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We study the properties of one-dimensional hypergeometric integral solutions of
the g-difference (“‘quantum”) analogue of the Knizhnik—Zamolodchikov—Bernard
equations on tori. We show that they also obey a difference KZB heat equation in the
modular parameter, give formulae for modular transformations, and prove a
completeness result, by showing that the associated Fourier transform is invertible.
These results are based on SL(3,7) transformation properties parallel to those of
elliptic gamma functions.  © 2002 Elsevier Science (USA)

1. INTRODUCTION

In this paper we continue the study of the g-analogue of the Knizhnik—
Zamolodchikov—Bernard (qKZB) equations on elliptic curves and their
solutions initiated in [FTV1, FTV2, FV1].

In [FTV1], hypergeometric solutions of qKZB equations were introduced.
In [FTV2], the monodromy of hypergeometric solutions was calculated, and
a symmetry between equations and monodromies was discovered: the
equations giving the monodromy are again qKZB equations but with
modular parameter and step of the difference equations exchanged. In
[FV1], we introduced the g-analogue of the KZB heat equation, which
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governs the change in the modular parameter of the elliptic curve, proved
that it is compatible with the other equations and explained how to recover
the KZB heat equation in the semiclassical limit.

In this paper, we prove three results about our hypergeometric solutions
in the case where the sum of highest weights is two: we show that the
hypergeometric solutions also obeys the gKZB heat equation of [FV1], see
Theorem 2.1. We give a formula (Theorem 3.3) for the transformation
properties of the hypergeometric solutions under the modular group SL(2,
Z). We prove a completeness result, Corollary 4.6, by showing that the
associated “Fourier transform” is invertible.

Then we show that these results are part of a bigger picture, in which the
modular group combines with the transformation defined by the gKZB heat
equation to give a set of quadratic identities for our generalized
hypergeometric integrals. In fact, this picture can already be seen in a
simpler situation, in which the elliptic gamma function [FV2, R] plays the
role of the hypergeometric integral. The elliptic gamma function is a
function I'(z,7,p) of three complex variables obeying identities [FV2]
involving its values at points related by an action of SL(3,Z)><Z>. These
identities mean that I" is a “‘degree 1 generalization of a Jacobi modular
function, see [FV2].

These identities are a scalar version of the identities obeyed by the
hypergeometric solutions of the gKZB equation. Their meaning is that the
hypergeometric integrals define a discrete projectively flat SL(3,7Z)-
connection (i.e., a lift of the action to the projectivization) on a vector
bundle over “regular” orbits of SL(3, Z) acting on the variety of pairs (point
inC? — {0}, plane through 0 containing it). This is the content of Theorem
6.8. The results on the elliptic gamma function are used in the proof, since
the “phase function” which appears in the integrand of hypergeometric
solutions is a ratio of gamma functions. In fact, we see “‘experimentally”
that there seems to be a principle stating that to every identity obeyed by the
gamma function, there corresponds an identity for hypergeometric integrals.
The proofs of the identities consist in applying the gamma function identity
to the phase function in the integrand, and then use a version of Stokes’
theorem to relate the integrals. The second step is relatively simple in the
case of the one-dimensional integrals to which we restrict ourselves here, but
becomes exceedingly involved in the higher dimensional case. Proving our
identities in the higher dimensional case, i.e., if the sum of highest weights is
larger than two, remains a challenging open problem. An alternative
approach to this problem is based on representation theory: in [EV] a
representation—theoretic interpretation of degenerate version of the qKZB
equations was established. It was shown that traces of intertwining
operators for quantum groups satisfy a version of the qKZB equations
and are eigenfunctions of analogues of Macdonald operators. This fact
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indicates that our Theorem 2.1 is an elliptic analogue of the Macdonald—
Mehta identities proved by Cherednik [C] and Etingof and Kirillov [EK],
and the present work is a glimpse into an elliptic version of Macdonald’s
theory.

In fact, Theorem 6.8 concerns the case of generic parameters, where an
infinite-dimensional vector bundle is preserved by the projectively flat
connection. In a next paper, we will restrict our attention to special
SL(3,Z)-orbits. The projectively flat connection can be then defined on a
finite-dimensional vector bundle of theta-functions which are a g-deformed
version of the space of conformal blocks in conformal field theory. In this
setting the analogy with Macdonald’s theory will appear more explicitly.
Another degeneration of the SL(3,7Z) symmetry of our hypergeometric
integrals are the SL(3,Z) symmetries of the ordinary Fourier transform
indicated in [FV4].

2. HYPERGEOMETRIC SOLUTIONS OF THE QKZB EQUATIONS

We use the definitions and notations of [FV1]. The elliptic sl gKZB
equations are a compatible system of difference equations for a function
v(Z,4,7) of Z€ C", 2 € C and 7, Imt > 0, taking values in the zero weight
space VA[0] of a tensor product of E ,(sl) evaluation modules. This space
comes with a basis of eigenvectors of commuting operators 4/), i =1,....n
and depends on parameters A = (Ay,...,4,) € C". The qKZB equations
have the form

v(Z + poi, 1) = Ki(Z,t,p,n)v(Z,1), i=1,...,n (1)
They are supplemented by the gKZB heat equation
v(Z,1) = T(Z,7,p.n)o(Z, 7+ p). ()

The step p is a complex parameter and (5,-)[:17“"” is the standard basis
of C". Here v is viewed as a function of Z and t with values in the space
F (VA]0]) of meromorphic V4 [0]-valued functions of a complex variable A.
The qKZB operators K;(Z,t,p,n) are difference operators in 4 and
can be expressed in terms of a product of (dynamical) R-matrices.
The last equation is the gKZB heat equation and involves the integral
operator T(Z,t,p,n). The latter is expressed in terms of hypergeometric
integrals: let u(Z, A, pu,7,p,n) € VA[0] @ V5[0] be the universal hypergeo-
metric function as in [FV1]. We may view it as a function u(Z, 7, p, ) taking
its values in the V,[0] ® VA[0]-valued functions of the two ‘“dynamical
variables” 4 and u. Then, it is a projective solution (i.e., a solution up to a
constant factor) of the gKZB equations in the first factor, and of the mirror
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gKZB equations in the second:

U(Z+ 5jp7r7p7'/]) :[(}(27‘[71777]) ®D] u(Z7T7p7’7)7
M(Z—'_ 5jT7T7p7'/I) :D/v by [(;y(27p7fu 7,) u(za T7P7”I)7
u(z+5j?‘[7pa’7):u(za‘c7p7’7)' (3)
The mirror qKZB operators K;'(Z,p,t,n) are obtained from the qKZB
operators by exchanging 7 and p and ‘“‘reversing the order of factors”, see
[FVI1]. The operators Dj, Djv are operators of multiplication by certain

functions of the 4) and the dynamical variable u and /, respectively: in
terms of the function

(1) = exp(—nii*/4n),
we have, forj=1,... n,

41 n _ - )
DI(A“) = 05(,“ — 2’1(h(]+ : Tt h< ))) enmA"(ZJ/:: Aliz/:/H AI)7
‘ a(p —2n(h0) + - - 4+ h))

DY) = a(h = 2p(hV) 4 - -« + hU-1Y) L DAL Sl
a(A —2n(hM + ...  h0))) .

The integral operator T'(Z,t,p,n) is then
T(Z,t,p.n)v = (2 ® Qup)u(Z, 7,7+ p.n) D v.

o is the operator of multiplication by the function «(4) and Q. is a bilinear
form on V4 [0]-valued functions, whose kernel is the Shapovalov bilinear
form on V4 [0]:

0.(f © g) = / Ok, 0, ) (1), 9 (—))r(1s) .

If Ay +---+ A, =2, the universal hypergeometric function is given in
terms of Jacobi’s first theta function 0, and the phase function, see Appendix
A, by the following formulae: V[0l hasabasis g =y ® --- ® e} ® - - - ® e,
with e in the jth factor (j =1,...,n) and he; = (A; — 25;)¢;. Then the
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weight functions are o(t,Z,2,7,11) = > a_; 0a(t,Z, A, 7,1)eq, With

O0(A+2n+1—zs —nAs — 2’72j<a/1jaf)
0(t — zs — ndg, 1)

wa(t7 Z’ 17 T? ’1) =

a—1
6(1 —zi+ 71/1_/',‘[)
- ,1:[ 0(t =z —nd;,7)

On the other hand, " (#,Z, u,p,n) = > w)/(t,Z, u, p,n)es, where

wy (t,Z,1,p,n)

0(H+2’1+l—2b —ndp — 21 Z]>b /7p H Z]+77Ajvp)
0(t — zp — nAp, p) fre 9( —nd;,p)

The universal hypergeometric function u is expressed in terms of these
weight functions and the phase function

00 e2mi(z— a+]r+kp))(l _ €2ni(727a+(]'+l)r+(k+l)p))

Z E p HO — e2mi(z+atjutkp) )(1 _ eZni(—Z+a+(f+l)r+(k+l)p))'
Jik

We then have u(Z, 4, 1,7, p,n) = D, tap(Z, 2y 1y T, P5 )Ea @ &5, With

ua,b(27 17 ,LL, Tapa 7])

inlu

— 8*2_,1/ H Qua,(t = zj, 1, p)wa(t, Z o) (6,2, w,p,n) dt. (4)
-~

The integral is defined as the analytic continuation from the region
where Re(4;) <0, z; € R and Im(y) <0. In this region, the integration cycle
is just the interval [0,1]. After the analytic continuation, the cycle is
deformed to go above the pole at z; — n4; and below the pole at z; + 54;, as
in Fig. 1.

The Shapovalov form is Q(4,7,1)(¢4,¢p) = 045Qu(4, T, 1) With

0(211/1(1; T>0/(Oa T)
02 —2n+2n37 ., A )04 —2n+2n37, Aj,T)

Qa()“v T, ’7) =

Our first result is that our hypergeometric projective solutions of the qKZB
equations are also projective solutions of the quantum heat equation:
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FIG. 1. The integration cycle.

THEOREM 2.1.  Suppose that Ay +---+ A, =2. Let us view u(Z, 2, u,t,
p.n) as a function u(Z,t,p,n) with values in the space of Vx[0] ® VA[0]-
valued functions of A and p. Then u is a projective solution of the
qKZB heat equation

u(z,t,p,n) = CT(Z,1,p,n) @ Doyu(Z, 7+ p,p,n),

where

e4m'11

N

Here T(Z,t,p,n) acts on the first dynamical variable ). and Dy is the
)

operator of multiplication by the function e ™" /¥ of the second dynamical

variable p.

It is then easy to construct true solutions to system (1), (2) from
these projective solutions: for any u, 1®[[, D;(u )P Do () Pu(Z, 2,
7,p,n)CY?| viewed as a function of Z, 1,1, obeys (1) and (2) in the first
factor.

In more explicit terms, we have the following statement.



234 FELDER AND VARCHENKO

THEOREM 2.2. Let fora=1,...,n

—

JAVSAN )
2min a—1 n in, . a a—1 i n
_ eT(ZI ZJ'A/*Z‘, sz/)f%(A+2;772n Zl Aj—22,)(2+2n—2n Zl Aj)ng Zl zj/l,»’
and let the fundamental hypergeometric solution &= u,pe, @&y be

defined by

imlt

ﬁu,b(zv )H m,T,p, ’7) =e 4w pb(_tuvgapa H)uthb(zv i?ﬂv T,D, ’7)'

Then, for any p,b, the V[0]-valued function v(z,1,7t) =Y, iap(Z, A, 1,7,
Ps1)eq is a solution of the system

U(Z—'_péi?T):Ki(zaf7p7r’)v(zvf)7 i:l7"'7n7
U(E,‘L’) :CT(E»TaPaﬂ)U(Z,T+P),

where C = —e* |27\ /4iy.

Proof. A consequence of (3), Theorem 2.1 and the identity
n —
H Di(n)
i=1

The exponential function on the right-hand side is independent of 7, 4, T and
therefore does not affect the statement of the theorem. 1

SIS

o B o2y S ) (=22 S 4
Sb:pb(_:uvzapa”)ep(# ’1+WZI o VI+’721 )317. (5)

Remarks. (1) The constant C could also be eliminated by including a
factor C*/? in i, but it is simpler to consider C as part of the heat equation.

(2) In the definition of the fundamental hypergeometric solution above,
we have included an additional factor, see (5), with respect to the obvious
choice. This leads to simpler formulae in the next section, since p, appears in
the modular transformations of the KZB operators.

3. MODULAR TRANSFORMATIONS

The coefficients of the gKZB equations are quasi-periodic functions of
Zly. .., Zp, A With periods 1 and 7. It is therefore natural to consider the
gKZB equations as equations for sections of a certain vector bundle over a
Cartesian power of the elliptic curves C/Z + tZ.

Since, for any (“ ) € SL(2,Z), the elliptic curves with modulus 7 and

(at +b)/(ct + d) are isomorphic, the corresponding qKZB equations are
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related. For generators, the formulae relating solutions are the following.
Letfora=1,...,n
Tin

T (=2 Ap Akt gy

mp}
Bﬂ(27 2‘7 T?p? n) = e T[] i<k

4’17: (}"’ 27 ‘[’-’ 17)'
Then we have:

PROPOSITION 3.1. (i) Suppose that v(Z,1) =Y ", va(Z, )&, is a solution
of the gKZ B equations with parameters t + 1,p,n. Then v(Z, X) is a solution of
the qKZ B equations with parameters ©,p, 1.

(ii) Suppose that v(Z,1) = > _va(Z,A)eqs is a solution of the qKZB

equations with parameters —1/t,p/t,n/t. Then

Z j“) = Z Ba(57)L7T7p7n)va(z/’[?;“/r)ga

a=1

S
—~

is a solution of the gKZB equations with parameters t,p,1.

The proof of this proposition is based on the formulae for transformation
properties of the qKZB equations under modular transformations, see
Appendix B.

Now the question about monodromy is well-posed: can one express the
fundamental solution at the transformed values of the parameters in terms
of the fundamental solution at the original values? The answer is provided
by the following result.

inp?
THEOREM 3.2. (i) iyp(Z, 2, 11, T+ 1,p, 1) = € Pty p(Z, 2, 1, T, p, 7).
(i) Suppose that Im(nt/p) <0, Im(p/7) > 0.

n

=> /ﬁa‘c(f,i,u,r,p,n)Mc,b(fvu,v,np,n) dp.
c=1
The monodromy matrix (M., p) is

Mc,b(gnuavar,p)

2nm
= e 3":17

1 Z uv 1 ‘cn)
X = QL w,p,n)u (;__7_7 T T T )
2mi 4117: ( Jue pp p pp

ZIA3+1 +p2=3p+3t+3p+1) = (v— 2:1+2;12] (v— 2’7“'721
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The integration over u is over the path x+—xn +¢, x € R for any generic
real ¢.

The first statement of the theorem is trivial to check. The second is the
first of the two modular relations. Introduce functions p, p¥:

27Ii}1 a—1 n a—1 n
et (Zl :J-Ajfz“zj/lj) (A+2)1 2112 Aj=2z,)(A+2n— 2»72 Aj)— AZ I.JA/

n im, n
ZM 2 A; Zl 5 A)=T0A20-20> 0 Aj=225) (342021 ZH[ Y
Then the modular relations are the identities:

THEOREM 3.3. (i) Suppose that Im(nt/p)<0, Im(p/t) > 0. Then the
universal hypergeometric function u satisfies the following relation:

1
Z /uaC Z, A, 1, T, P, 'I)ch(; —EX 1 ﬁ)

pp popp
mity?

x Qc(p,p,n)p(—1,Z,p,n)e 4w du

4 Z 1%p V v
= 2mi\ = p, (4, 2,5, m)py G,E, T7n>e4’7f( +Holp)

ip p pp
= 4 1 7Ml
X Ug <57£7X7 __7E7ﬁ)e BPTpa (6)
TT7T TTT7T
Y=3> Aidi(z +2<Z112A3+r +p* — 3p+3r+3rp+1>.
Jj<k Jj=1

The integration over u is over the path x+xn + ¢, x € R for any generic
real ¢.

(ii) Suppose that Im(np/t) <0, Im(t/p) > 0. Then the universal hyper-
geometric function u satisfies the following relation:

zZ 2 1 .
E /uaC(_7_7E7 _1_77 ——,ﬂ)uc’b(z,—u,v,‘c,p,r])
T1TT7T T T7T

inp

x Qc(u,, W)Pcv. (u,Z,7,m)e 4 du
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7 A 1 int i
X Ug b (;7 R X? Ev ) ’7) 4;71)(()/1) o )6 3p7¢

_3ZAAk Z; — 2k) +2<Z172/13+r+p +3p— 37:—|—3'cp+1>
j<k

The integration over i is over the path x+—xn + ¢, x € R for any generic real e.

This theorem is proved in Sections 5.2 and 5.3.

4. THE INTEGRAL TRANSFORMATION

Throughout this section, we assume, for definiteness, that Im <0, and
that # is sufficiently small. The results hold for a more general range of
parameters by analytic continuation.

4.1. A Space of Functions on which the Integral Transform is Defined

The qKZB heat equation is based on an integral transformation. In this
section, we give a space on which this integral transformation is defined and
invertible.

Let us fix our parameters A;,#, 7. Then the Shapovalov form has poles at
the points —ya;, where

q/—2<ZAk—l>, j=0,...,n, (7)

k<j

as well as at the translates of this points by the lattice of periods.
At these points, the hypergeometric integrals obey the following
“resonance relations” [FV3].

PrROPOSITION 4.1.  Let r,s, 1<a,b<n be integers and let 6; = 2 st; Ay
—2. Then: .

(1) If a<n, then
Ugi1 p(Z,004 + 1+ 5T, 0,T,p, 1)

27is(Zg41—2, Ags A =
=€ TElS( a1~ Za i Aasi N ”>Ua.b(27710'a +V+ST7,M7T7P7'/I)‘
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(i) wip(Z, =20 +r + 57,18, 7,p, 1)
_ eZm’s(zl —Zp+nA1+nA,—p)

(ii1) If b<n, then

un,b(zv 217 +r JFST;,U»TaPa’I)'

Ug b+1 (27 ;L'7 —nop +r—+sp,tT,p, 7])

27is(zpp1 —zp—nApi1 —Ap =
= PRy (2,0, —ney + T+ 5p, T, Py ).

(IV) ua,l(zvivzn +r+ sp7rapa7/’)

= 62711'5(2172,7711/1141/1,#1)“”‘”(2’, i’ 72;1 + r + sp’ T’p, ;1).

Proof. (i) Using the functional relation 0(x +r+st,7) = (=1)"""
exp(—mnis(2x + s7))0(x, 7), we see that

Z r+s —2mis(t— —mis’t zZi + /1
(Ua(t7za770-a + r+ST7‘E)rI) ( 1) +Y€ 2 (t ‘:ﬂ"ﬂA H 0]—_:11/13
J

and

. ois(fn 0(t—z;+n4,;
Wg+1 (l, Z,N04+T1+35T,T, 17) = (—I)H_Se 27is(1—Zg1 —NAgs1)— TS’ T H t_Zf ZA ;
]

Thus, we have equality at the level of integrands.
(i1) Similarly, we have

) (t, Z, _2’1 +r+ ST, T, n) — (_1)7+S6727Li3(t721711/11)7711'521'7

and using the relation > A; = 2, we obtain

z - 0 -z +n4))
(Y (ta zZ, 2’1 + r + S'L'7 T, }7) ( 1)7‘+Se 27“5 t— Zn+'7/1 —nis*t Y\ e T HA))
n H 0(t — z; —n4;)

The last product of ratios of theta functions may be absorbed using the
functional relation (A.5) for Q. This gives

Unp(Z,20 + 1+ 5T, 10,7,p, 1)

iy .
— o2t +sr)u/e—4mn H Quu,(t — z; +p,r,p)(—1)r+s

« o~ 2mis(t=zn 1 Ay)—mis’ fw,f(t Z,p,p,n) dt.
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The result is then obtained by shifting the integration variable ¢ by —p and
using the relation

wl(t —p,Z,u,p,n) = ™ E ) (1,7, 1,p, ).

The remaining claims (iii), (iv) are proved in a similar way. 1

DEFINITION. Let E°(Z,7,c;n) be the space of holomorphic functions
@:C — VA[0], (1) => ¢,(1)e, such that

(1) Ifa<n, then (pa+1(’70u 4+ S‘E) _ ezﬂi&'(z:«#]7Za+n/1a-l+ﬂ/1u)q)a(1/]6a 44
ST).

@) @ (=2n+r+s7) = ezm(z"Z”“’A‘*”A"*")(pn (2n + 7+ s1).
Let E(Z,1,c;n) be the space of functions ¢ € E°(Z,t, ¢;n) such that

(iii) There exist constants Cj, C; > 0 (depending on ¢) such that

Im 1)
0| <Ci exp (% v czw),

foralla=1,...,n.

Examples of functions in E(Z,t,c;n) can be constructed using the
universal hypergeometric function:

ProOPOSITION 4.2.  If Im ¢<O0, then the function

}v'_) E uavb(z7;“uu7f7_c7n)8a;
a

belongs to E(Z, 7, c;n) for all values of the remaining parameters. If Im ¢ > 0,
then the function

HH= Z uu,b(z7 /17 n,cT, —’7)‘5'!7»
b

belongs to E(Z,t,c;n) for all values of the remaining parameters.

Proof. Proposition 4.1 implies that these functions belong to E°(Z,1, c;
). The bound (iii) follows from Lemma 4.7 below. 1

LemMMA 4.3. () € E°(Z,t,c;n) if and only if e*/*¢() € E(Z,x,
c—10).
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in)?
Proof. 1t is clear that e % ¢(1) obeys (i) in the definition of E°(Z, 1,
¢ — ;7). Property (ii) follows from the identity

e 2 . omi 1 or)2
64,7(*2’7+"+57) — e—2ms‘te4,1(2’7+’+”)

)

forr,seZ. 1

For the construction of the integral transform, we will need the following
variant of Proposition 4.2.

COROLLARY 4.4. The function

2 2

)J—>€7m an Z ua,b<zviau7rap717)sa7

a
belongs to E°(Z,t,t© — p;n) for all u. The function
I

,1,“—>€m 4n Z ua,b(za )“7/"517177 _’7)8175
b

belongs to E°(Z,p,t — p;n) for all J.

Proof. An immediate consequence of Proposition 4.2. and Lemma
43. 1

4.2. The Definition of the Integral Transform
We define two integral transforms &z, . and F zxp, then show that they

are inverse to each other. The first is ¢+ .7z, . (p) = @ with

2

. 7'”4;1 T”ﬁ
bo(1) = ——- / Z Pp(—) b (v, T, )ty o (Z, v, 1,7, p, —n)e M v, (8)
167'C R+ic p—

The second is y — %z, (/) =  with

2 2

¥ —ni)’— — T
Ga(i)=e / S tae(Zo o ot p ) el po W) dt. (9)
i

[ —

These transformations depend on the choice of a real parameter ¢ or . We
say that o is an admissible shift for & if it does not lie in any interval
(Im(2n + sp), Im(—2n + sp)], s € Z.

We say that & is an admissible shift for & if it is a generic real number.



Q-DEFORMED KZB HEAT EQUATION 241

THEOREM 4.5.  Suppose that Imy<0. If ¢ € E(Z,1,7 — p;n) then integral
(8) is absolutely convergent, independent of the choice of admissible shift and
defines a linear map ¥ z,.: E(Z,t,1 —p;n) — E(Z,p,t—p;n). If ¥ € E(Z,
p,T—p;n) then integral (9) is absolutely convergent, independent of the
choice of admissible shift and defines a linear map ﬁf}w cE(Z,p,t—pin)
— E(Z,t,7 — p;n). Moreover,

T G _ 7 7 _
Fipe°F zep = WEEpepn), Fzep© T zpe =iz py)-

The proof of the first part of the theorem is contained in the next
subsection. The proof of the inversion formula is deferred to Section 5.4.

This theorem implies a completeness result for the gKZB equations. For
generic ¥ € C", we may consider the gKZB equations on the set 20 + (pZ)".
Any solution is uniquely determined by its initial condition at Z°. A class of
solutions is given by taking linear combinations of components of the
fundamental hypergeometric solution: Let us say that a solution v is of
hypergeometric type if it is of the form

ua(z,z)z/ > (2,2 1,7, p, ) Fo (1) d,
Y

b

for some functions F,(u) and some cycle y.

COROLLARY 4.6.  Any solution v(z, ) with initial condition in e *1 E(z,,
T — p;n) is of hypergeometric type.

More precisely, let 7° € C" be generic. Suppose (p € EEZ,t,t—p;n)
and let ¢(p) = 0=/’z0p, (@)(w). Then, for all Z€Z°+ (p2)", Y(Z,u) =
[T, Di(—w)~ (e )/”q?)(,u), viewed as a function of u, belongs to E(Z,p,
T — p;n) and the function v(Z, 1) = > v,(Z,A)e,, with

2

7711'#* -
Ua(z’ i) - /R ~Zua,b(z, )‘7M717P7W)Qb(uvpvn)e 4"lpb(Z, _:u) d,uv
nR+6  p

is, for any generic & € R, a solution of hypergeometric type of the qKZB

equations with modulus t, step p and initial condition v(Z°,1) = em“_'?(p(“)
Moreover forallz € 70 + (pZ) v(Z, A) is independent of the choice of &, and
e~ /4'7U(Z A) belongs to E(Z,t,7 — p;n).

Proof. Let d;,(u) denote the eigenvalues of D;(u):

Dj(p)eq = djo(1)ea-



242 FELDER AND VARCHENKO

They grow at most exponentially as yu — oo. The coordinates of y are
then

VoZw) = [ dial—)" =70, (u).

By the theorem, ¢ € E(Z°, p,t — p;n). Then y clearly obeys bound (iii) of
the definition of E(Z, p,t — p;n). The resonance relations (i), (i) are checked
by inserting the definitions. For example, for a<n we have (using the fact
that (Z — 2°)/p has integral coordinates)

Va1 En0a+ 1+ 5p) =, (2,104 + 1 + sp)e?™ a2t ndarind)

ja+l( Nog — V_Sp)} P
XH{d (—=noy —r—sp) .
On the other hand, the expression in curly brackets is equal to e>™ if j = a,
to e 2™ if j = a+ 1 and to 1 otherwise. It then follows by Theorem 4.5
that (Z, })—e"“; /4’71)( J) is in E(Z,t,T—p;n) and that the initial
condition (Z°) = (/) is satisfied. v is a solution of hypergeometric
type since the Z,A-dependent part of the kernel of integration is

1®HiD,-(u)7Z"/p u which is equal to the fundamental solution # up
to Z, A-independent factors, cf. (5). 1

Remarks. (1) The result may be expressed in the following terms: our
generalized Fourier transform maps the qKZB equations to the difference
equations

W(Z+ pdi, 1) = Di(—p) " W(Z, ),

which are easily solved, since D; is a diagonal multiplication operator. So the
solution given in the corollary is the Fourier transform of the solution of
this simple system of equations with initial condition given by the inverse
Fourier transform of the given initial condition.

(2) An initial condition at Z° uniquely determines a solution only on
the set I' =Z2°+ (pZ)", since solutions defined for all Z can always be
changed by multiplying by p-periodic functions without changing the initial
condition. However, the formula in Corollary 4.6 gives a solution for all Z.
On the other hand, it is only for Z € 2° 4+ (pZ)" that we know that the
integral is independent of the choice of &. For general Z, there is no
cancellation of residues at pairs of poles that would allow us to move the
integration contours, and one should expect that the solution depends on 4.
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In fact, if we move ¢ just a little bit, then the integration contour crosses
infinitely many poles (for generic #), so one would expect that the solution
depends discontinuously on 6. It would be interesting to understand this
dependence in more detail.

4.3. Proof of Theorem 4.5

We prove here that the integral transformations are well defined on the
considered spaces.
We start by estimating the integrands.

LEmMA 4.7.

nigfﬂ -
|€ nua,b(za )w "7, p, ’1)|

(Im 1)
Im<t

Im )
< exp(n +C2|Imi|+7t(mu) +C2|Im,u|>,
Imp

for some Cy, Cy > 0 depending on Z,t,p,n, A.
For every ¢ > 0,Z,1,p,n, A there exist constants C3, C4 > 0 such that if the
distance between ) and the singularities of Q, is at least ¢, then

N2
IQa(i,r,n)|<C3exp< 2n(ImA) +C|Im)>

Proof. The first bound is obtained by applying the estimates of Lemma C.1
to integral (4). The second follows using the lower bound in Lemma C.1. 1

In order to show that the integral is independent of the choice of
admissible shift and to bound the integral transform, we will need to shift
the integration contour. The next result shows that this is possible since
poles occur in pairs with opposite residues.

Lemma 4.8. (i) Suppose y =5 Ve, € E(Z,p,t — p;n). Then for all r,s
€Z, c=1,....nanda=1,...,n—1,
—ni)'2+ﬂz
IeSy=—no,+r+sp € 4 uC«,H(Z7 4R TP, 77) Qﬂ(:uvpv U)‘ﬁa(_,“)

22l
Tl — A
= —TICSy=—yo,+r+sp € 4 Ucat1 (27 A1, T, P, 77)Q0+1 (#7p7 ’7)':0(1+1 (_#)a
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e .
ICSy=—2n+r+sp € i an uc,n(Z>/L,,lhTyPy’?)Qn(ﬂvPv'l)‘h(_#)

e
= —TICSu=2y4r+sp € Y ual(zaiv,uaTaPa"I)Ql(ﬂaPa”)lpl(_u)-

(i) Suppose ¢ =5 @.eq € E(Z,7,71 —p;n). Then for all r,seZ,
c=1,....,nanda=1,...,n—1,
ni—/12+uz
res/lzfna'ﬁriﬂrsr e 4 uu,c(za }n n, T, p, _n)Qa(ia T, 17)(:0(4(_)”)

2l
= —TICS)=—po,+rtst em 4 ua+l,c(ga ;“7 wT,p, _’1) Qa+1 ()“7 T, ’7)@a+1 (_;“)7

Q22
ICS)=—2p+r+tst em 4 un,c(za /17 T, p, _n)Q”l(;“v T, 7’[)(,0”(—/L)

2242
= _res;»:2ﬂ+r+-ﬂ' em an ul.(‘(za )”a m,T,p, _’/’)Ql (;“?p? T’)(pl (_/1)

Proof. A straightforward calculation. 1

Proof of the first part of Theorem 4.5. It follows from Proposition 4.2
that the integrand in (8) has only simple poles at £2n + Z 4+ tZ. If ¢ is an
admissible shift then the integration contour stays away from the
singularities and we can use the estimates of Lemma 4.7. The integrand is
then the product of a function growing at most like e€"l times €™"/4 which
for Im#n <0 converges very rapidly to zero in the real direction. So the
integrand is an L' function. Moreover by Lemma 4.8, the residue at 25 +
r+ st is opposite to the residue at —2un+r+st. It follows that the
integration contour can me moved across each of these pairs of singularities
without changing the value of the integral. This shows that the integral is
independent of the choice of admissible shift.

Let us next show that ¢ defined by (8) belongs to E(Z,p,t — p;n).
Properties (i) and (ii) follow from Corollary 4.4, and we are left with the

proof of (iii). For this we shift variables: let ug‘b(é', AT, pyN) =
o '
em“"ua’b(f, A, 1,7, p,1). Then,

R 1 / n
c:u =77 5 *V+,Ll »\V — U, T,
¢ = {gm, - ;(/’b( )0y (v — 11, 7,1)
2

v
0 /= g
X ub‘,c(zvv — U T, p, —77)6 n dV.
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The integration contour is moved by this change of variable, but using the
independence on the choice of ¢ we may choose it to lie in the interval
[0,Im 7] say.

Then Lemma 4.7 yields

2

(Im p) 5
e” Tme i CeCli] ”"X_‘ d
@, (W] < e " e | dv.
‘ h 167‘[2"” R+ioc p—1

The triangle inequality |u — v|<|u| + |v| and the Gaussian integral over v
give estimate (iii) in the definition of E(Z,p,t — p;n).

The proof that (9) defines a function in E(Z, 7,7 — p; ) is analogous with a
little difference. Now the integration contour is parallel to the line 24R. So if
the shift 6 is generic it will not meet the singular set S = {+25} + Z + pZ of
the integrand. However, it will come arbitrarily close to these singularities.
Still, the integral is absolutely convergent, since the distance to the singular
set decreases polynomially: dist(p, S) >const(1 + |u|) ™ for some a > 0. This
implies that the divergence coming from the poles close to the integration
contour is at most polynomial. This does not spoil the integrability which is
due to the exponential decay of exp(—inu®/4n). 1

5. CALCULATIONS

5.1. The Heat Equation

Here we prove Theorem 2.1.
The statement of the theorem is

ua,b(z7 j~7 v, T, P, ’7)

et 1—(/1 +v? / Z p n )
= — Ug (2,2, 1,7, T
271\/41 R p TP &
_im
X Qc(tt, T +p,m)e ¥ ucp(Z, —u, v, T+ p,p,n) du. (10)

We proceed to evaluate the right-hand side. The u-dependent part may be
simplified by using the following identity:

LemMA 5.1.

n

> 0l (12, 1,70+ pn) Qe T + pymwe(s, 2, —p, T + pyn)

c=1
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:0(u—2n+t—s,r+p (0,7 +p) H 0(t —zj +nd;, 7 +p)
O(n—2n,74+ p)0(t —s,7 + p) 0(t —z; —nA;, T +p)
_0(u+2n+tfs,r+p)9(0,f+p) 0(s — zj +nd;,T+p)

0(u+2n,14+p)0(t=s,t+p) 5 0(s—z —ndjt+p)

Proof. Consider each term in the sum on the left as a function of u: it is
periodic with period one and as pu is replaced by u + 7 + p, it is multiplied by
exp(—2mi(t — s5)). The poles of the term labeled by ¢ are at pu=pu, =
2 —=2n37_.4; and at p=p, —2nA. = p.; modulo Z+ (t+p)Z. The
most general form of a meromorphic function of u with these properties is

O —u +1t—s,1+p)0 0,7+ p)
O(n — pe, T+ p)0(1 — 5,7+ p)

O = preyr +1 = 5,7+ p)0(0,7 +p)
O(p = tep1,T+p)0(t — 5,7+ p)

A

+ Bc

The coefficients are determined by comparing the residues at the poles:

Ac =0 (t,Z, 11, T+ p,0)0c(s,Z, — e, T+ po 1)

c—1

_H 0(t — z; + nd;, v +p) 0(s — z; + ndj, v+ p)
Ht—zj—n ,T+p) O(s —z — A‘c—l—p)'

J=1

Similarly, one determines B, which turns out to be equal to —A..;. It
follows that in the sum over ¢ only two terms are not canceled and we obtain
our claim. 1

The products of ratios of theta functions in the above identity may be
absorbed into the phase functions Qn 4; by means of their functional relation
(A.6). The right-hand side of (10) is then

2 in 2
—e N —-(A—v+u) - Vie 3
[ e a)u(Z,Z,A,T,VI)wb(S;LVyPy"l)
2m+/4in

n
X {H (‘Qi’l/l ( —Z —|—’L’,‘E,’C—|—p)Q,7/1 ( ZjJ"’I%P))
=1

O(u—2n+1t—s,t+p)00,7+p)
O(u—2n,7+p)o(t —s,7 +p)
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=

- (Qﬂ/lj(t_z_hrvr+p)Qi1/1j(s_Zj+pvf+p7p))
=1
0(,u+211—|—l—s,r+p)0’(0,7:+p)
O(u+2n,t+p)0(t — 5,7+ p)

dtdsdu. (11)

The next thing to note is that if we change variables in the first of these two
terms by replacing ¢ by ¢t — 7, s by s + p and u by p + 4n, we obtain exactly
the second term up to a sign! Indeed, the shift of ¢ in w, produces a factor
U+ - the shift of s in @) produces a factor e 221 and we get an
additional e*™* from shifting the argument # —s in the ratio of theta
function in the square bracket. These factors are canceled by the shift of i in
the exponential function.

To compute this integral we therefore have to carefully consider the
deformation of integration contours involved in the change of variables. As
we shall see, this deformation produces a residue at the pole ¢t = s.

For these considerations we assume that Im(yA4;) > N, j=1,...,n, for
some N > 0 large compared to 7, p, and that the points z; are on the real
axis. The general case can then be obtained by analytic continuation. In this
range of parameters, the integration cycles for the ¢ and s integration is the
interval [0, 1]. The integrand, viewed as a function of ¢ or s, is then regular in
the strip Im(¢), Im(s) € (=N, N). The first term in (11), however, has
additional poles at t = s+ o + f(t + p), (a,f € Z). To deal with these poles
we move slightly the s-integration cycle into the upper half plane. After the
change of variable, in the first term in (11), f=1¢+1, § =5 — p, the new
variables are integrated over 7€t +[0,1], 5€ —p+ie+[0,1] for some
small ¢ > 0. The first term becomes then equal to the minus the second term
in (11) after deforming the integration cycles to the original position, but
during this deformation we encounter the pole at t = s. Therefore, we obtain
a residue

U R Iy S Vi o
(11) :me 1 e 4 wa(8,Z, 2, T, n)wp (8,2, v, p, 1)
n
X H QVIA/(S —Zp T, T +p)QnA/(S —Zj +p,t +P7P) de,LL
i=1

Using identity (A.6) and

o’ du=1 Im#n<0
\/F/ ’ ’

we see that this expression reduces to u(Z, 4, v, 1, p, ), completing the proof
of Theorem 2.1.
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5.2. First Modular Relation

Here we present the proof of Theorem 3.3(i). The assumption that
Im(nt/p) <0 implies that the integration over pu on the path xrnx +e¢,
x € R, converges absolutely: the singularities of Q are avoided for generic ¢,
and at infinity the factor exp(—intu®/4np) converges very fast to zero. To
get the identity as stated in the theorem, one uses the following simple
properties of p,:

AZ 1n , o _
pa<_7_a __J_> :pu(/bvzvfan) 17
T7T T7T
vfvZ tn vZ 1ty 2’” 2’”2’721 (v— 2:7+2;12]
p[; ST TP T T T T
p pp pp PP

Let us proceed with the proof. We insert on the left-hand side the
hypergeometric integral for u, . and u., and call the integration variables ¢
and s, respectively. It will be convenient to make the change of variables
s — s/p. To apply Lemma 5.1, we use the transformation properties of
weight functions:

:pc(—u,ilx ) 16’_;( . ijj/li)('u_bﬂwc(svzv —MaPa’?)' (12)

A similar formula involving p; gives the transformation behavior of ;.
Using Lemma 5.1 and the functional relation (A.5) of Q,, we get

& py 1 gy
Z uac Z,),M,Tp ’7)“<b T T T Ty T )
pprp PP

mity?

X Qc(t,p,m)p(—u, 2, p,n)e *r du
_1 AR _ 2_,’ v/p)u
=5 wa(t,Z,2,t,n)wy (s/p.Z/p,v/p, —t/p,n/p)e
X {tp(u, t,8)e” M — d(u+dn,t — 1,5 — 1)

2mit 4ni T 2
x ¢ p T }dldse 'y, (13)
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where

0 —2n+1=5,p)0(0,p) ~Hs-37  54)(=20)
O(u—21,p)0(t — s,p)

1 s—z 1 =t
X Qua(t—zj+1,p,7) < ],——,——).
,Hl e AN I

d(u,t,s) =

As in the proof of the heat equation, the two terms in this equation cancel
after formally changing variables t+—¢ — 7, s+—>s — 1, u+>u+ 47 in the first
term. However, we have to carefully see what happens to the integration
cycles after this change of variables. We consider the region of parameters
where z; € R, Im(y4;)>0 and n/2>arg(p) > arg(t) > 0.

Then the original integration contours may be chosen to be the interval
[0,1]. For z € C, let us denote by y. the path

rerz, re0,1].

After the change of variable s — s/p, the s integration contour becomes the
path 7,.

LEMMA 5.2. Suppose that p,t are complex numbers in the upper
half plane. Let f(t,s) be a meromorphic function of two variables such that
ft+1,s)=f(t,s+p) =f(t,s) and such that a(t,s) = (t — s)f (¢, s) is reqular
in a domain containing

{(t+rt,sp+r1)|t,r,s €]0,1]}.

Then

ft+t,s+1)dt Nds = f(t7s)dt/\ds+2ni/oc(t,t)dt,

T1XVp T1X7p Ve

and all integrals are absolutely convergent.

Proof. Since p is not real, the integration contours intersect transver-
sally, so that f(¢,s) (which has at most a simple pole on the diagonal) is
absolutely integrable. More generally, with our assumption on the regularity
of f, the integral

I = f(t+rr,s+rr)dt Ads

NXVp

is absolutely convergent for all r e [0,1]. Let, for ¢>0, D, be the
integration domain obtained from y, X y, by removing the points where
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|t —s|<e and set

I.(e) = /D f(t+rr,s+rt)dt Ads.
Then I — Iy = lim,_ fol 47,(¢) dr. We have
1) = —T/DI: A(f (1 + re, s+ ro)(dt — ds)

= fr/ f(t+rt,s+rt)(dt — ds)
oD,
dt — ds

r—s

—r/ o(t+rt,s+r1)
d

{3 d
= r/ o(u+rt,rr) oy O(¢)

Ju|=¢ u
=2nito(rt, 1),

from which the claim follows immediately. In the application of Stokes’
theorem above, the other boundary components of dD, do not contribute
since the function is periodic. The remaining component is homotopic to a
circle with negative orientation, which explains the change of sign. I

Applying this lemma to our situation after shifting u by 4# in the first term
yields

L > ; vy
13) = / / 0ut,7, 2,100} (t/p, 2 [0, v/p, —t p,n p)e 2 ’
—Noo Jy

i

— (21— g 2 A;) (u+20) 1 { — Zj— 1T 1 T
xePr ! Qua,(t —zj,p,7)n (7,__7__ dt
]'1:[1 & ! ) P 4 pp

_mit
x e 4" du.

Now the Gaussian integral over y along #R may be performed explicitly,
and our claim follows from (A.13) and (12).

5.3. Second Modular Relation

Here we present the proof of Theorem 3.3(ii) which is parallel to the proof
of Theorem 3.3(i).

The assumption that Im(np/7) <0 implies that the integration over u over
the path x—»nx + ¢, x € R, converges absolutely: the singularities of Q are
avoided for generic ¢, and at infinity the factor exp(—inpu®/4nt) converges
very fast to zero.
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We insert on the left-hand side the hypergeometric integral for u,,. and
u.p and call the integration variables ¢ and s, respectively. It will be
convenient to make the change of variables t — ¢/7. To apply Lemma 5.1,
we use the transformation properties of weight functions:

tzZ 1 L A (u
(’02-/(_7Eaﬁa __aﬂ> :PZ(%Z,TW) ]er(zt Zj_jAl)(l+2n)wZ(t>Z7,uaT>’7)' (14)

We have

- Zip p ln S
Z /ua,c (_7 Ty T Ty T T _) uC,b(Z7 _:u'avar7p7n)
=1 T7T7T T T7

np 5

X QC(:LL7 T, n)p:/ (ﬂ, Z, T, }']) e 4t d'u

B (ifevu

1 _
:;/wmﬁzmwnwﬁ%m@UjmnmeM

4nin 27, nip

X [B(u,t,8)e™ © — B(u+dn, t+4p,s+p)e” o F2N) gy ds eI dp,
where

O(p—2n+ 1 —5,7)0'(0, ‘L')LZ’( 1=y 5 (et 2n)
O(u —2n,7)0(t — s,7)

z t—zi—p p 1
i

D(u,t,5) =

The two terms on the right-hand side of this equation cancel after formally
changing variables t+—t¢—p, s+>s—p, u—>u—4ny in the second term.
However, we have to carefully see what happens to the (¢,s) integration
cycle after this change of variables.

We consider the region of parameters where z; € R, Im(y4;)>0 and
n/2>arg(t) > arg(p) > 0. In this case, the (z,s) integration cycle is the
product of paths y, X y,.

Applying to this situation Lemma 5.2 after decreasing u by 41, we see that
the left-hand side of the new modular relation is equal to

Tp o

2 160 J/T—v)p —
m/ /%WﬂﬂﬁwﬁWMOHpmMW”ﬂm

100

_4min m( '1

Zj 1
x e 7 et 2 e HQ—A < p’ _[—Jv —_)Qqu(s—Zj,r7p).
J T T
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Now the Gaussian integral over p along #R may be performed explicitly,
and our claim follows from (A.13) and (12).

5.4. The Inversion Formulae

Here we conclude the proof of Theorem 4.5. We have to prove the
identities

1 n
10 s My by T 4 _‘7 s Yoy by c\T M, d
16777 /Rm ;”va( —Hy 2o D3 T —M)te(Z, 10,0, T 1) Qe(— 1, 1) it

o 5ab5()v + V)
B Qb("vfa’?) ’ (15)

1
1617y /R Z Uae(Z, 2 s T Py MU (2, v, =1, T, p, =) Qe py 1) dp

+6 =1
 8wd(i+)
Qb(Vafa’?) .

We give a proof of the first of these identities. The second is treated in a
similar way.

As in the proof of the heat equation, the p-dependent part of the
integrand may be simplified by collecting the terms with the same poles, and
using the functional relation of €,, with the result:

(16)

1 < R
m/ Z Uc 61( :ua/lapan 77’)1"(%}7(23”5V7p7T7”)QC(7:u7p7’7) d/l
c=1

in, ,
Vi = 4 \V2 = 7_(/v+v>ﬂ
= /wa(t,z,ﬂ,r, —mwy (s, Z,v,7,n)e 2

O(u+2n+s—tp)o
X Q yu,(t — 2,0, 1) 2n,(s — 2,0, T
[ 0(#+217,P) S—lp E n J ) 71;( J )
Ou—2n+s—tp)o
Q yu(t—zi+1,p,7
0(u—2n,p)0 s—tp E ! ’ )
X Quu,(s =z +1,p,7)] didsdp. (17)

As in the proof of the heat equation, the two terms in this equation cancel
after formally changing variables t+—¢—1, st>s—1, u>u+4n in the
second term. However, we have to carefully see what happens to the
integration cycles after this change of variables. We consider a region of
parameters where z; € R and #, 7 are small compared to 1, Im(p) and to the
distance between the z;. We study the singularities of the integrand and the
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form of the integration cycles in the vicinity of z;. The poles of the integrand
ofu(zZ,u,v,p,t,n) areats =z; —nA; —kt —lpand ats = z; + nA; + kt + Ip
(k,l € Zs(). The cycle for the integration over s goes below z; + n4; and
above z; —nA;. The poles of the integrand of u(Z,—u,4,p,7,—n) in the
vicinity of z; are at t =2z +nd; —kt—Ip and at t =z; —nA; +kt+1Ip
(k,l € Z-0). The t integration cycle goes above z; + n4; and below z; — n4;.
These integration contours are depicted in Fig. 2.

To treat the two terms on the right-hand side of (17) separately, we split
the contour for the ¢ integration into two pieces, as shown in Fig. 3. Then
the integration cycle does not meet the additional poles at t = s of both
terms.

X

FIG. 2. The integration cycle. The solid line is the contour for the integration over ¢ and the
dashed line is the contour of integration for s. They are oriented from left to right. The symbols
x and + indicate the poles of the integrand as a function of # and as a function of s, respectively.
The points z; &= n4; are poles for both variables.

_|_
X
AWK
@Zj'n/\J
X
+zj-nAj-t
X

FIG. 3. The integration cycle of Fig. 2 can be deformed to this cycle. The circle around
z; —nA; is oriented counterclockwise.
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Let us first consider the first term in (17). As a function of ¢ it is actually
regular at z; — nA; so that the circle around this point does not contribute.
In Fig. 4 the remaining integration cycle is shown, along with the position of
the poles for ¢ and s.

After changing variables t+—t—1, st>s—1, u—pu+ 45 in the second
term of (17) the integrand of the second term becomes equal to the first one,
but the integration contour are shifted: the u-integration cycle can be
deformed back to the original one without encountering singularities. The
cycle for the ¢ and s integration is depicted in Fig. 5.

_|_
X
AN
Tz-nA;
X
X

FIG. 4. In the first term on the right-hand side of (17) the integrand is more regular and the
cycle may be replaced by this one.

S SR R
zJ+r|/\j><
R
X
+zj-nAj-t
X

FIG. 5. This is the integration cycle after the shift of the variables 7 and s in the second term.
The poles of the result are indicated by the symbols x,+ as in the preceding figures.
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We have to deform the integration cycle to the position shown in Fig. 4.
In so doing, we pick the residue at # = z; — n4; 4 7 of the residue at s = 1. At
this point, we may use identity (A.14). The result is

—(2ni)? . . img
(17) —1(6—7[23,res,zj,,/1j+f )l (1,2, 2,7, —n)cu,f(t,z,v,r,n)/e prgaadll du

- rest::/.,,ml. COZ(I, Zv iv T, —ﬂ)wz\:(ﬁ 27 v, T, ;7)6()' + V).

The residue may be computed at z; — ; since its argument is t-periodic.
Our claim follows then from the

LeEmMA 5.3.
Z res;—; )1/1 (}J t 27/171-77 )wb( /1 T 7]) - 5uan( /171'-7'7)71'

Proof. This formula can be deduced from the more general result in
[TV], formula (C.4). For the sake of completeness, we include the simple
proof in this special case. The product of weight functions of which we
compute the residue is an elliptic function of ¢ whose simple poles in a
fundamental domain are in the set {z; £ nA4;, j=1,...,n}.

If a > b, then the function is regular at z; —nA;, j=1,...,n, so the
residues vanish. If a<b, then the function is regular at z; + nA;. Therefore,
the sum of the residues in the claim is the sum over the residues at all poles
and vanishes by the residue theorem.

If a=b, only the residue at t=2z,—nAd, gives a non-vanishing
contribution, which is easily evaluated, and gives Q,(—4,7, 11)_1. ]

6. SL(3,Z)-IDENTITIES FOR HYPERGEOMETRIC INTEGRALS

In this section, we recast our results into a form which shows the analogy
with the identities discovered in [FV2] for the elliptic gamma function. In
[FV2] we showed that the elliptic gamma function is a ‘“degree 17
generalized Jacobi modular function for the group G = SL(3,2) s<Z7°. This
amounts to the identities of Theorem 6.1 below. The hypergeometric
integral u obeys a non-Abelian version of these identities. We also discuss
the geometric interpretation of these identities: they can be interpreted as the
projective flatness of a discrete connection on a vector bundle over a suitable
G-space, see also [FV4]. As in the case of Gamma functions these properties
are more transparent if we rewrite the identities, which we formulate in 6.2
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in homogeneous variables x defined by T = x;/x3, p = x»/x3. The G-action
is then linear. The next step, as in the case of I'; is to extend the range of
parameter to a G-space, as the condition of positivity of imaginary parts is
not preserved by the action. This can be done in a surprisingly easy way by
reflection arguments. We do it in the simplest case of one tensor factor in
6.5. After this is done, we rewrite the identities as the projective flatness of
an SL(3,Z)-Connection in 6.6.

6.1. Identities for the Elliptic Gamma Function

We first recall the properties of the elliptic gamma function that are
relevant here. More details are included in Appendix A.

THEOREM 6.1 (Felder and Varchenko [FV1]). The elliptic gamma func-
tion, defined by the formula

2+ t+(k+1)p—2)

- 1 -
Z T p H 1 — e2mi(jrt+kp+z) ’
J:k=0

Sfor Im(z),Im(p) > 0, obeys the following identities:

Pt 10p) = () (18)
P 4+p,p) = (e O ), (19)
P +5,7,p) = O0(2p) Tz %) (20)

FGr+1,p) =TEnp+1) =IGr,p), 1)
Pt pp) = ool 22)

I(z+7t,p+71)

F(Z/Ta —I/T,p/’f) = einQ(z;‘E,p)F((Z - I)/pv _T/pa _1/p)F(Z7 Tap)7 (23)
for some Q € Q(z,p)[z] given in Appendix A.
In fact, I' is also defined for negative imaginary parts of t and p by a

reflection procedure, see Section A.S5, and the above identities continue to
hold in this wider range of parameters.
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6.2. Identities for Hypergeometric Integrals

Let E5(Z, 1, ¢;n) be the space of functions ¢ € E°(Z,1,¢;n) such that there
exist constants Ci, C; > 0 (depending on ¢) such that

mid)? Im )2
le 41 @, (1)< C)exp (n( m r) + Gl ],

foralla=1,...,n.

For 6 = 0 we have constructed examples of functions in Ej in Proposition
4.2.

PROPOSITION 6.2. Let &5(Z,1,¢,n), @r(n) be the operators acting on
VA[0]-valued functions @(i) = > n_; ¢,(1)eq as

. _mici? . y)
(Ps(Z,7,¢,m)0),(4) =e 17 p,(4,Z,7,1)0, (;)

mllz

(@r(n)@),(2) =e 1 ¢,(2),
(@), (4) = @ (—2).

Then these operators restrict to isomorphisms

zZ 1
@S(Z T,(, 7’]) E() (Ev __af7ﬂ> _>E(5+C(Zafac7n>7
¢T(’7) : E&(Z,‘L'7C,7]) —>E5+1(E7‘E,C+ Tan)a
&c: Es(—Z,t,—c,—n) — E_s(Z,7,¢,n).

Then Theorem 4.5 about the Fourier transform may be reformulated, in a
slightly generalized form, as follows:

ProposITION 6.3.  The operator

(V(EZ,w,p,n)e /Z tab(Z, 2 11, T, 0, 1) O (1, P, 1) @i (— 1) A,

is an invertible linear map from Es(Z,p,t,n) onto E_;5(Z,t,—p,n).

The properties of the universal hypergeometric function may then be
expressed as relations for these operators: first of all the analogue of
identities (18)—~(20) are the gKZB and mirror qKZB equations (3). The
remaining identities are given by the following result.
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THEOREM 6.4. (1) Es;(Z,t+r,p+s,n) = Es(Z,t,p,n), if r,s€Z. The
identities
ViZ,t+ Lpn) =V(EZup+1,n) =V(Z1,p,n)

hold in Hom(E(S(ZPv - 17)? E—1/5<Za T, D, ’7))

(i1) The identity

V(Z,t,p,n) = cr®r()V(Z, 1,7 +p,n)@r(n) V(Z, 7t + p,p,n) @r(n)
holds in Hom(Es(Z,p,t,n), E_15(Z,t, —p,n)) with

e47m1

T = A

(iti) The identity

-

. zZ 1 4 1
(DS(Z7 T, _P7 1/’) V<_7 __7Ea ﬂ) QS _,E, __7ﬂ>
T TTT7T T7T T7T
- . zZ 1 179
:CSV(Z7Tapa17)¢S(Z7p7Ta17) <p7 ] _7)

holds in Hom(E;s(Z/p,—t/p,—1/p,n/p), Ey(Z,t,—p,n)) with & =pd/
(1 —10) and

; min 2 n 3
cs = p 63’7(32,<,( AjA(z=20)" 420 P AT =3p e o).
4nt

Proof. Statement (i) is trivial. Statement (ii) is a reformulation of
Theorem 2.1 and (iii) is a reformulation of Theorem 3.3. 1§

6.3. The Universal Hypergeometric Function for One Tensor Factor

For simplicity, we assume from now on that the tensor product V4 of s/,
representations consists of one factor which is the three-dimensional
representation V5. In this case, the universal hypergeometric function does
not depend on z; and is a scalar function,

_imu 0(A+1,7)0(n+t,p)
u(A, T, p,n) =e 2 | Qy(t,t,p) d ’
(. 20) TPy o= 2n,p)

The integration cycle C is as in Section 2: in this case it can be defined to be
the interval [0, 1] if # has positive imaginary part. For general 5, the integral

. (24)
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is defined by analytic continuation, with the effect of deforming the contour
as in Fig. 1. The resulting function is a meromorphic function on C x C x
H, x H; x C, where H, denotes the open upper half-plane. This function
is regular as long as the integration cycle is not pinched between poles of the
integrand. As these poles are at +(2n+rt+sp+1¢), r,s € Z>o,t € Z, u is
regular if 4n does not belong to the set Zt + Zp + 7.

The following is an interesting alternative formula for the function u:

I'(4n,7,p) e*%().+2n)(u+2n)
(1 = e2m) (1 — e2mi)]

u(Z, 1,7, pyn) = i
j=

> io: ef2n1(]i+ku (2j+1)(2k+1)n
=0
X GO(A 20+ kp, )00 (1 + 21 + j, p)

X’ﬁ Oo(lp + 4n,7) ‘1 Oo(lt + 4n,p)
5 Oo((I+1Dp,7) +5 0o((I+ D)z, p)’

where 0y(z,7) = [T (1 — 2™U+9)) (1 — 2™(U+D2))  see Appendix A. This
formula can be proved by moving C to infinity and picking up the residues
at the poles, and is valid in a certain region of parameter space. We will not
use this formula in this paper.

The Shapovalov form is

0(4n,7)0'(0, 7)
0(4—2n,7)0(A+ 2n,7)

Q(;”a T, ’7) =

6.4. Spaces and Operators
C0n51der (C3 and the pl‘O_]GCthlZdthIl of the dual space, P(C3) Consider
C (C —0)* x P(C*)* where
W= {((>1,%2,x3), (1 : ¥2 :33)) [ X131 + X202 + X33 = 0}

The natural projection W — C*-0isa pI‘O_]CCthC line bundle. The group
SL(3,7) acts on W, g:(x,y)— (gx, (¢")"'y) for g € SL(3,7).

For (x;y) € W such that Imx;/x3#0,y,#0 introduce the space of
functions

By = { TP 00D € By (3 30) i Im >0,
{002) [o(337) € Bomoy (=2 =200}, i Im <0,

\; )n,’ 2763
Thus, E(x;y) consists of entire holomorphic functions v(1) obeying the
resonance relation v(—1 + rx3 + sx1) = ™o/ 4 rx3 + 5x7), where
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o is the sign of Im x;/x3, and the bound

vz (Im £)*
lv(A)e ¥ |<Crexp|n [Tm ] + Gla] ], (25)

for some constants C;, C; > 0. Note that

E(x1,x2,X3;1,12,33) = E(=x1, X2, =X3; —=y1, 2, —)3).

For Im< > 0,Im 32 >0, introduce an integral operator U (x1, X2, x3)
acting on functlons 1n E(xz,xl,X3,y2,y1,y3) as

/ (A ,uxlxz I)Q(,uxz 1>v( Vd
2m/21x X3’ x3" x3 X3 2x3 X3’ X3 2x3 H) ap.

The integration path is given as follows. Suppose first that |x,|, |x3|> 1.
Then the integration is over a straight line which does not intersect
the segments joining —1+rx;+sx3 to l+rxy+sx3 (r,s €Z) and
such that the integrand decays exponentially at infinity along it. Such a
path exists as the integrand behaves as exp(—const 4?) at infinity, which
decays for u in a cone. The resonance relation implies that the integrand has
opposite residue at the pairs £1 4 rx; 4 sx3, so that, up to sign, the integral
is independent of the choice of path. For x;,x3; general, the integral is
defined by analytic continuation. The operator is defined up to multi-
plication by +1 since one needs to choose a square root and an orientation
of the path.
We assume that

U(x1,x2,x3)v(A) =

2¢ le + ZXZ + ZX3.

This ensures that U(xj,xp,x3) is well defined. Indeed, the integration
kernel (24) defining U is regular at points obeying this condition by the
discussion of Section 6.3 above. Moreover, this condition implies that in the
integral over u defining U, the integration contour is not pinched between
poles.

Proposition 6.3 states that U(xj, x», x3) is an invertible linear map

U(x1,x2,x3) : E(x2,X1,X3; 02, ¥1,¥3) — E(X1, —X2, X3; V1, =2, 3),

if Im3! > 0,Im 32> 0.
Introduce operators a(x3), B(x1,x2,x3) where

in 1y 1

a(x3)o(2) =e w27 Vy(2),
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1,2 2ni

L 2
B(x1,x2,x3)0(A) =e Ym(x]w P+ l)+9*1szsv(/l) if Im 22 > 0,
X3
ni 1,2 2mi
B(x1,x2,x3)v(d) =e S QP )R x2X%3p( 1) if Tm 2 <0,

X3

The A-independent terms in o and f were added to simplify relations
(1)—(4) below, which would otherwise only hold up to factors depending
on Xx.

PROPOSITION 6.5.  The operators o and f§ are isomorphisms

a(x3) @ E(x2,X1,X3; 92,11, 13) — E(x2,X1 + X2, X3; 02 — ¥1,1,13),

B, x2,x3) + E(x3,x1, =X23 3,01, =¥2) — E(x2,X1,X3,2, 11, 3),
for all (x,y) € W for which they are defined.

Proof. The statement for « is easily checked inserting the definitions.
The fact that f respects the resonance relation is also easily checked.
We are left to prove that v obeys bound (25) if and only if fv does. Let us
prove the only if part in the case where x;/x3 has positive imaginary
part. The other cases are proved in thg same way. So we assume that
lexp(niys A2 /2x2p1)0(2)| < C) exp(n%—&— GJA]). Tt follows using the
relation Y x;y; = 0 that v/ = ﬁ(xl,xz,X3)v obeys the bound |exp(—miy,4%/
2x3p1 + mid? [ xax3)v' (A)] < Ciexp(n% + (3)4]).  The claim then
follows from the identity

2 (Imi) (Imi)

X2X3 Im ":—i Im — :—:

Im

Theorems 2.2, 3.3 and 4.5 take the form of identities:
(1) The g-heat equation,

a(x3) U(x1, x1 + X2, x3) a(x3) U(x1 4 X2, x2,x3) a(x3) = U(xy, X2, X3),

holds on E(x3,x1,X3; 2, V1,¥3), if Im > 0,Im 3 ‘2 2> 0.
(2) The first modular equation,

U(x1, X2, x3)p(x1,x2,x3) U(=X3, —X1, X2)
= ﬁ(_x27xl7x3) U(_x37x27xl) B(_x37x27x1)7

holds on E(—x, —x3,X2; —y1, =3, ¥2) if Im > 0, Im 2 > 0, Im32 2> 0.
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(3) The second modular equation,
U(—x2, —x3,x1)B(—x2, —x3,x1) U(x1, X2, X3)
= ﬁ(x3a X2, _xl) U(x17 —X3,X2) ﬂ(xla X3, _x2)7

holds on E(x3,x1,Xx3;y2,y1,3) if Im3 > 0,Im2 > 0, Im3t > 0.

X2
(4) The inversion relation,

U(x1,x2,x3) U(—=x2, —x1, —x3) = 1,

holds on E(—Xl, —X2, —X3;, —V1, — )2, —y3) if Imf—; >0, lm:—i > 0.

Note that each of the operators U in these identities is defined up to
multiplication by £1, so the right-hand side of each of the identities is equal
to the left-hand side up to multiplication by =+1.

6.5. New Range of Parameters

Extend the definition of the operator U(xj,x»,x3) from the domain
Im!>0,Im2 >0 to the domain xi/x3,x2/x3€C—R by the

X3
formulas

U(x1,x2,x3) :U(xz,—xl,x3)71 if Im£<0, Imﬁ>07
X3 X3

U(x1,x2,Xx3) :U(—xz,xl,x3)71 if Im£>07 Imﬁ<07
X3 X3

U(X],XQ,X3) = U(—Xl,—XQ,X3) if Imﬂ<0, Imﬂ<0
X3 X3

THEOREM 6.6. (i) For any (x;y) € W such that x; /x3,x2/x3 € C — R and
2¢ Zx\ + Zxy + Zxs, the operator U(x) defines an invertible linear map
E(x2,x1,x3;y2,y1,¥3) = E(X1, =X2,X3; 01, = )2, 13).-

(i1) Moreover, the g-heat equation, first and second modular equations,

the inversion equation hold for xy,x»,x3 such that x)/xy,x1/x3,X2/x3 €
C—Rand2¢ Zx) + Zxy + Zx;.

The six-term relations of Theorem 6.6 are the commutativity of the
following diagrams.
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The g-heat hexagon:

E(x2,X1,X3; Y2, Y1, ¥3)

o(x3) N Uxy, x2,x3)
E(x2,X1 +X2,X35 2= Y1, Y1, V3) E(x1,—%2,X35 Y1,=2, ¥3)
U(xi+x2,x2,x3) | To(x3)
E(x1+X2,=%2, X35 Y1, Y1 — V2, 3) E(x1,—%1 —x2, X35 Y1 — ¥2,=)2, V3)
o(x3) N\ /" U(x1,x1+x2,%3)

E(x)+x2,X2,X3; Y2, Y1 — V2, ¥3)

The first modular hexagon:

E(—x1, —x3,X2; — Y1, — Y3, ¥2)

P(—x3,x2,x1) / N U(=x3, —x1,x2)

E(x2, —x3,X15 2, = V3, V1) E(—x3,x1,%2; — Y3, Y1, V2)
U(—x3,x2,x1)] LB, x2,x3)
E(—x3, =x2,X15 = y3, — Y2, ¥1) E(x2,x1,X35 ¥2, 1, ¥3)
B(—2x2,x1,%3) \, / U(x1,x2,x3)

E(xb —X2, X3, Y1, — V2, y3)

The second modular hexagon:

E(x2,x1,%35 y2, Y1, ¥3)

B(x1,x3,—x2) / N U(x,x2,x3)
E(—2x3,x1,X25 — 3, Y1, V2) E(x1, —X2,X35 Y1, = Y2, V3)
U(x1, —x3,x2)] LB(—=x2,x3,x1)
E(x1,x3,X2; Y1, V3, 2) E(—x3, —X2,X1; — Y3, = Y2, V1)
Bx3, x2, —x1) N\ / U(=x2, —x3,x1)

E(—x2,X3,X15 =2, ¥3, V1)

The proof of Theorem 6.6 is done by reduction to the case where the
imaginary parts of x; /x3 and x,/xj3 are positive. In fact, it is straightforward
to see that in all cases the identities for general imaginary parts can be
rewritten using the definitions as identities at some other values of x, y where
the imaginary parts are positive.
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6.6. Projectively Flat SL(3,7Z) Connections

We give here an interpretation of our relations in terms of projectively flat
discrete SL(3, Z)-connections.

We start by introducing the notion of discrete connections. Let X be
a G-space with a fixed presentation by generators e¢;, j=1,...,k
and relations R; =1, i=1,...,r. A discrete G-connection on a complex
vector bundle n:F — X, with fibers F(x) =n!(x), x € X, assigns
to each generator ¢; a collection of linear isomorphisms ¢, (x) : F (ej’lx) —
F(x), x€ X. The parallel translation along an element w of the
free group Free, generated by the ¢;’s is the collection of maps ¢,,(x):
F(w™'x) — F(x) uniquely defined by the properties ¢, (x)= Idp(y),
G () =, (x) 0, (W 'x). Here wr>w is the canonical projection
Free, — G. The curvature of a discrete G-connection is the collection of
parallel translations ¢ (x) € End(F(x)) along the relations. A connection
is called projectively flat if ¢ (x) € C1d for all i and x.

Let n: F — Y be a vector bundle over a subset Y of a G-space X. Then a
discrete connection defined on Y assigns to each generator e; a collection of
linear isomorphisms ¢, (x) :F(ejflx) — F(x), for all those x € Y such that
ejflx € Y. The parallel translation ¢,,(x) is then defined on some subset
Y, C Y. A discrete connection defined on Y is projectively flat if ¢ (x) €
Cldforalli=1,...,rand x € Yg,.

In our case, G = SL(3,Z) and for X we take certain orbits in W.

The group SL(3,Z) is generated by the elementary matrices e¢;, (1<i,j
<3,i#j) with ones in the diagonal and at (7,j) and zeros everywhere else.
The relations can be chosen [M] to be

ejer = eej, i#l, j#k,

€ij€jk = CikCjkCjj, i,j, k diStiHCt,

(613 8511613)4 =1. (26)

An SL(3,Z)-orbit X in W is called regular if for all (x,y) € X

(1) x1/x3€ C—R and x;/x3 € C—R and
2) 2¢ Zx1 + Zxy + Zx5.

Let X be a regular orbit in W. For (x,y) € YV = {(x,») € X | y1 #0},
set

FV(x;p) = E(x2,X1,X3; 92, V1, 3)-
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For (x,y) € Y? = {(x,) € X | 2 #0}, set
F?(x;y) = E(x1,—X2,X3; 91, =92, 3).

PROPOSITION 6.7. Let X C W be a regular orbit.

(i) The assignment e ¢(x) with
d1o(x) =a(x3) " U(xy — x2,x1,x3) ar(x3) 7,
P13(x) = Py3(x) =
b1 (x) =eu(x3) ",
$31(x) = B(—x2, X1 — x3,x3),
D3 (x) = B(x3 — X2, %3, —x1) " U(x3 — X2, %3, —x1) " (=23, X1, %3 — x2) ",

defines a projectively flat SL(3,Z)-connection defined on Y* C X.
(i) The assignment e;j—;(x) with

Vip(x) =a(x3),

Via(x) =yYn(x) = 1

oy (x) = a(x3) U(x2, X3 — X1, X3)(x3),

Ya1(x) = B(x1 — x3, —x3,%2) U(x1 — x3, —x3,%2) " B(x3, %2, %3 — x1) ",
Yap(x) =B, x2 — x3,x3),

defines a projectively flat SL(3,Z)-connection defined on YV C X.
(iii) Forall i#jand all x € Y® 0 YV such that ej'x € Y® N YV, we have

Ux)py(x) = ¢y(x)Uley ' x).

Proof. 1t first follows from Theorem 6.6(i) and Proposition 6.5 that
¢;(x) is in all cases a well-defined isomorphism from F(/’( Tx, ) t
F?(x,y) and similarly for . The other claims are then simple consequen—
ces of the g-heat, modular and inversion relations (Theorem 6.6(ii)),
and the relations

U(xlax2 +X3,X3) = U(X] +X3,X2,X3) = U(X],)Cz,)(}),

which follow from the fact that u(4, u, 7, p,n) is l-periodic in T and p.
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The easiest way to do the computations is to first check (iii), which can be
easily deduced from our three term relations. This identity implies that if the
curvature associated to a relation is scalar for one of the connections ¢ or ¥,
then it is scalar (and equal) also for the other connection. Then the
curvature can be computed using ¢ or Y, whichever is simpler. For
example, to compute the curvature Cj3 = ¢ associated to the relation
R = epeneryesy, it is better to use the connection . One gets

V1 (X)W (ery X) = C3 ()3 ()15 (€3, x),
where

Znixz
C2(x) =ex .
12( ) p9X1X3(X1 —XZ)(XQ —X3)

In particular, if an orbit does not contain any point with y; = 0 or y, = 0,
which is true for generic orbits, we have Y? = Y¥ = X and the connections
are defined everywhere. The trouble is that we do not know if the spaces
F?, F¥ are non-trivial for these orbits. By contrast, we have infinitely many
examples of linearly independent functions in FY(x,y) with y, =0 or
F?(x,y) with y; =0. Indeed, these spaces are isomorphic to spaces
Es(t,—p,n) with 6 =0, which contain the functions wu,: A= u(A, pu,7,p,n)
with any fixed u, see Proposition 4.2. These functions are non-zero for
generic p since they are the meromorphic kernel of an invertible integral
operator. There are infinitely many linearly independent functions
among them since they behave differently under shifts by 1: u,(21+1) =
—e7™1/2my, (1), In this case, we may construct a connection defined
everywhere by gluing the two partially defined connections:

THEOREM 6.8. Let X be a regular orbit containing a point (x,y) with
y1=0. Let YV, Y® C X be the subsets as above, on which the connections
¢, Y are defined. We have Y® U YV = X. Let F be the vector bundle on X
obtained from FV and F? by identifying the fibers over YV N Y¢ via U(x):
FY(x,y) — F%(x,y). Let a connection y;(x) be defined as ¢, (x), if both (x, y)
and e;'(x,y) are in Y?, and as y;(x) if both (x,y) and e (x,y) are in YV.
Then y is a well-defined projectively flat connection on X .

Proof. Since any two points (x,y),e;!

s€; (x,») € X related by a generator
belong both to Y? or both to YV, the connection 7; 1s defined in all cases.
Moreover, by Proposition 6.7(iii), y is well defined on F, at least up to sign.
It is easy to check that that the curvatures along the relations involve
products of isomorphisms y;(x) mapping between fibers at points (x,y)
which are all in Y¢ or all in Y. Thus, the claim that y is a projectively flat

connection follows from the projective flatness of ¢ and . 1
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6.7. Formula for the Curvature

We give here a formula for the curvature of the discrete connection ¢ (and
). It is convenient to do a gauge transformation ¢;(x) = ¢;(x)g;(x), with

g1a(x) — ex (2—) (x) = ex (2—>
g1z p 9x1(x1—x2)X3 ) gi3 p 9X1(X1—X3)X2 s

(x) = ex _ 2m (x) = ex _ 2m
galx) = exp 9x3(xp — x1)x3 )’ g231X) = eXp 9xz(x2 — x3)x1 )

001 gnl) =ew(— g )
&)

Then the curvature of the connection ¢ has components p
associated to relations (26). By definition, they are given by

3 () dule; ' x) = C) (V) ylen'x), %l j#k,

by(Vdule;'x) = T (D) bler' Vdyler'en x), i)k distinet,

Bs(x)y(s™"x)y(s )y (57 x) = C(x),

where sx = (—x3,x2,x;) and

¢s(x) = ¢13(X)¢31(6316173136)714313(€f3le31x)-

We have
6_’32(x) _ C—,lz(x)_l ~ex 21ix,
12 o 32 o P 3X1X3(X2 — )C3)(X1 — XQ)
~32 27i ~12 2ni
Cia(x) = exp <3X3(X1 —x2)(x3 — x1)>’ C1(x) = exp (3)61()63 —x2)(x3 — x1)>’

and all other C_'f;l(x) as well as C(x) are equal to 1.

6.8. Comparison with the Elliptic Gamma Cocycle [FV2]

In [FV2], a non-trivial 2-cocycle of SL(3,Z) with values in exp(2riQ(x;/
Xi)[z/x3]) was obtained by a similar construction involving the elliptic
gamma function instead of U. In the language of discrete connections we
use here, one defines an SL(3, Z) connection on the trivial line bundle over a
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dense subset of C* by setting

—1
Z—X2 X1 — X2 X1
X3 ’ X3 ’ X3 ’

¢r,1,2(x7 z) = F(

Z X3 — X3 x;)

=TI
¢1"$3,2(xa Z) <X17 X1 ,xl
d)l",i:[(xaz) :17 ]7&2

For our purpose, z may be considered here as a complex parameter on
which SL(3,Z) acts trivially. The curvature of this connection was
computed in [FV2]. It has the form CY; = exp(niL}/(z,x)), Cr(x) =1,
for some cubic polynomials Lg’ (x,z) in z with coefficients in Q(xy, x2,x3).
The relation to the curvature of ¢ is

P

— ; ; 3.0 rk
i (x) = exp(—2mi x Coefficient of z” in Lj (x,z)).

The curvature of a projectively flat connection defines an extension of the
group and thus a characteristic class, see [FV2]. Conjecturally, C;- defines a
non-trivial class in the group cohomology H?(SL(3,7Z),exp(C(x1,x2,x3))).
This means (if the conjecture is true) that there is no gauge transformation
given by exponentials of rational functions that can make the curvature
trivial.

APPENDIX A. THETA FUNCTIONS AND ELLIPTIC GAMMA
FUNCTIONS

We summarize some formulae about theta functions, gamma functions
and phase functions, see [FV2] for more details.

A.1. THE THETA FUNCTION

Jacobi’s first theta function is defined by the series

0(z,7) = — Z einr(j+1/2)2+2“i</+1/2)(”1/2), z,1 € C, Imzt > 0.
jez

It is an entire holomorphic odd function such that

0(z+n+mt,1) = (=1)" e mme=2mmzg - By mpeZ,  (A)
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and obeys the heat equation
47rig6(z 7) =0"(z,7)
61_ ) b .

Its transformation properties with respect to SL(2, Z) are described in terms
of generators by the identities:

inz?

0(—z,7) = —0(z,7), 0O(z,t+1) :eiTnH(z, 1), 9(5,—l> =iv—ite t 0(z,1).

T T

We choose the square root in the right half plane.

A.2. INFINITE PRODUCTS

Let x,¢q € C with |¢|<1. The function

(1—xq)

2

(x;q) = |

J

Il
<)

is a solution of the functional equation

(gx;q) = (x;q).

I —x
Let x = ¢”™* and ¢ = ¢*™*. Then

0(z,7) = i) (x; ) (q/x: 9) (4; 9)- (A2)
We will also need the following variant of the theta function 6:

.em'(zfr/4)
0o(z,7) = (x:9)(a/x:9) = —IWQ(Z 7).

This function obeys

Oo(z+ 1,7) =0o(z,1),

Oo(z +1,7) = — e 2™=0y(z, 1),

Oo(t — z,7) =6y(z,7). (A.3)
Its modular properties are 0y(z,7 + 1) = 0y(z,7), and if 2/ = z /7, 7 = —1/x,

em‘(ﬂ:/é—z)go(z7 ‘L') — l-em'(—zz’+z'/6—z’)90(zl7 ‘E/).
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A.3. ELLIPTIC GAMMA FUNCTIONS

Here we consider two parameters 7 and p in the upper half plane, and set
g =™ r= ¢ and consider the function of x = ™,

(1 —xg'r*) = (x;r,q).

8

(x;qu) =

=~
Il

Jk=0

It is a solution of the functional equations

(x;9,7) (x;9,7)
x; K r)= ) rx; ) r)=
(P =T D T )
The elliptic gamma function [FV2,R] is
(qr/x;q,7)
I'z,z,p) =—F—"—"—==1I(z,p,7).
Gon = (g ~TEPY

It obeys the identities
Iz+1,7,p)=T(ztp), TI(z+ptp)=0(00(z1,p), (Ad)

and is normalized by I'((t +p + 1)/2,7,p) = 1. The zeros of (x;q,r) are at
x=¢q7r*, jk=0,1,2,... . They are all simple. Thus, I" has only simple
zeros and simple poles. The zeros are at z = (j + 1)t + (kK + 1)p + /, and the
poles are at z = —jt — kp + . Here j, k run over non-negative integers and /
over all integers.

In fact, I'(z,7,p) is, up to normalization, the unique 1-periodic
meromorphic solution of u(z + p) = 0y(z, t)u(z) holomorphic in the upper
half plane.

A.4. MODULAR PROPERTIES

We consider the transformation properties of the elliptic gamma function
under modular transformations of p and 7. We have the identities

I(z,7,p)=I(z,p,7),
I(z,t+1,p) =T'(z,7,p),

I'(z,7,p)
rz+rzt,p+r)

I'(z/p,7/p,—1/p) =™ ((z = p)/t,~1/1,—p/1)[ (z,7,p),

I(z,t+p,p) =
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3 —1 24 pP+3tp—31-3 1
Q(z;np)zz _Tttp Zz+r +p - +3tp—31—-3p+ -
3tp 2tp 6tp

1
+E(r—|—p— D' +p =1

A.5. EXTENDING THE RANGE OF PARAMETERS

Since many operations we perform do not preserve the upper half plane, it
is important to extend the range of values v and p can take. We set

1 1 1

R N L — .
N v I o) (4.7

(x;q,r7") =

These formulae define an extension of the functions (x;gq),(x;q,r) to
meromorphic functions on {(x,q,r)||q|#1#|r|}. It is clear that the
functional relations

1 1
(9x,q) = T —(x.9), (W%HZQMUW%
still hold in this larger domain. Correspondingly, we extend the definition of
0y and the elliptic gamma function by using the same formulae in terms of
the infinite products. We obtain

1 1
9 — e ———— F — e ——1
0(27 T) 00(24—1’,’[), (27 Tap) F(Z+T7‘E,p)’
|
rize,—p) =— .
&n=2) I'(z+p,z,p)

An easy check gives the following result:

ProrosiTiON A.1.  All identities for I' and 0y of the preceding subsections
continue to hold for all z,t,p such that ©,p ¢ R.

However, the statements about the position of zeros and poles are no
longer valid.

A.6. THE PHASE FUNCTION

We keep the notation of the previous subsection and introduce a new
variable a, and set o = ¢*™*. The phase function is
I(zta,t,p) _ (qr/x%q,r)(x/%q,7)

Qa 9 b - = M
P = F e a ) ) (graxa,)
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We have

HO(Z+G’T)Q (z,t,p) =

L 0(z+a,7)
i S 2nia Z\< T % )
0oz —a,0) ¢ ¢ Qu(z 7). (AS)

Qi(z+p,T,p) = 0 a0

The properties of this function follow from those of the gamma
function:

PPROPOSITION A.2. The function Q,(z,t,p) obeys the identities

Qulz+p,1,p) = ezm“HQa(z,r, »), (A.6)
Qu(z +1,1,p) = ™ % Qu(z,7,p)s (A7)
Q.(z+ 1,1,p) = Qu(z,7,p), (A.8)
Qu(z,1,p) = Qu(z,p, 1), (A.9)
Qu(z,1,p) = Qu(z, 7,71+ p)Qu(z+ p, T+ p, D), (A.10)
Qu(z,t,p) = Qu(z+1,7,7+ p)Ru(z,T + p, p), (A.11)
Qu(z,t+ 1,p) = Qu(z,t,p+ 1) = Qu(z,7,p), (A.12)
Qu/e <f’ _lﬂ) — em‘Sa(Z;f,P)Qa@’ 7,0)Qu/p (Z _ T’ _ 17 _ E) ,
Tt 4 p D
Sa(z;7,p) — (622 —6(t+p— 1)z
3tp
428 + PP+ pP +3p—3t—3p+ 1), (A.13)
Qu(z,t,p)R_4(z,7,p) = 1, (A.14)

0 z4+a,t 0 Z+a7p
Qu(—z,7,p) = Qa(27f’p>egz —a T;HEZ —a 1’;'

(A.15)
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APPENDIX B. MODULAR PROPERTIES OF R-MATRICES AND
QKZB OPERATORS

Here we summarize some formulae giving the transformation properties
of the R-matrix. Fix A}, A, € C and let R(z; — z3, 4, t,%) be the R-matrix of
E. ,(sh) associated to the evaluation Verma modules Vy,(z1), V4, (22). We
have

R(Zl - 22717‘5 + 17’7) = R(Zl —Zz,l,f,f’])

and

)\. 1 2ninAy A
R<Z’ - f1> R T A - i) A (2)
T

X R(z1 — 22,27, A1 () A2 (2 — 2nhD) ™!

Here A4,(7) = A(zi, i), A;, 2,n) with
Az, h, A, 4 n) :expl?n{z(h)»—nhz) —i—% (A=) (A +nA —nh)(A—nA —nh)|.

These formulae can be deduced from the functional realization of
representations [FTV1]: the R-matrix may be defined as the unique linear
map such that

R(zi — 22, A, t,n)(z1, 22, 4, T, 1) = 0 (21,22, 2, T, ).

The weight function w = wje; ®e/AZ and the mirror weight function w"
take values in the tensor product V4, ® V;, of evaluation Verma modules.
They are given explicitly in terms of ratios of theta functions, see
[FTV1,FV1].

From the above formulae, we deduce the transformation properties of the
qKZB operators. One finds

2nin

n n J—1
= e S At 11 4z = p0y, k9, 45,0 =24 > 1
i=1 =1

n j—1 -1
ZJJP ’7 H (Zj_pglph(])w/ljai_znZh(/)an> 9

j=1 I=1

where we set 0; =1 if i > j and 0; = 0 if i<j. In this somewhat simplified
notation, the operators 4 depend on A and are to be viewed as
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multiplication operator by these functions of 1; K; taken at A/t really
means that we conjugate K; by the operator of dilation of 1 by a
factor 1/7.

APPENDIX C. ESTIMATES FOR THETA FUNCTIONS

LemMma C.1. (i) For all © in the upper half plane, there exists a constant
Ci () > 0 such that for all 1 € C,

2
100, 1) < C1 ()exp (n (Im 4) ) .

Im~

(i1) For all ¢ > 0 and t in the upper half plane, there exists a constant
Cy(t) > 0 such that for all 2 such that min{|A —r —ts|,r,s € Z} >¢,

mrt

2
|0(4,7)| = Ca(t)e exp (n (IIm 4) ) :

Proof. Let S(t) be the compact set S(1) = {4 € C||Re(4)|<1/2,|Im 4]
<Im<t/2}. Then 0(2,1) vanishes in S(z) only for A = 0.

We use the functional relation (A.l1) of the theta function. If A=
Lo +m' + mrt, with m',m € Z and )y € S(7) then

‘9(2’1” :enm(2lm Ao+m Im r)|9(/10, ‘C)|

— T imdrtm ) Gy o)

(Im 2)>  (Im 4)°
=" Imt ¢ " Imz |9(/1(),‘E)|

(Im 2)?
Then the claim follows by setting Cj(tr) = max{e " Tt |0(o,7)],
(Im Jo)?
Jo € S(1)} and Ca(x) = min{e™ et [0(Z,7)/ 40|, %0 € S(x)}, s0 that when
|20| =€, we have

0(k0,7) = 0()0,7) ﬁ> G(e. 1
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