\rceil-k-r$, and $s=2 k+2 r+m$. The following is an N_{r}^{k}-coloring of C_{n}, and is near optimal by the lemma. We use colors $\{0, \ldots, s-1\}$; colors as listed should be interpreted mod s. Each vertex is assigned a set of k consecutive colors, where we consider $s-1$ to be adjacent to 0 , i.e., "consecutive" means "consecutive mod s ". Note that the gaps between color sets alternately contain r and $r+1$ colors up to $v_{1+2 a}$, after which all gaps contain r colors.

$$
\begin{array}{ll}
v_{1} & 0 \ldots k-1 \\
v_{2} & k+r \ldots 2 k+r-1 \\
v_{3} & 2 k+2 r+1 \ldots 3 k+2 r \\
& \vdots \\
v_{1+2 a} & a(2 k+2 r+1) \ldots(k-1)+a(2 k+2 r+1) \\
v_{2+2 a} & a(2 k+2 r+1)+(k+r) \ldots(k-1)+a(2 k+2 r+1)+(k+r) \\
v_{3+2 a} & a(2 k+2 r+1)+2(k+r) \ldots(k-1)+a(2 k+2 r+1)+2(k+r) \\
& \vdots \\
v_{n} & a(2 k+2 r+1)+(l-a)(2 k+2 r) \ldots \\
& (k-1)+a(2 k+2 r+1)+(l-a)(2 k+2 r)
\end{array}
$$

It is easy to see that this is a k-tuple, $(r+1)$-distant coloring, except that it may not be obvious that the sets coloring v_{1} and v_{n} are at distance $r+1$. A little algebraic manipulation shows that the set assigned to v_{n} is $\{k+r+m, \ldots, 2 k+r+m-1\}$, so the sets are indeed at distance $(r+1)$. (This is actually true in a stronger sense than needed here. Since $(2 k+r+m-1)+(r+1)=2 k+2 r+m \equiv 0(\bmod s)$, the sets of colors are at distance $r+1$ even when distance is measured $\bmod s$.)

It remains to be seen that this coloring has no holes; we need to show that the colors $\{k, \ldots, k+r-1\}$ and $(2 k+r, \ldots, 2 k+2 r\}$ get used. It is helpful to list the colors assigned to the even numbered vertices (that is, the real colors, in the range $\{0, \ldots, s-1\}$).

$$
\begin{array}{ll}
v_{2} & k+r \ldots 2 k+r-1 \\
v_{4} & k+r-(m-1) \ldots 2 k+r-m \\
& \vdots \\
v_{2+2 a} & k+r-a(m-1) \ldots 2 k+r-a(m-1)-1 \\
v_{4+2 a} & k+r-a(m-1)-m \ldots 2 k+r-a(m-1)-m-1 \\
v_{6+2 a} & k+r-a(m-1)-2 m \ldots 2 k+r-a(m-1)-2 m-1
\end{array}
$$

$$
\begin{array}{ll}
v_{2 i+2 a} & k+r-a(m-1)-(i-1) m \ldots 2 k+r-a(m-1)-(i-1) m-1 \\
& \vdots \\
v_{2 l} & m \ldots k+m-1
\end{array}
$$

Perhaps the easiest way to visualize this is to think of a block of k colors sliding down from $k+r$ to m in increments of $m-1$ or m. Since $m \leqslant k$, the block does not slide far enough from one step to the next to leave any gaps, so all of the colors between k and $k+r-1$ do get used.

Similarly, we list the colors assigned to the odd numbered vertices; for convenience, we list only the starting color. There are two cases; if $m=1$, then the starting color for v_{3} through $v_{1+2 a}$ is $2 k+2 r+1=0(\bmod s)$.

$$
\begin{array}{ll}
v_{3} & 0 \ldots \\
& \vdots \\
v_{1+2 a} & 0 \ldots \\
v_{3+2 a} & 2 k+2 r+1-(a-1)(m-1)-m \ldots \\
v_{5+2 a} & 2 k+2 r+1-(a-1)(m-1)-2 m \ldots \\
& \vdots \\
v_{2 i+1+2 a} & 2 k+2 r+1-(a-1)(m-1)-i m \ldots \\
& \vdots \\
v_{1+2 l} & k+r+m \ldots
\end{array}
$$

If $m>1$ the list is

$$
\begin{array}{ll}
v_{3} & 2 k+2 r+1 \ldots \\
v_{5} & 2 k+2 r+1-(m-1) \ldots \\
& \vdots \\
v_{1+2 a} & 2 k+2 r+1-(a-1)(m-1) \ldots \\
v_{3+2 a} & 2 k+2 r+1-(a-1)(m-1)-m \ldots \\
v_{5+2 a} & 2 k+2 r+1-(a-1)(m-1)-2 m \ldots \\
& \vdots \\
v_{2 i+1+2 a} & 2 k+2 r+1-(a-1)(m-1)-i m \ldots \\
& \vdots \\
v_{1+2 l} & k+r+m \ldots
\end{array}
$$

In either case, since $k+r+m \leqslant 2 k+r$, the colors in $\{2 k+r, \ldots, 2 k+2 r\}$ are used.

Finally, combining this result with Troxell's results, we get the following theorem.
Theorem. C_{n} has an N_{r}^{k}-coloring if and only if

$$
n \geqslant 2(\lceil r / k\rceil+1)+1
$$

If C_{n} has an N_{r}^{k}-coloring then it has a near-optimal one.

References

[1] Z. Furedi, J.R. Griggs and D.J. Kleitman, Pair labellings with given distance, SIAM J. Discrete Math. 2 (1989) 491-499.
[2] M. Larsen, J. Propp and D. Ullman, The fractional chromatic number of a graph and construction of Mycielski, preprint.
[3] B.A. Tesman, T-colorings, list T-colorings and set T-colorings of graphs, Ph.D. Thesis, Department of Mathematics, Rutgers University New Brunswick, NJ (1989).
[4] D. Sakai Troxell, No-hole k-tuple $(r+1)$-distant colorings, Discrete Appl. Math. 64 (1996) 67-85.

