

Discrete Applied Mathematics 64 (1996) 87-92

DISCRETE APPLIED MATHEMATICS

Note

No-hole k-tuple (r + 1)-distant colorings of odd cycles

David R. Guichard

Department of Mathematics, Whitman College, Walla Walla, WA 99362, USA

Received 11 January 1994; revised 30 August 1994

Abstract

We give a necessary and sufficient condition for the existence of near-optimal N_r^k -colorings of cycles. Troxell (preprint) studied near-optimal N_r^k -colorings and proved most of the result presented here; our contribution is to complete the proof for odd cycles.

1. Introduction

T-colorings were originally introduced in connection with a radio frequency assignment problem. A *T*-coloring of a graph is a function $f: V \to \mathbb{N}$ from the vertices of a graph to the non-negative integers, such that for adjacent vertices v and w, $|f(v) - f(w)| \notin T$. Frequently *T* is chosen to be $\{0, \ldots, r\}$ for some *r*, in which case the coloring is also called an (r + 1)-distant coloring.

The *T*-coloring idea can be extended to set colorings of graphs, that is, to functions $f: V \to {\binom{\mathbb{N}}{k}}$, where ${\binom{\mathbb{N}}{k}}$ is the collection of all *k*-subsets of \mathbb{N} . A (set) *T*-coloring is a set coloring *f* for which $|c_v - c_w| \notin T$ whenever *v* and *w* are adjacent, $c_v \in f(v)$ and $c_w \in f(w)$. Define ds(*A*, *B*) to be the minimum value (over all elements of *A* and *B*) of |a - b|. If $T = \{0, ..., r\}$, then a (set) *T*-coloring is a set coloring for which ds(f(v), f(w)) > r whenever *v* and *w* are adjacent. We also refer to a set coloring $f: V \to {\binom{\mathbb{N}}{k}}$ as a *k*-tuple coloring.

Finally, a no-hole, k-tuple, (r + 1)-distant coloring is one for which $x \in f(v)$ for some v if and only if $x \in \{0, ..., c\}$ for some c. The modification "no-hole" of course refers to the fact that every color in the set is used. Troxell [4] has studied no-hole k-tuple, (r + 1)-distant colorings of graphs, determining necessary and sufficient conditions for the existence of such colorings. She also introduced the concept of a "near-optimal" coloring in this context, and obtained some results for paths, cycles and interval graphs. Following Troxell, we say that a graph G has an N_r^k -coloring if it has a no-hole, k-tuple, (r + 1)-distant coloring.

The span of a coloring is the difference between the largest and smallest colors actually used to color any vertex. The minimum span over all k-tuple T-colorings of a graph G is denoted by $\operatorname{sp}_T^k(G)$, or by $\operatorname{sp}_r^k(G)$ if $T = \{0, \ldots, r\}$. In general, more colors may be required by a no-hole coloring of G than by a coloring which leaves some gaps. Troxell defined a *near-optimal* N_r^k -coloring of G as one whose span is at most $\operatorname{sp}_r^k(G) + r$.

2. Results

There are graphs with N_r^k -colorings but without near-optimal ones. Troxell [4] constructed graphs that are "arbitrarily bad" in this regard. She also showed that paths, unit interval graphs and some cycles do have near-optimal colorings whenever they have N_r^k -colorings.

Tesman [3] and Furedi et al. [1] proved the following.

Proposition 1. $\operatorname{sp}_{r}^{k}(G) \ge (r+1)(\chi(G)-1) + 2(k-1).$

Using this bound, Troxell showed the following.

Proposition 2 (Troxell [4]). If n is even and C_n has an N_r^k -coloring, then it has a nearoptimal one. If n is odd, k < 2(r + 1) and C_n has an N_r^k -coloring, then it has a nearoptimal one.

Left open was the general case for n odd, which we now proceed to settle. We will need one simple result about the fractional chromatic number. (There are a few equivalent definitions of the fractional chromatic number in wide use; the following definition is from [2].)

Definition. A graph G has an (a, b)-coloring if each vertex can be assigned a b-subset of $\{0, ..., a - 1\}$ so that adjacent vertices are assigned disjoint subsets. The *fractional* chromatic number of G is $\chi_F(G) = \inf \{a/b | G \text{ can be } (a, b)\text{-colored}\}.$

The next proposition is well known; we include a proof for completeness.

Proposition 3. $\chi_F(C_{2m+1}) = 2 + 1/m$.

Proof. Suppose that we have an (a, b)-coloring of C_{2m+1} . Each of the *a* colors can be assigned to at most $\alpha(C_{2m+1}) = m$ vertices of C_{2m+1} , where $\alpha(G)$ denotes the size of a largest independent set of vertices in *G*. Hence, $2m + 1 \leq am/b$, or $(2m + 1)/m \leq a/b$, so that $(2m + 1)/m \leq \chi_F(C_{2m+1})$. It now suffices to exhibit a (2m + 1, m)-coloring of C_{2m+1} . Suppose that C_{2m+1} has vertex set $V = \{v_1, \ldots, v_{2m+1}\}$ and edges $\{v_1, v_{2m+1}\}$ and $\{v_i, v_{i+1}\}$ for $1 \leq i < 2m + 1$. Assign the colors $\{(i - 1)m, \ldots, im - 1\}$ to v_i (interpreting the colors mod 2m + 1). The only condition not immediately obvious is that the sets assigned to v_1 and v_n are disjoint. The set assigned to v_n is

 $\{(2m)m, \ldots, (2m+1)m-1\}$, which is $\{m+1, \ldots, 2m\}$, clearly disjoint from $\{0, \ldots, m-1\}$. \Box

Lemma. Suppose that n = 2l + 1, $l \ge 2$. Then $\operatorname{sp}_r^k(C_n) \ge 2k + r + \lceil (k+r)/l \rceil - 1$.

Proof. Let C_n be a cycle, with vertex set $V = \{v_1, \ldots, v_n\}$ and edges $\{v_1, v_n\}$ and $\{v_i, v_{i+1}\}$ for $1 \le i < n$. Suppose we have a k-tuple, (r + 1)-distant coloring of C_n , $f: V \to {S \choose k}, S = \{0, \ldots, s - 1\}$. Then we claim that there is a (k + r)-tuple coloring using colors drawn from $\{0, \ldots, s + r - 1\}$. Accepting the claim, and using Proposition 3, we see that

$$\frac{s+r}{k+r} \ge 2 + \frac{1}{l},$$

which (by simple algebraic manipulation) implies that $s - 1 \ge 2k + r + (k + r)/l - 1$. Since s is an integer, this means that $s - 1 \ge 2k + r + \lfloor (k + r)/l \rfloor - 1$, as desired.

Now we prove the claim. By Proposition 1, s > 2k + 2r. Since f is an (r + 1)-distant coloring, we can find sets of colors $D_1 = \{a_0, \ldots, a_{r-1}\} \subset S$ and $D_2 = \{b_0, \ldots, b_{r-1}\} \subset S$ such that for all j, $1 \leq ds(f(v_1), a_j) \leq r, 1 \leq ds(f(v_2), b_j) \leq r$, and $D_1 \cap D_2 = \emptyset$, as follows.

The set $S - f(v_1) - f(v_2)$ consists of a collection of gaps, that is, of maximal sets of consecutive integers. Without loss of generality, suppose that the smallest element of $f(v_1) \cup f(v_2)$ is in $f(v_1)$. Then at least one gap consists of at least r numbers, and has its lower endpoint adjacent to an element of $f(v_1)$ and its upper endpoint adjacent to an element of $f(v_2)$. If this gap contains at least 2r numbers, or if there is a second gap of size at least r, then it is clear that D_1 and D_2 may be chosen as claimed. Otherwise, suppose the unique gap of size at least r is $\{j, j + 1, ..., j + 2r - i - 1\}$. The numbers in each of the remaining gaps may be assigned to D_1 or D_2 , but not both. Assign numbers from these gaps to D_1 and D_2 in any way, until a total of *i* numbers have been assigned, i_1 of them to D_1 and i_2 to D_2 . (Note that $S - f(v_1) - f(v_2) - \{j, j+1, \dots, j+2r-i-1\}$ has s - (2k+2r-i) > ithe numbers $\{j, ..., j + r - i_1 - 1\}$ elements.) Assign to D_1 and $\{j+r-i+i_2,\ldots,j+2r-i-1\}$ to D_2 , completing the construction.

Let $D_{2i} \subset S$, $2 \leq i \leq l$, be a set of *r* colors such that $1 \leq ds(f(v_{2i}), x) \leq r$, for every $x \in D_{2i}$. Finally, let $D = D_{2i+1}$, $1 \leq i \leq l$, be a set of *r* new colors. Define $g(v_i) = f(v_i) \cup D_i$, $1 \leq i \leq n$. It follows easily from the definitions of the D_i and the fact that *f* is a *T*-coloring, that *g* is a (k + r)-tuple coloring of C_n . \Box

Remark. The bound provided by this lemma is better than the bound in Proposition 1 only if $\lceil (k+r)/l \rceil - 1 > r$.

Proposition 4. Suppose that n = 2l + 1, $l \ge 2$, and r < k. Then C_n has a near-optimal N_r^k -coloring.

Proof. Let $m = \lceil (k+r)/l \rceil$, $a = l \lceil (k+r)/l \rceil - k - r$, and s = 2k + 2r + m. The following is an N_r^k -coloring of C_n , and is near optimal by the lemma. We use colors $\{0, \ldots, s-1\}$; colors as listed should be interpreted mod s. Each vertex is assigned a set of k consecutive colors, where we consider s - 1 to be adjacent to 0, i.e., "consecutive" means "consecutive mod s". Note that the gaps between color sets alternately contain r and r + 1 colors up to v_{1+2a} , after which all gaps contain r colors.

$$v_{1} \qquad 0 \dots k - 1$$

$$v_{2} \qquad k + r \dots 2k + r - 1$$

$$v_{3} \qquad 2k + 2r + 1 \dots 3k + 2r$$

$$\vdots$$

$$v_{1+2a} \qquad a(2k + 2r + 1) \dots (k - 1) + a(2k + 2r + 1)$$

$$v_{2+2a} \qquad a(2k + 2r + 1) + (k + r) \dots (k - 1) + a(2k + 2r + 1) + (k + r)$$

$$v_{3+2a} \qquad a(2k + 2r + 1) + 2(k + r) \dots (k - 1) + a(2k + 2r + 1) + 2(k + r)$$

$$\vdots$$

$$v_{n} \qquad a(2k + 2r + 1) + (l - a)(2k + 2r) \dots$$

$$(k - 1) + a(2k + 2r + 1) + (l - a)(2k + 2r)$$

It is easy to see that this is a k-tuple, (r + 1)-distant coloring, except that it may not be obvious that the sets coloring v_1 and v_n are at distance r + 1. A little algebraic manipulation shows that the set assigned to v_n is $\{k + r + m, \dots, 2k + r + m - 1\}$, so the sets are indeed at distance (r + 1). (This is actually true in a stronger sense than needed here. Since $(2k + r + m - 1) + (r + 1) = 2k + 2r + m \equiv 0 \pmod{s}$, the sets of colors are at distance r + 1 even when distance is measured mod s.)

It remains to be seen that this coloring has no holes; we need to show that the colors $\{k, \ldots, k + r - 1\}$ and $(2k + r, \ldots, 2k + 2r)$ get used. It is helpful to list the colors assigned to the even numbered vertices (that is, the real colors, in the range $\{0, \ldots, s - 1\}$).

$$v_{2} \qquad k+r \dots 2k+r-1$$

$$v_{4} \qquad k+r-(m-1) \dots 2k+r-m$$

$$\vdots$$

$$v_{2+2a} \qquad k+r-a(m-1) \dots 2k+r-a(m-1)-1$$

$$v_{4+2a} \qquad k+r-a(m-1)-m \dots 2k+r-a(m-1)-m-1$$

$$v_{6+2a} \qquad k+r-a(m-1)-2m \dots 2k+r-a(m-1)-2m-1$$

$$\vdots$$

90

$$v_{2i+2a}$$
 $k+r-a(m-1)-(i-1)m \dots 2k+r-a(m-1)-(i-1)m-1$
:
 v_{2i} $m \dots k+m-1$

Perhaps the easiest way to visualize this is to think of a block of k colors sliding down from k + r to m in increments of m - 1 or m. Since $m \le k$, the block does not slide far enough from one step to the next to leave any gaps, so all of the colors between k and k + r - 1 do get used.

Similarly, we list the colors assigned to the odd numbered vertices; for convenience, we list only the starting color. There are two cases; if m = 1, then the starting color for v_3 through v_{1+2a} is $2k + 2r + 1 = 0 \pmod{s}$.

v_3	0
	÷
v_{1+2a}	0
v_{3+2a}	$2k + 2r + 1 - (a - 1)(m - 1) - m \dots$
v_{5+2a}	$2k + 2r + 1 - (a - 1)(m - 1) - 2m \dots$
	:
$v_{2i+1+2a}$	$2k + 2r + 1 - (a - 1)(m - 1) - im \dots$
	:
v_{1+2l}	$k + r + m \ldots$

If m > 1 the list is

v_3	$2k+2r+1\ldots$
<i>v</i> ₅	$2k + 2r + 1 - (m - 1) \dots$
	÷
v_{1+2a}	$2k + 2r + 1 - (a - 1)(m - 1) \dots$
v_{3+2a}	$2k + 2r + 1 - (a - 1)(m - 1) - m \dots$
v_{5+2a}	$2k + 2r + 1 - (a - 1)(m - 1) - 2m \dots$
	÷
$v_{2i+1+2a}$	$2k + 2r + 1 - (a - 1)(m - 1) - im \dots$
	:
v_{1+2l}	$k + r + m \ldots$

In either case, since $k + r + m \le 2k + r$, the colors in $\{2k + r, ..., 2k + 2r\}$ are used. \Box

Finally, combining this result with Troxell's results, we get the following theorem.

Theorem. C_n has an N_r^k -coloring if and only if

 $n \ge 2(\lceil r/k \rceil + 1) + 1.$

If C_n has an N_r^k -coloring then it has a near-optimal one.

References

- Z. Furedi, J.R. Griggs and D.J. Kleitman, Pair labellings with given distance, SIAM J. Discrete Math. 2 (1989) 491-499.
- [2] M. Larsen, J. Propp and D. Ullman, The fractional chromatic number of a graph and construction of Mycielski, preprint.
- [3] B.A. Tesman, T-colorings, list T-colorings and set T-colorings of graphs, Ph.D. Thesis, Department of Mathematics, Rutgers University New Brunswick, NJ (1989).
- [4] D. Sakai Troxell, No-hole k-tuple (r + 1)-distant colorings, Discrete Appl. Math. 64 (1996) 67–85.