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Abstract

The form factors of the semileptonic B — w¢v decay are calculated from QCD light-cone sum rules
with the distribution amplitudes of dipion states. This method is valid in the kinematical region, where the
hadronic dipion state has a small invariant mass and simultaneously a large recoil. The derivation of the sum
rules is complicated by the presence of an additional variable related to the angle between the two pions.
In particular, we realize that not all invariant amplitudes in the underlying correlation function can be used,
some of them generating kinematical singularities in the dispersion relation. The two sum rules that are free
from these ambiguities are obtained in the leading twist-2 approximation, predicting the B% — 7t 79 form
factors F| and F) of the vector and axial b — u current, respectively. We calculate these form factors at the
momentum transfers 0 < q2 <12 GeV? and at the dipion mass close to the threshold 4m721. The sum rule
results indicate that the contributions of the higher partial waves to the form factors are suppressed with
respect to the lowest P-wave contribution and that the latter is not completely saturated by the p-meson
term.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The current tendency in the studies of the flavour-changing decays of heavy hadrons is to
enlarge the set of exclusive processes used for the determination of the fundamental CKM
parameters. Probing different exclusive b — u processes may, in particular, help in the |V,;|
determination. The interval of this CKM parameter obtained from the measurements of the
B — m{¢v, decay, combined with the B — m form factors from lattice QCD or from the QCD
light-cone sum rules (LCSR), deviates from the results obtained in the inclusive B — X, v,
decay studies (see, e.g., the review [1] and references therein).

Alternative exclusive b — u processes are being actively investigated, among them the
B — mmlv, decay, where the p-meson contribution is prominent. The semileptonic B-decay
mode with the two-pion (dipion) final state is not only important for the |V,;| determination,
but also has a rich set of observables (see e.g., Ref. [2]) which can be used for nontrivial tests
of Standard Model. The B — m v, decay has already been measured, but mainly its reso-
nant, B — pfv, part (see e.g., the BaBar [3] and Belle [4] Collaborations data). Significantly
more detailed data on the B — m £V, observables are expected from the Belle-2 experiment in
future.

The dynamics of the B — w vy decay is governed by general B — 2 form factors, hence
the calculation of these form factors is becoming the next big task for the practitioners of QCD-
based methods. As discussed in Ref. [2] in detail, various non-lattice methods, from heavy-meson
chiral perturbation theory to the soft-collinear effective theory are applicable, depending on the
region of the Dalitz plot formed by the invariant masses of the lepton pair and dipion.

In this paper, we use the method of LCSRs [5] to calculate the B — 27 form factors relevant
for the B® — 7T 7%, decay. We shall confine ourselves with the charged dipion (isovector)
final state, and postpone the case of the neutral (isoscalar) state with related scalar resonances
for the future work. The approach we use is applicable in the region of small and intermediate
lepton-pair masses, restricting simultaneously the dipion invariant mass by the < 1 GeV region,
so that a large hadronic recoil takes place with two energetic and almost collinear pions in the
B-meson rest frame.

The technique we use has many similarities with the LCSRs obtained for B — 7 form factors,
but employs a different and more complicated nonperturbative input: the light-cone distribution
amplitudes (DAs) of the dipion state. These universal objects have been introduced in Refs. [6,
7] to encode the hadronization of the quark-pair in the yy* — 27 process at large momentum
transfer. The properties of dipion DAs were worked out in details in Refs. [8,9]. In a differ-
ent context, two-meson wave functions in hard exclusive processes were discussed earlier in
Ref. [10].

In this paper we aim at the following goals. First, we demonstrate how the method works,
deriving the LCSRs for the two of the B — mz form factors in the leading twist-2 approxi-
mation. The sum rules predict these form factors at large recoil and small mass of the dipion
state. Second, based on this calculation, we investigate the role of higher partial waves in the
B — s form factors and assess the impact of the contributions beyond the p-meson in the low-
est P-wave. In what follows, the derivation of LCSRs for B — wr form factors is presented in
Sect. 2. In Sect. 3 we compare our predictions with the B — p form factors. In Sect. 4 using the
available information on the chiral-odd dipion DA, we calculate the form factors numerically.
Our conclusions are presented in Sect. 5. The Appendices contain some details (A) on the decay
kinematics and (B) on the dipion DAs.
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2. Light-cone sum rules with dipion distribution amplitudes

The LCSR derivation starts from defining an appropriate correlation function. We consider
the T-product of the b — u weak current jlY’A(x) =u(x)yu(l — ys)b(x) with the B-meson

interpolating current jS(B)(O) = imbg(O)ysd (0). Since we are interested in the final state with
two pions, this T-product is then sandwiched between the vacuum and the on-shell dipion state:

M,(q. ki ko) =i / d*xe ™ (t (k)m (k) T 4 (x). js(0)}10) . (1)

The above correlation function has a more complicated kinematics than in the case of the one-
pion final state and depends on three independent 4-momenta g, k1, k2. We denote by k = k1 + k>
the total dipion four-momentum and by p = g + k the external four-momentum of the B-meson
interpolating current. At fixed k%,z = m% these momenta form four independent invariant vari-

ables, as such we choose p? = (¢ + k)2, g%, k* and q - k, where k = k| — k». Further details on
the kinematics are given in the Appendix A.
The correlation function (1) is decomposed in four independent Lorentz-vectors '

(g, ki, k2) = i€uappg kP kS V) 4 ¢, TAD 4k, TAD L T, A0 ®)

where the first term (the rest) corresponds to the contribution of the vector (axial) part of the
b — u weak current and the invariant amplitudes I1(V):(4.9)-- depend on the four invariant vari-
ables: p2, q2, k2, q k.

To guarantee the validity of the operator—product expansion (OPE) for the correlation function
(1) near the light-cone ()c2 ~ 0), we consider the region p2 < m,% and q2 < mi, so that the
b-quark mass provides the large scale. In this respect, the conditions for the light-cone dominance
are practically the same as in the case of the vacuum-to-pion correlation functions used to obtain
the LCSRs for B — 7 form factors (for a detailed derivation of the latter sum rules see, e.g.,
Ref. [11]). An additional constraint concerns the invariant mass of dipion which is also kept
small, k% < 1GeV? « mi. In this region the two-pion system with isospin one is dominated
by the p(770) resonance, accompanied by a nonresonant background. In this paper, we only
consider the charged dipion state, so that only odd angular momenta contribute in the isospin
symmetry limit. This limitation simplifies our analysis, whereas the case of neutral dipion state
where also the scalar/isoscalar f 0 resonances contribute, will be considered elsewhere.

Turning to the calculation of the correlation function (1), in the leading-order (LO) approxi-
mation (s = 0), after inserting the free b-quark propagator, we obtain:

dYf i Mo
@n)? i f2

(7 ()7 (k) [ (X) v (1 = y5) (f + mp)ysd (0)]0). 3)

This expression consists of the hard-scattering amplitude — the virtual b-quark propagator — con-
voluted with the vacuum — dipion matrix elements of bilocal quark—antiquark operators. These
matrix elements absorb long-distance dynamics and are expressed via universal dipion DAs, de-
fined following Ref. [8]. The LO diagram of OPE for the correlation function (1) is shown in
Fig. 1.

M,.(q. k1. k2) =i/d4x

' Here we use the convention €0123 = —1.
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Fig. 1. Diagram representing the correlation function (1) in leading order; the wavy (dotted) line represents the weak
(B-meson interpolating) quark current.

In this paper we will confine ourselves to the leading, twist-2 approximation for the nonlocal
hadronic matrix elements. We use the following definitions of the twist-2 DAs [8]:

1
(t (k) (k) i (x) yu 6, 01d (0)]0) = —+/2ky, / due"* Vo= (u, ¢, k%), €
0

(™t (k)7 (ko) i (x) 00 [x, 01d (0)]0)
1
kiukay — kouk ; -

zzﬁi% / due™ D BI=1 ¢ 1) 5)

0
where Eq. (4) and Eq. (5) represent, respectively, the chiral-even and chiral-odd terms in the
light-cone expansion and [x, 0] is the gauge factor. The DAs depend on the dipion mass squared
k%, on the fraction u of the ‘two-pion longitudinal momentum carried by the u-quark (so that
1 — u = u is carried by the d quark) and on the parameter ¢ related to g - k (see Appendix A).

The normalization conditions are [8]:

1 1
/du 1=, ¢, k) = ¢ — DF"(KP), /du &=, ¢, k?) = 2¢ — HFL(K?), (6)
0 0

where FZ™ (k?) is the standard electromagnetic form factor of the pion in the timelike region (so
that F7"(0) = 1) and FfT (k?) is the “tensor” form factor of the pion normalized to the dimen-
sionful parameter introduced in Ref. [8]:

Fr0) =1/fs, . (7)

The definition (4) coincides with the one introduced in Ref. [8], whereas the DA defined in Eq. (5)
differs by the above factor. We also use the isospin conventions as defined in Ref. [9] to relate
the dipions with definite isospin projections of pions to the (7 T7°| state. Hereafter we omit the
isospin index at DAs, since in this paper we only consider the / = 1 dipion state. Note that k>
has to be sufficiently small to avoid large generic O (k*x?) terms in the light-cone expansion.

In addition to the matrix elements (4) and (5), one recovers in Eq. (3) also the ones with the
Dirac matrices 1, y, ys; they correspond to the higher twists and are neglected here, whereas the
nonlocal matrix element with y5 vanishes due to P-parity conservation. Sorting out the Dirac
structures in Eq. (3) and applying the definitions of DAs we obtain, at twist-2 accuracy:
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My (q. kl,kz)—zfmb/W{[(q Bk, ((q~k)+uk2>h

P (u,¢,k%)
2¢—1
From the above expression one reads off the invariant amplitudes ") defined in Eq. (2) with

r)=(V),(A,q), (A, k), (A, k), and represents them with a generic expression:

! (r) 2 2
(p* q k §)®(u§k)
n® 2 kA0 = § / Ji , 9

+i6ﬂaﬂpqak/13k§] — mpku Py (u, C’kz)]- ®)

where the coefficient function convoluted with the dipion DA’s consists of the b-quark propagator
multiplied by a certain kinematical factor fi(r). Transforming the integration variable u to

2= 12 =
m; —q i+ k“uu
s(u) = Ty g mTEE (10)
u
we bring the integral in Eq. (9) to a dispersion form in the variable p:

H(r)(p2’q2’k2’ ;.) — Z fi(r)(p27q27k27

i=|,L

d
— (d")cb W), k). (D

The coefficient functions in the above, after transforming the variable: fl.(r)(pz, g%, k>, &) =

f; ) (p —s+s, q2, k2, &), can be expanded in the powers of (p2 — 5), which will vanish af-
ter the Borel transformation of Eq. (11) in p? used below. Hence, we can simply replace p> — s
in Eq. (11) and put the functions fl.(r) (s, g%, k?, &) under the integral, as a part of the spectral den-
sity. However, due to a more complicated kinematics of the correlation function, this replacement
is not legitimate in one particular invariant amplitude multiplying k. In this case the function
FAP(p2, g2 K2, &) contains the factor ¢ -k = 1/2(2& — DA/2(p?, g%, k?) (see Appendix A
for details). This factor, after analytical continuation in p?, generates a cut at the real axis, more
specifically at (\/qu —Vi2)? < p? < (\/(72 + v/k2)2, which does not correspond to any physical
intermediate state and represents a typical kinematic singularity. Moreover, after Borel trans-
formation, the contribution of this cut to the dispersion integral is enhanced with respect to the
b-quark spectral density. Hence, within the framework of the standard sum rule procedure, we
are only in a position to derive the LCSRs for the invariant amplitudes I1(Y) and TT(4-%),

The derivation of these LCSRs continues along the same lines as in the well-known case of
B — 7 form factor (see e.g., Ref. [1 l]). Applying the quark—hadron duality approximation, one
introduces the effective threshold So in the B-meson channel, so that the part of the integral
in Eq. (11) from So to oo is approximated by its duality-counterpart in the hadronic dlspersmn
relation and subtracted. After that, the Borel transformation with respect to the variable p — M?
is applied. The result in generic form is:

B

now? s§. > k.0="Y fds e IM 10 (s, g% K2, s)—cb (), . k%, (12)

l||L2
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At this stage it is convenient to return to the original integration variable u, using the inverse
transformation of Eq. (10):

K +q*—s+ \/4k2(m§ —q?) + (s —k*—¢?)?
2k? '

The following expressions for the Borel-transformed and subtracted invariant amplitudes are
obtained:

u(s) = (13)

1 2 2=-,,2 =
2V2imy [ du _"pmeTHuE
H(V)(Mz,sg,qzakz,C)Z—zg—_l ¢ W D) (u, k2, (14)

uo
n4ooe, s q% k2, 0)
1
V2imy, du ,W
e (2—2 k22>d> 2.k, 15
=301 m— g+ K2u?) )@ L (. £ k) (15)
ug

where ug = u(sp). In addition, the condition:
H(A’q)(MZ,SOB,qZ,kz,g)Z O, (16)

is valid at the twist-2 order.
To proceed, we use the hadronic dispersion relation for the correlation function in the variable
p?* where we only retain the ground B-meson state contribution:

+ 0 - _ R0 2
M (q. k1. k») = (™ (k))m (kz)luZLz(l p);s)blB (p)) fpmy o (a7
2 —

with the decay constant of B-meson defined via (B°(p)|bimpysd|0) = fgmé. In Eq. (17) the
ellipses denote the contributions of radially excited and continuum states with B-meson quantum
numbers, approximated employing the quark—hadron duality approximation.

We then decompose the B — wr transition matrix element in the form factors we are inter-
ested in. We use the definition similar to the one in Ref. [2]*:

it (k) (ko) iy ™ (1 — y5)b| B (p)) = —F

2\/>(k“ k-qqu)

+ F; + Fy

[,/ ~AB q?

4(q - k)(q - k) 4k*(q - k)
F K- K™ ”), 18
+ ”\/_( Ap T g q) (18)

where
1 - 1

hp =h(m,q* k), g k=_(mp—q* =k, g k=50f—Dig. (19)

2 Our definition of the form factors differs from the one in Ref. [2] only by some phase factors, caused by a difference
in the conventions for the e-tensor and for the phase of the dipion state.
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The B — 27 form factors F| and F; o || depend on the variables g*, k% and q - k, and parametrize
the transition matrix element of the vector and axial weak b — u currents, respectively. Hereafter,
we replace in the form factors the variable ¢ - k by ¢, using the relation (19). The form factors
defined in Eq. (18) can be expanded in partial waves:

o0

Fou(®. k2.0) =Y 20+ 1F) (q* k)P (cosby), (20)
£=0
ad PV (cos6y)

Fiy(g® k2. 0) =Y VA +TF (g% k) ——"- @1

P sin 6
where Pl<m) are the (associated) Legendre polynomials, and 0, is the angle between the pions in
their c.m. frame, related to the parameter ¢ via:

(2 —1)=Brcosby, Br=,/1—4m2/k>. (22)

Substituting the decomposition (18) in Eq. (17), we match the hadronic dispersion relation to the
OPE result for the correlation function IT,,. For each invariant amplitude in the decomposition (2)
a separate equation is obtained relating it to one of the form factors or to their linear combination.
For the OPE result after the subtraction of higher than B-meson states and Borel transformation,
we can directly use the expressions given in Egs. (14) and (15). For the vector-current form factor
we obtain the following LCSR in the adopted LO and twist-2 approximation:

1

FL@? K2 d mh Mtk
(g 9 _ mp /—uqn(u,;,kz)eMz 7 (23)
NNy V2fpmyQe 1)) u

Furthermore, equating the coefficients at &, in the OPE and hadronic representations of the
correlation function, yields the LCSR for the one of the axial-current form factors:

Fi(q* k>, ¢) __ mp
Vi2 V2fpmy(26 — 1)

1
du
X / ﬁ(m,% —qz—i—kzuz)(bj_(u,{,kz)e

uo

mlzijzﬁ+k2ufl

e 24)

2
"B
M2

Finally, since the invariant amplitude multiplying g, vanishes, an additional relation between the
axial-current form factors emerges:

1
S| -4 R 0 - 2V e - DR
5)

Note that the remaining invariant amplitude multiplying k* contains irreducible kinematical sin-
gularities mentioned above, hence, the additional sum rule which could yield the form factor Fy
cannot be derived with the same method. Hence, in the following we confine ourselves by ana-
lyzing in detail the LCSRs for the form factors F| and F). Interestingly, both sum rules depend
on the single, chiral-odd dipion DA defined in Eq. (5).

Following Ref. [8], we represent this DA in a form of the double expansion in Legendre and
Gegenbauer polynomials:

Ft(qz’ kzs ;) =
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n+1

&, k) =200 Z Z B (kz)c3/2(2u—1)ﬁ,,P;°>(2i3—_l), (26)

f2n n=0,2,.. £=1,3,. T

with multiplicatively renormalizable coefficients B (k2) (see Appendix B for more details).
Note that the index n (I) goes over even (odd) numbers and the normalization conditions (6), (7)
yield for the lowest coefficient B 1(0) = 1. The coefficients with n > 2 play the same role as the
Gegenbauer moments of the twist- 2 pion DA. The values of B( n>2) e(k ) at a low scale determine
the nonasymptotic part of the DA, logarithmically decreasing at large scales. Importantly, if one
adopts a certain approximation for the nonasymptotic part of DA, that is, truncates the expansion
(26) at a given ngy, the values of £ are restricted to n,,,c + 1. The coefficients B,#(kz) are
complex functions of the dipion invariant mass, with the imaginary part at k > 4m , due to the
unitarity relation. Note that the function B (kz) is reduced to the timelike “tensor” form factor
of the pion, which cannot be simply extracted from experiment.

Furthermore, we substitute the partial wave expansion (21) in 1.h.s. and the double expansion
(26) in r.h.s. of the LCSRs (23) and (24), replacing in the r.h.s. the argument of the Legendre
polynomial by cos 6, according to Eq. (22). Multiplying both parts of the resulting relation by
sin 6, Pe(,l) (cosB;) and integrating over cos 6, we use the orthogonality relation:

+1

o 2D
/dng P @ = Gy p it @7
5

and obtain the sum rules for the ¢-th partial wave contribution to the B — 27w form factors
€=13,..):

\/_ \/)»me 2 ntl
FiY(* k) = —— SN NTY L BRI R M s,

V2[5 mifs n=0.2,.. U=13,..
(28)
5 3 n+l
© g2 k V2 mp m?/ M> Log2vylie,2 12 a2 B
FOg2 k) = "B > > LBl (IR K M s
1 .2 nt n 0
V2fs, mpfa n=0,2,4,.. ¢'=13,..
(29)
where the short-hand notation is introduced for the angular integral:
+1
N2+ 1= 1) [ dz
== | TV R OR @), (30)

-1

so that, e.g., I11 = 1/\/§, L= —1/«/§, Ls= 4/(5ﬁ), and the integrals over the quark-
momentum fraction are defined as

1 2

2 =22 =
_mp—q i+k“ui
T2 k2 M2 sE) =6/du<1 —0)CQu— e 31)
uo
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and
1
d 2 _ k2 2 _mi—quﬂ—kzu[l
I G2 K2, M2, sE) =6f—”(1 — w0 u— 1)(1 — %)e T (32)
u mb

uo

Note that I;;y = 0 at £ > ¢/, hence, in the limit of the asymptotic DA, that is, when all coefficients
B¢, except Byp, vanish, only the £ =1 (partial P-wave) term remains in the form factors. Alto-
gether, the LCSRs (28) and (29) allow us to assess the relative importance of the higher partial
waves with £ =3, 5, .. in the B — s form factors. One simply has to calculate the ratio:

Fi' (g% k)

@ 2 72
RV (q° k)= —F—.
L 1
F @2 k)

(33)

3. How much p the B — 2z form factors contain?

Having at our disposal the LCSR calculation of the B® — 770 form factors, we now address
another important question: the dominance of the p-meson contribution to these form factors.
This knowledge is indispensable for an accurate interpretation of the B — m vy measurements.
With more data on this decay available in future, the angular analysis can in principle isolate
the final-state dipion in the P-wave from other partial waves. It is then important to clarify if
the events in the interval of dipion invariant mass around the p-meson mass, at VK2 ~m P==
F/’)‘” /2, originate predominantly from the B — p transition, or there is a noticeable interference
with excited p resonances and/or 2 (P-wave) continuum background. Strictly speaking, the
answer to this question relies on a (model-dependent) parametrization of the p resonance and
nonresonant background. An approach to the B — m form factors at low dipion masses that is
independent of the resonance model and employs the hadronic dispersion relation in the variable
k? was suggested in Ref. [12] where the 77 rescattering effects, as well as the effect of the p
meson, were taken into account employing the Omnés representation and the data on the pion
scattering phases.

Within the LCSR framework, a similar approach would correspond to using a hadronic dis-
persion relation for the coefficients BnJg (k?) treated as analytical functions of k2. An attempt in
this direction was already made in Ref. [8] where these coefficients at low mass (k% > 4m721)
were calculated in the instanton model of QCD vacuum and the Omnés representation including
the p-resonance effect was used to extrapolate them towards k2 ~ 1 GeVZ. We postpone a more
detailed study along these lines to a future work.

Here we address a different aspect that has an immediate importance for the LCSR approach:
are the B — 7 form factors predicted from LCSRs at low dipion masses k2 ~ 4m]21 conform
and/or consistent with the B — p form factors calculated from the LCSRs with the p-meson DAs
defined in the zero-width approximation. To this end, we employ the hadronic dispersion relation
for the P-wave (I = 1) part of the B — mz form factors in k2 and retain only the intermediate
p-resonance contribution. A more detailed derivation of these relations can be found in Ref. [2].
For the two form factors considered above we obtain:

=1 —
\/gFi )(qz, k2) _ 8prm vB 'O(qz)
Vi2/rg m2 —k? —im,Ty(k?) mp+m,

(34)



382 C. Hambrock, A. Khodjamirian / Nuclear Physics B 905 (2016) 373-390

and
V3F V(g2 k) ¢ -
IR T AT @ (35)
P

where the ellipses denote the contributions of excited states such as p(1450) as well as the
possible subtraction terms. Note that here we prefer to use dispersion relations for the complete
invariant amplitudes multiplying the four-momenta in the Lorentz-decomposition (18) of the
B — mr matrix element,’ treating these amplitudes as analytical functions of k* and avoiding
unnecessary kinematic singularities. To make the p-resonance description complete, in Egs. (34),
(35) an energy dependent total width is added, defined as:

2 m% k* — 4m3 v 2 2
r,(k*y =+ | —2=% 0(k” —4m )Fmt , (36)
P k? m% —4m2 T

(see e.g., the discussion in Ref. [ 14]), however it does not play a role at k2~ 4m,2,. The residues of
the p-pole in the dispersion relations (34) and (35) contain the p — 27 strong coupling defined as
(7t+(k1)710(k2)|,0+(k)) = —gpme(") (k1 — kp) (P is the polarization vector of p meson) and
the B — p form factors VZ~#(¢?) and Af_)p (g?). For the latter we use the standard definition:
oV B—p (qZ)
mp+mp
. B
— i€’ P (mp+my)AT " (@H) + ... (37)

where ellipses denote the remaining form factors related to the axial current. The above decom-
position is the same as e.g., in Ref. [15]. There one can also find a detailed derivation of LCSRs
for these form factors in terms of the p-meson DAs in the same, leading twist-2 approximation:

(o () lity, (1 — y5)bIBY (D)) = €uapy € pPEY

(m +m )m m%? ldu ’71l2,—q25+m/23uﬁ
BJB A
1
; i 220N wlqlutmlan
MG = et [ gt 0 (1= 52 e e
1 2ms +mpmfs ) -
(39)

Note that both sum rules are also determined by the chiral-odd DA defined via vacuum — p
hadronic matrix element:

1
(ot ()i ()0 [x, 01 (0)|0) = —if - (€1 Pk, — kel ) / due™* P (u). (40)
0
and having the Gegenbauer polynomial expansion:

P =6ul—w [ 1+ > aPcPQu-1) |, (41)
n=2,4,...

3 Our choice is similar to the standard form-factor decomposition for K4 decay (see e.g., Ref. [13]).
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where the coefficients a,(,p )~ have the same scale-dependence as the ones in the Gegenbauer

expansion of the dipion chiral-odd DA.

The simplest and rather straightforward way to assess the dominance of the p-meson contri-
bution to r.h.s. of the dispersion relations (34) and (35) is to compare numerically both parts of
these relations at k2 ~ 4m72, where we can evaluate the 1.h.s. knowing the coefficients Bj;(kz)
at low dipion masses. A noticeable difference between both sides of these relations will clearly
indicate the importance of the heavier than p states and/or continuum nonresonant background.
The known higher-twist contributions and gluon radiative corrections to the sum rules (38) and
(39) (see e.g., Ref. [16]), can be added in future if also the corresponding contributions in the
LCSRs for B — 2 form factors are worked out.

4. Numerical analysis

To specify the numerical input for the LCSRs (28) and (29), first of all we have to adopt a
quantitative ansatz for the dipion DAs. This task is more complicated than for the single-pion or
p-meson DAs, because the coefficients Brﬁ (k?) are now complex functions of dipion invariant

mass. More is known on the functions B,!l (k%), for which the lowest (““asymptotic”) one is di-
rectly related to the well measured pion form factor in the timelike region: Bgl (k?) = Fem (k?).In

addition, some relations between Br! l(kz) and the Gegenbauer moments of the single-pion DAs
are available [8] via soft-pion limit at k> — 0. The only available information on the coefficients
Bj; (k?) are the estimates at low k> based on the instanton model of QCD vacuum [8,17], up to
n = 4. We list them in the Appendix B. For the p-meson DA we use the same ansatz as the one
used in Ref. [15]: a3 =0.2+0.1, a,>2 =0 and f;- =160+ 10 MeV.

The rest of the input parameters entering LCSRs concerns: (a) the short-distance part of the
correlation function, (b) the B-meson decay constant and (c) the quark—hadron duality approxi-
mation for the B-meson channel. In the following we comment on these points:

(a) Although here the correlation function is known only at LO, and the choice of the renor-
malization scale cannot be optimized without gluon radiative corrections, in anticipation of the
future NLO improvement, we adopt the same default scale u =3 GeV for all scale-dependent
parameters including the ones in DAs, following the analyses of LCSRs for the B — 7 form
factor in Refs. [11,18]. We also use the b-quark mass in M scheme mp(mp) =4.18+£0.03 GeV
[19] and adopt the central value mj = mj(3 GeV) = 4.47 GeV, neglecting a small uncertainty.

(b) The two-point QCD sum rule for fp at LO is used, which is consistent with our approxi-
mation for the LCSRs, schematically:

f3 =13 hpesr(mp, (@q), ... 1, M2 5E), 42)

where the ellipses indicate the vacuum condensate densities of higher dimensions. The ex-
pression for this sum rule is well known, hence, for brevity we do not repeat it here; the
values of vacuum condensate densities and other parameters are taken the same as in the re-
cent analysis [20] (see Table I there). In particular, we use: for the quark condensate density

(Gq)(2 GeV) = (=277 MeV)?3, for the optimal Borel parameter Mz =5.5 GeV? and for the
effective threshold E(? =34.0 GeVz, chosen to reproduce the mass of B-meson from the sum
rule.

(c) We anticipate that the typical Borel parameter values for a low dipion mass are in the same
ballpark as for the LCSRs for the B — 7 or B — p form factors. For definiteness we take the
interval M2 = 16.0 + 4.0 GeV? and the corresponding threshold values s(? =37.54+2.5 GeV?
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Fig. 2. P-wave contributions to B — at79 form factors, Fj_zzl)(qz,k2 ) (left panel) and F”(l:l)(qz, k2 ) (right

min min
panel), calculated from LCSRs at central values of the input. Dashed lines indicate the uncertainty due to the variation of
the Borel parameter.

from the analysis in Refs. [11,18]. We expect also that LCSRs with dipion DAs are valid in the
same region as the conventional LCSRs with DAs of single hadron, that is at 0 < g% < 12 GeV?.

Note that the above input will only serve for numerical illustration and we postpone the overall
analysis of uncertainties, having in mind the lack of precision in the new sum rules. Only the
Borel-mass dependence will be shown for an assessment of the typical sum rule uncertainties.
On the other hand, in all ratios of LCSRs used below, the parametrical uncertainties are expected
to be smaller than in the individual sum rules, due to mutual correlations.

Inserting the adopted input in the LCSRs (28) and (29), we calculate first the numerical results
for the P-wave contribution Fle)(qz, krznm) and Fu(e)(qz, k,%lm) at kgn.n = 4m% and at q2 =
0 — 12.0 GeV?2. They are shown in Fig. 2. In Fig. 3 the ratios (33) of F-wave (I = 3) and P wave
form factors are displayed as a function of g2. We realize that in the adopted approximation
the LCSRs predicts a very small contribution of the higher partial waves in both form factors.
The missing higher-twist effects* and NLO corrections as well a more elaborated ansatz for the
Gegenbauer coefficients Bnle can change this ratio, but probably not its order of magnitude.

Finally, in Fig. 4 we plot the ratios obtained dividing the p-meson contributions on r.h.s.
of Egs. (34) and (35), by the LCSR results for Lh.s of these relations. As we see, there is up
to 20-30% ““deficit” which has to be covered by other than p contributions to the dispersion
relations for the B — wr form factors. A more detailed identification of these contributions
demands a dispersion relation analysis of DAs in the LCSRs as already mentioned above.

5. Conclusion

In this paper we presented the first systematic derivation of LCSRs for the form factors of
B — mm semileptonic transitions in terms of dipion light-cone DAs. We considered the case

4 In fact, one has to mention that the twist 3,4 effects in B — p form factors are rather small, at the level of a few
percent as, for example, found in Ref. [21] (see discussion and Fig. 5 there in which the contributions of various twists

to the LCSR for Af%p form factor are plotted). The situation there is markedly different from the LCSRs for B — 7
form factors where the twist-3 part is strongly enhanced by the normalization parameter m% J(my +mg).
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F, H(lZ:l) (qz, krzm-n) (right panel) calculated from LCSRs at central values of the input. Dashed lines indicate the uncertainty
due to the variation of the Borel parameter.

with an odd angular-momentum (isospin one) dipion state, so that the dependence on the angle
6, (or equivalently on the invariant variable ¢ - k) becomes essential. As we have shown, the
presence of this variable complicates the derivation of sum rules, producing in separate cases
kinematical singularities in the underlying correlation function. We concentrated on two particu-
lar form factors for which the sum rules are free from ambiguities. In the twist-2 approximation,
the resulting LCSRs are determined by a single, chiral-odd dipion DA. We obtained numerical
predictions at small k> employing the available nonperturbative estimate of the coefficients in
the expansion for this DA.

Apart from the two sum rules for the F| and F) form factors, we also found a relation
between two remaining B® — 770 form factors Fy and F; in twist-2 approximation. The
remaining question is: how to circumvent the problem of kinematical singularities and de-
rive an additional LCSR for one of the latter form factors, in order to be able to predict
their full set. One possibility, a subject of a future investigation, is to modify the correla-
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tion function, e.g., by employing a different interpolating heavy-light current for B meson,
so that the form factor we need is contained in a kinematical structure free from singulari-
ties.

After partial wave expansion, the new sum rules quantify the contributions of higher partial
waves to the B — mr form factors. These contributions turn out to be very small with respect to
the lowest P-wave form factors. Furthermore, in the latter, according to LCSRs, the dominance
of the p-meson terms parametrized using the LCSRs for B — p form factors is violated at the
level of 20-30%.

The question of p-meson dominance in the B — mwr form factors was recently discussed
in Ref. [22] where the LCSRs for B — p, K* form factors were updated. There it was argued
that the p-state effectively includes the nonresonant background in the P-wave dipion state in
the experimental as well as the LCSR prediction for B — p. Concerning experimental determi-
nation of the p-meson decay constant, this statement does not reflect, e.g., the most up-to-date
experimental analyses of ete™ — 27 and v — v, done by CMD-2 [23] and Belle [24] Col-
laborations, respectively. In both cases the experimentalists use a model of the timelike pion form
factor, explicitly taking into account the excited states, e.g., adding a separate p (1450)-resonance
contribution to the p-meson contribution and then fitting the resonance parameters. In the simi-
lar way, one can assess the p-meson dominance in B — wr form factors at a quantitative level,
including the B — p(1450) transition in the dispersion relations (34) and (35), so that in the
k? < m% region this contribution represents a nonresonant B — w background interfering with
the B — p contribution. We emphasize that the dominance of the p-meson and the shape of
the nonresonant background are important issues for the B — w v, decays. They will be ad-
dressed in future using available LCSR results for the B — p form factors and more accurate
LCSR analyses of B — mr form factors.

In the literature, an earlier attempt to use the dipion DAs in the LCSRs for B — nr form fac-
tors can be found in Ref. [25]. However, in that analysis an expansion of the correlation function,
including the factor A1/2(p?, ¢2, k), in powers of the dipion mass k% was used. We doubt that
in the presence of kinematical singularities, discussed above, such an expansion is legitimate,
also in the resulting form factors presented in Ref. [25], the most important contribution of the
chiral-odd DA was neglected.

Recently, the LCSRs for B — K form factors were obtained in Ref. [26] employing the DAs
of the Km system in the S-wave state, in this case the generalized DAs have the same form as
the DAs for a light scalar meson, with no dependence on the variable ¢. In Ref. [26], the twist-2
and twist-3 contributions are taken into account and their common normalization is related to the
main input, the scalar K7 form factor calculated within the chiral perturbation theory framework
in [27]. This result provides an estimate for the S-wave contribution to the form factors of the
FCNC B — Km ¢t~ decays.

The calculation presented in our paper can also be extended to the dimeson states with
strangeness. If one removes the S-wave constraint on the K state chosen in [26], it is pos-
sible to access the B — K transition form factors with a kaon-pion state in the P-wave and
higher partial waves, quantifying the contribution of K *-resonance in the B — K £ ¢~ decays.
All axial-vector and tensor B — K form factors can in principle be calculated, choosing an ap-
propriate b — s transition current in the vacuum — K7 correlation function similar to Eq. (1).
Here however one needs additional studies of kaon-pion DAs, taking into account the SU(3) fiavour
violating asymmetry in the Gegenbauer expansion, and establishing the accurate inputs for the
coefficients which will involve various timelike K form factors.
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Further improvements of LCSRs obtained in this paper are possible in several directions:
(1) working out and taking into account the higher-twist components for the vacuum — dipion
bilocal matrix elements, most importantly the twist-3 DAs; (2) calculating the gluon radiative
corrections to the hard-scattering amplitude and (3) performing a dispersion relation analysis for
the coefficients of DAs considered as analytic functions of the dipion mass.

Let us particularly discuss the future perspectives to go beyond the twist-2 approximation
in the LCSRs, such as Egs. (23) and (24). To that end, one has to retain all operator struc-
tures in the vacuum — dipion matrix element (3) and identify their twist-3,4 components.
The latter have to be parametrized in terms of new DAs for which a double (conformal and
spatial partial-wave) expansion has to be worked out, similar to Eq. (26) used for the twist-2
DAs. For the isospin-one dipion system, a systematic study of higher-twist effects should go
along the similar lines as in the analysis of p-meson DAs of twist-3,4 (see e.g., [29]), so that
the role of the polarization four-vector of the vector meson will be played by the difference
of four-momenta k. The emerging coefficients of twist-3,4 DAs — analogs of the Gegenbauer
coefficients Bli’” (k%) — will represent new timelike pion form factors of certain local (twist-
3,4) operators. Note that similar to the twist-2 coefficients, these will be complex functions
at k? > 4m72t. Hence, as opposed to the parameters of one-pion DAs, one cannot access the
dipion DAs using QCD sum rules with local OPE. The only timelike form factor available
from experiment is the pion electromagnetic form factor F, (k%) determining the coefficient
BIH0 (k%). To obtain the remaining coefficients BL 1. K(kz), B;j:e (k%) of twist-2 DAs and the new
emerging coefficients of the twist-3,4 DAs one has to combine theoretical methods with the
data on two-pion scattering in different partial waves. Apart from the low-energy QCD cal-
culations such as the instanton model at low k2 [17] we used for the DA coefficients here,
a promising strategy to access the larger k> < 1 GeV? region is to apply hadronic dispersion
relations for the coefficients of DAs in the variable k2, as suggested already in [8]. These re-
lations will involve known resonance structure (positions and widths of two-pion resonances)
and can make use of pion scattering phases (via Omnes representation, see e.g., [8] and [12]),
but need additional input for normalization of the resonance residues and/or subtraction con-
stants. One possibility to fix the normalizations is to employ dedicated LCSRs with one-pion
DAs and the pion interpolating current, similar to the LCSRs for the pion electromagnetic form
factor [30]. These auxiliary sum rules will allow one to calculate the new form factors re-
lated to the coefficients of dipion DAs in the spacelike region of k2. Afterwards, one fits the
parameters in the hadronic dispersion relations matching the latter at k> < 0 to the LCSR cal-
culation. This kind of matching between LCSR results and dispersion representation works for
the pion electromagnetic form factor, as discussed in [14]. We plan a dedicated study along these
lines.

With the LO and twist-2 accuracy, the sum rules for B — 27 form factors obtained in this
paper, represent the first exploratory step towards further development of the new LCSR method
and towards its extensions to the other important hadronic heavy-to-light form factors with two
mesons in the final state.
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Appendix A. Details on kinematics

The correlation function (1) can formally be viewed as an amplitude of a 2 — 2 process, in
which the two initial particles with the squared masses p> and g2 produce a final dipion state,
the dlplOl’l mass squared k= ( p ¢)? plays then the role of the Mandelstam variable s, so that
k* > 4m ,whereasq -k=p-k=(t — u)/ 2 and the standard condition for the sum of the three
Varlables reads. s+t4u= 2mﬂ + g% + p?. The following kinematical limits for the variable
q - k are then derived using a general inequality for the Mandelstam variables:

4m? 4m?2
N ,’f <2p-B) <P g% k), 1 - ]’:’2 , (43)

where A(a, b, ¢) = a? +b% + 2 —2ab — 2ac — 2bc.
It is convenient to decompose the momenta k, k » near the light cone:

1
= E(k+n+l/- + k*n*l/v) + klﬂ , (44)

where n*# = (1, 0,0, £1).
The parameter ¢ determines the light-cone momentum fractions carried by the two pions in
the final state [6,8]:

2
=k /kt, 1-¢=kj/kT, ;(1—{)_—3. (45)

To relate this parameter to the invariant variable g - k, it is convenient to choose the kinematical
configuration where the four-momenta p and g of external currents in the correlation function are
aligned with the z-direction, so that k-# = 0. The relation has then a form of quadratic equation
with a solution:

= —(2; DAY (% g% k), (46)
At p2 = m% we recover the relation (46) for B — mwmfv, decay (see e.g., [2]). The parameter
¢ is related via Eq. (22) to the angle between the pions in their c.m. frame. The latter relation
substituted in Eq. (46) reproduces the limits (43).
The origin of the imaginary part of the A!/2-function in the variable p> mentioned in Sect. 2
is evident from the following form:

A2, g2 ) = (0 — (= VIO 20 - (a2 + VIR, 7)
Appendix B. Details on dipion DA’s

The coefficient functions of the double polynomial expansion of dipion DAs are multiplica-
tively renormalized in the one-loop approximation:
s (1) )m‘ ™/ Bo

B”’L k2, B” 1 k2
0% 0= B0 0 (05

, (43)
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where 8o =11 —2/3n ¢, and the anomalous dimensions are [28]:

I 2 =1 18 oy
Vn:CF<l_m+4,§§>’ y":§<1+4k§%>' “

For the chiral-odd dipion DA these functions are taken from [8] where they are calculated at
small k2 in the instanton model of QCD vacuum at the scale p =~ 600 MeV:

B (k) =1+ 12:43,

Bi(k2)=;—6 1—%;3 , Bﬁ(k%:% 1+% ,

B‘ﬁ(kz)z% 1-%";8 ,B4l3(k2)=% 1—#;3 ,

Bjs(k%:% 1+56k;3 (50)

The normalization constant is related to the key mass parameter of the instanton model My ~
350 MeV via f2J7_1 =452 fﬁ /3Mp ~ 650 MeV, where f; = 132 MeV is the pion decay constant.
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