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Let C.& be the class of real functions of a real variable that are 2rr-periodic 
and have a continuous derivative. The positive linear operators of the Jackson 
type are denoted by L,,,, (n E N), where p is a fixed positive integer. The object 
of this paper is to determine the exact degree of approximation when approximat- 
ing functions f6 C&, with the operators L,,, . The value of max,! L&f; x)--(x)/ 
is estimated in terms of wl(f; 6), the modulus of continuity of j’, with S = P/B. 
Exact constants of approximation are obtained for the operators L,., (n EN, 
p > 2) and for the FejCr operators L,., (n E N). Furthermore, the limiting be- 
haviour of these constants is investigated as n -+ oci and p + cc, separately or 
simultaneously. 

1 = INTRODUCTION AND SUMMARY 

1.1. The class of real, continuous, 2rr-periodic functions of a real variable 
is denoted by C,, . Assume f E C,, and let p be a positive integer. The positive 
linear operators L,,, are then defined by 

where 

with A,,, such that Jzn k,,,(t) dt = 1. 
For p = 1 we obtain the FejCr operators, while the name of Jackson is 

associated with L,,? . Approximation properties of the operators L,,, , in 
particular those of L,,, and L,,, , have been extensively studied; cf. Giirlich 

153 
0021-9ca4~/79/1bs0153-26$02.00/0 

Copyright ,0 1979 by Academic Press, Inc. 
All rights of reproc!uctior= m any farm reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82653848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


154 SCHURER AND STEUTEL 

and Stark’s survey paper [3], Matsuoka [5] and Schurer and Steutel [6]. 
Assuming f to be nonconstant, Wang Hsing-Hua [9] proved 

where w denotes the modulus of continuity off. A similar result for the 
Jackson operators in two dimensions was obtained by Bugaets and 
Martynyuk [2]. 

1.2. In this paper the setting is the class C,l, of real functions of a real 
variable that are 2z--periodic and have a continuous derivative. The degree 
of approximation is measured in terms of wL , the modulus of continuity off’. 
In particular, we shall deal with the problem of determining the exact 
constants of approximation for the operators L,,, . For 17 E N, p - 1 E N 
fixed, the exact constant of approximation for the operator L,,, is defined by 

(1.3) 

whereas for the FejCr operators (p = 1) the definition reads 

The norming is prescribed by the limiting behaviour. In order to keep the 
constants cl.3 also bounded, definition (1.3) in the case n = 1 is replaced by 

%P := Cl,2 (p = 3, 4,...). (1.5) 

For fixed p E N the exact constant of approximation for the sequence of 
operators {L,,,, ; n E N> is then defined by 

c(P) := sup cn,D. 
nsN (1.6) 

Finally, the exact constant of approximation for the whole class of operators 
GL?, ; n E N,p > 2) is defined by 

c := sup c(D). 
P>S 

(1.7) 

1 [a] denotes the largest integer not exceeding a. 
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1.3. We give a brief sketch of the contents of the various sections. 
Section 2 contains 2 number of preliminary kmmas. In Secxioa 3 the so- 
called extremai functions are introduced; just as in rbe investigation of 
the Bernstein polynomials (cf. [i’]), they play a crucial role in determining 
the constants c,,, . The pattern of deducing the extremal functions is in 
part simnlar to the procedure given in [7]; a serious complication however 
is ca.ased by the constraint of periodicity. The ma.in result of Section 3 is 
the proof of : = 2,-112 == 1.12837917”. We also determine ?he exact constant 
of approximation for the FejCr operators; it is shown that ~(~1 := z-/l = 
3.75539516. In Section 5 the limiting behavionr of in,* is considered as 
:T + cc or/and f~ 4 ,u.J~ A separate discussion is devoted to the behav-ioar of 
c,,,L as Fl - r(_‘. 

2. PRELIMINARY &3XJLTS 

2. I ~ L%pproximation properties of the opera-tors %n,D were investigated 
in [6]. There the following lemma is proved, 

with the zmd contrention that G) = 0 if a < b. 

2.2. We proceed with a few inequalities that will be used in Section 4 to 

estimate integrals over the kernel (2.1). 

LEMMA 2.2. For 11 E N one has 

sin t 
n sin tin 

> exp (- i aP) (0 < t < +); 

a = 2% log + 
n-2 ( ) 

= 0.366039. (2.3) 

2 Here and elsewhere numbers are rounded to the last digit shown. 



156 SCHURER AND STEUTEL 

Proof. As x-l sin x is decreasing on (0, ?T), we have 

t 
17 sin f < (n + 1) sin ~ I7 + 1 (2.4) 

It is therefore sufficient to show that 

Put 

t-l sin t > exp (- i aP) (0 -=C t < +). 

q(t) := t-l sin t - exp(-iat”). 

Taylor series expansion shows that q is positive on the interval (0,3n/8]. 
Furthermore, q is decreasing on [355-/S, 7r/2], while q(z-/2) = 0. This proves 
the lemma. 1 

Remark. If n = 3 Lemma 2.2 can be sharpened as follows (cf. [S, p. 61): 

sin t 
-3-iGG13 > exp (- k bt2) (0 < t < -$), (2.5) 

where 

b = ; log (;) = 0.328658. 

LEMMA 2.3. For n E N one has 

sin t 

ii sin t/n 
< exp (- i (1 - f) P) (0 < t < r). (2.6) 

Proof. Inequality (2.6) can be rewritten in the form 

sin t __ exp 
t ( 1 ;t2 < sin t/n 

7 exp (i (+)‘) (n E W 

Therefore it is sufficient to show that r(t) := t-l sin t exp(t’/6) is decreasing 
on (0, v). One has 

r’(t) = +t-” exp($t3{-3 sin t + 3t cos t + t2 sin t}, 

which is easily seen to be negative on (0, z-). 1 
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PWO$ This follows from the expansion oft = arcsin(sin t) for ! f [& .7;.,i2]. 
For details see [S, p. 71. 1 

Finally, we note that (cf. [4, p. 971) 

a result that will be frequently used in Section 4. 

3. THE EXTREMAL FUNCTIONS 

3.1. 4s in (1.1) let 

~,,,(f; -4 = jr f(x + 0 k&j 4 
--IT 

where k,,, is given by (1.2). Assuming 12 E N and p E N fixed, we shall 
determine 6,;, defined by 

where 

and .Pn := 2r is defined by 

where, &‘imkrg f by f(t) = f(- t), 

-F. = {fE F;f =f,f(O) = O,f’(tj > Ofor t E [O, ~]j, (3.2) 
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and O,,,f is dejned, for f E F. , by 

Lf = &Af; 0) = j'; fO> k,&) dt. -77 (3.3) 

Proof. As for x E R and f E 9 also f, E 3, where JC is defined by 
fz(t) =f(t + x), we have L,,,(f; x) = L,,,(j, ; 0). Hence it is no restriction 
to take x = 0. As L,,, is linear and f - f (0) E S iff E S, it is no restriction 
to take f(0) = 0. Furthermore, as E,,, = k,,, we have 4,,,,f = O,,,f = 
4&f +f)/2; 1 lence it is no restriction to take f such that f =J Finally, 
it is no restriction to assume that d,,,f 3 0, as for f E 9 we have -f E 9. 
It follows that for even f E P with f (0) =: 0 we have f E F0 and j’ > f if we 
define f” by f’(0) = 0 and f”(t) = max(0, f ‘(t)) for t E [0, ~-1, and by symmetry 
on [-7~, 01. As f(t) 2 f(t) for all t it follows from (3.3) that 4,,,p > O,,,f- 
This proves Lemma 3.1. 1 

We now have to maximize 

4,,,f = jr f(t) k,(t) dt = j;;,;f(t) k,,(t) dt -?I 

for f E & . We first prove two general lemmas. 

LEMMA 3.2. Let K be a finite, nondecreasing function on f-4, $1 and for 
fixed n E N let 9, = 9,,, be defined by 

+Fl = ip: [- ;,;I + R; g = g, g(0) = 0, g’ continuous, w1 (g;$ d 11. 

Then 

lvhere & = &n is defined by j,(O) = 0 and 

j;(t) = j + f . ( 
j+1 . -&<t<--, n J = 0, &I, St2 )... ). / 

Proof. The proof of this lemma involves exactly the same steps as the 
proof of Theorem 3.1 in [7]. This is apparent if we write the Bernstein 
polynomial as B,,(f; X) = li f (t) dK(x, t). 1 
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.c l/2 

sup 
q&a -l/o- 

g(t) d&c(r) = I;,‘1 &(r) dK(1), 
--1,2 

Pmof. For g E gz we have, using integration by parts, 

Dg : = J;;: g(t) dK(t) = J1’ g’(t) 6’ ” dK(Zi) dt = (3.5) 
1’2 -1:2 “t 

We first state and prove three propositions. 

PRoPosmoN (i). It is no restriction to take g comaw, i.e. fo take g’ 
.vonincreasing. 

ProoJ For g E Y2 we define an even function 2 by g(4) = 0, and 

It is easily verified that g’ is nonincreasing and that g’ E g2 . As g”(-r) - 
g’(-t) = g’(t) - g’(t) 2 0 on [O, 81 and J:‘” dK(zr) is nonincreasing, it 
follows from (3.5) that llg > Dg. 
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sup Dg = sup Dg. 
sEs2 SEQ 

PRJO~. By Proposition (i) g’ may be taken to be nonincreasing. Further- 
more, any g’ with g E 9: is the pointwise limit of functions g; with g, E g2 
and having the same w1 value. By (3.5) this proves Proposition (ii). 

PROPOSITION (iii). It is no restriction to awme that g E S$ satisjies 

g’(t) = g’ (t - A) - 1 (- ; + ; < t < 1). (3.6) 

Proof. If for g E 29: condition (3.6) is violated for t = to with 
to E [-4 + l/n, l/&z), then g can be replaced by g, E 9’; as indicated in 
figure 3. I below, where the graphs of g’ and g; are shown. Here gi is obtained 
from g’ for t < 0 as follows: 

g’(to> + 1 
&d(t) = 

(t < to - i and g’(f) -c g’(to) + 1) 

g’(t) (otherwise), 

and by symmetry for t > 0. 

FIGURE 3.1 

Clearly, Dg, 2 Dg (cf. the proof of Proposition (i)), and go E %$ if g E 9;. 
Hence attention may be restricted to functions g satisfying (3.6), with the 
possible exception of the point t = l/&z, which does not affect the value of 
Dg. This proves the proposition. 

Now let g E E$ satisfy (3.6) and let g’(t) = (g’(t - 0) + g’(t + 0))/2 be 
defined for t in [-4, $1; redefining g’ in this sense at discontinuity points 



JACKSON-TYPE OPERATORS 161 

does not affect (3.6). Then, as we have g’(0) = 0 and g’(-L,Qnj = 
-g’(1/2n) = 4, it follows in view of (3.6) that for j = 0, I,.*~, .FZ me lhzve 

(3.7) 

%‘e now rephce g by g’ E S$ _1 G btained by joining the straight lines tangent 
to the graph ofg at the points (-& +j/~, g(-i +j/n)j, i.e., with tangents 
given by (3.7). As g is concave we have g’ > g and herxe Dg > Bg. Finally, 
we show that 2 E 3;. Writing yj = g(-5 i j/rz) for g c- 59: satisfying (3.6). 
we have bymintegration 

with y. = y,I = 0. It follows that a11 functions in Y$ satisfying (3.6) have 
graphs that pass through the points (-4 + j/j:, jjl - j/i:)/i) forj = 0, !,~..? 27. 
Thus the graph of H passes through these points, avrd hence 2 is identica3 
with the function 2, as defined in (3.4). Clearly, fi-Glll the pR3’iOUS pi-GlXX;- 
tions and the construction of i2 it follows that ipg2 3 Dg for g E Yz This 
proves Lemna 3.3. 

3.2. We are now in a position to prove the main result of this section. 

TKEGREM 3.i. Let d,,, be dejned by (3.1). Tkia 



162 SCHURER AND STEUTEL 

Proof. The function j, , except for a linear transformation, consists of 
the functions gIzn and iz,% put together. To be precise we have 

for t E [O, ~1, and by symmetry elsewhere. One easily verifies that (by good 
luck) the jumps at (or close to) t = 42 offi are such that q(jn ; n/n) = 1, 
and hence that j,l is the pointwise limit of derivatives of functions in ,SO 
(cf. (3.2)). Finally we have 

+ sup 1 = h(t) k,(O dt 
f+FiJ.f&Tl?)=O ‘S/B 

= = s”” i3.n (+) k,,(t) dt + %?L, (;) j12 k,(t) dt 

+ 1 j;. 2z.n (+ - 1) k,(t) dt 

= s s fn(t> k,(t) dt. --n 

This proves the theorem. 1 

COROLLARY. The (extremal) flmctiorts fn are given by 

L(O = ; I t I + y (I t I j=l - &), -I- ; (I t I - +)+ 

F&r-1 

- c (I t I - c2j InIl) = j, cm = 1, 2,...), (3.11) 
j=w 

f;m+1(t> = ; I t I + f (I t I - 2n?j7; 1 j, 
j=l 

- /F+, (I tl - jr ) 2m+l+ 
(m = 0, 1, 2 ,... ), (3.12) 

where a, := max(O, a). 
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4. THE EXACT CONSTANTS OF APPROXIMATION c,,, FOR THE OPERATORS Lnz, 

4.1. Case p > 2. The main object of this section is to determine the exact 
constant of approximation for the class of operators (L,,l, ; n E N; F - 1 E !+A!‘$? 
i.e. to determine (cf. (1.7)) 

.- c .- sup sup c,,,,, ) 
Is2 nsN 

where cn,> is defined by (1.3). 
Both in (1.3j and in the definition of $,, in (3.lj, it is not an essential 

restriction to take w1 in fact equal to one. It then follovr~s from Theorem 3.2 
that 

.F 

According to definition (1.5) one has 

Defining 

c I,?, := cl,z = 1.1107 (p = 3, 4,...). 

m = g I f I + h,(f), 

(4.2) 

(4.3) 

we conclude from (4.1) that 

where 

S&z, p) = npl/” s’i 3 I f ! k&t) drt, 
-77 

S&r, p) = rzpliz In h,(t) k,,*,(t) df. 
-77 

(4.5) 

Using (2.2) and taking into account that h,(f) = 0 if / t j < rrin, we easily 
find 
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We observe (cf. Lemma 2.1) that 

4.1.1. We proceed with giving a lower bound for N(n, p) and upper 
bounds for rI(n, p) and 1;(1t, p). 

LEMMA 4.1. 

(4.9) 

where (cfi (2.3)) 

a = Slog +- i i = 0.366039. 

Proof. In view of (4.6) and Lemma 2.2 we have 

This bound for N(rz, p) increases with p. Numerical values can be obtained 
from [l, p. 3111. 

LEMMA 4.2. 

Tk%P) d 5 (I - f)-’ 11 - exp (- i (1 - --$) +p)/ 

+A 
P--l 

+2 2-c&+1’ (I?, p = 2, 3 )... ). (4.10) 

ProoJ: Assuming n > 2, p > 2 and taking into account (4.6) one has 

T&T, p) = /“““’ t ( II ,s~t;-;;;-, )” dt + R. 
0 

By means of the inequality 

(4.11) 
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it is easily shown that 

Furthermore, an application of Lemma 2.3 gives 

LEMMA 4.3. 

T.&z, p) < ; 1 - f-j-’ + g (1 - A&-‘! i ( 

x exp (- & (1 - f) 9~) -/- 27(, 2) 2-Q+ 

(n 3 2, p 2 3). (4.12) 

Progf. One easily verifies that 

Taking into account (4.7) and using (4.13) one has 

(4.13) 

The first integral in the right-hand side of (4.14) is taken care of by an 
application of Lemma ,2..3, whereas ~~92- 2p-k4/(27(p - 2)) is a crude estimate 
for the second integral in (4.14). For details we refer to [g, pp. 19-203. 

Lemmas 4,1, 4.2 and 4.3 will be used to estimate the constants c,~~ if E 
and p are not too small. For very small values of r~ and p a different approach 
will be needed (cf. Sections 4.1.5, 4.1.6). 
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4.1.2. Case II = 2, p > 2. In this section we consider the behaviour of 
the sequence {c,,};. According to formulae (4.1), (3.11), (4.3) and (2.7) we 
have 

%,P - - 2p1’a \” f;(t) kg,p(t) dt 

2”“+“(p y pll” 
E 

r(2p) ! 
/j-on’z t(cos t)2” dt + IOr” h,(2t)(cos t)“P drj, (4.15) 

where 

LEMMA 4.4. The sequence (&,JF is increasing and 

lim c~,~ = 27+/” = 1.12837917. 
n+= (4.16) 

Proof. Only a sketch of the proof will be given; for details the reader is 
referred to [S, pp. 21-231. By use of Lemmas 2.4 and 2.3 an elementary but 
rather tedious computation shows that ca,?, < ~$,~+r when p > 8. The 
constants ceYy (p = 2, 3,..., 8) can be evaluated explicitly (cf. Table 4.1 of 
Section 4.1.7). Taking these data into account the first assertion of the 
lemma follows. As for (4.16), it is easily seen that the limiting behaviour 
of CZ,P is governed by the first integral in the right-hand side of (4.15). We 
have 

p JO+ t(cos t)“” dt = s 
?rpli”j2 

u(cos up-l!“)“~ du 
0 

This, together with an application of Stirling’s formula proves (4.16). 1 

The remaining part of Section 4.1 will be devoted to showing that 
c zzr 27-w. 

4.1.3. Case 11 > 4, p 3 5. Here we shall be concerned with estimating 
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the constants c,~,~ if FI >, 4 and p > 5. In view of (4.9) and using [I, p. 31 i] 
we find that 

N(n: p) 3 ; (g erf (+ (sa>‘/‘) > 1.4579 (II E N.p z 5). (4.17) 

An application of formulae (4.10) and (4.12) yields, for IZ > 4 and p > 5, 

4096 
71,h P) < (g f m 

’ 25~” 
1 ( exp >- =, + i g; < 0.0222, (4.49) 

By (4.4): (4.6) and (4.7) it follows from (4.17), (4.18), (4.19j that 

c 11,1) < 1.1169 < 27i-l’” (II 2 4, p 3 5). (4,20) 

4.1.4. Case n = 3, p > 5. Inequality (4.9) is not sharp enough to take 
care of this case. However, proceeding as in the proof of Lemma 4.1 and 
applying (2.5) and (4.6) we obtain the following improvement on (4.9): 

where 

b = ; log (;) = 0.328658. 

Hence 

N(3,p) > 1.5386 (P 2 5). 

Using this estimate together with an application of Lemmas 4.2 and 4.3 
one easily obtains 

c;g,p < 1.1177 < 2?Cr!” CP >, 5?, (4.211 / 

4.1.5. In view of the results already obtained, the cases p = 2, p = 3 
and p == 4 remain to be considered. The bounds provided by Lemmas 4.1, 
4.2 and 4.3 are now not accurate enough to show that c,,~ < 2rr-l/%. We 
shall do this in a different way. We first note that it is easy to get good 
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bounds on N(n, 2), A@, 3) and N(n, 4). By means of (4.8) and (2.2) we have 
for instance 

N(n, 3) 57 3911125 + 5123 + 417) = ” 
40115 

> 
40 

7T 31/2 > 1 4963 

We now consider Tl(n, p), which, apart from a factor p, 
SD”“” t((sin t)/(n sin t/n))“” dt. Using (2.4) we deduce that 

I .- 
n+1,9 *- s 

(n+-1h/2 

( 

sin t 

t 0 (17 +~ 1) sin t/(12 + 1) 1 
2p dt 

(n E N). (4.22) 

is identical with 

< I,,, t- (4.23) 

where we have used (2.7). 
Repeated application of (4.23) for a fixed ilo E N gives 

I ngts,?.l d In,.* + 
rr”(2p) ! 

2’p+“(p !)2 ( 
sin (s E N). 

(4.24) 

A similar procedure will be used to obtain an estimate for Tz(n,p), which, 
apart from a factor p, is identical with (cf. (4.7)) the integral 

f 
nn/2 2t 

t I( 

sin t 
i 
2p 

nh, _ dt. 
* x ‘2 I1 n sin t/n j 

(4.25) 

In order to do this we need the following result, for the proof of which we 
refer to [8, pp. 27-281. 

LEMMA 4.5. L.et the function h, be dejined by (4.3). Then for n E N one has 

(4.26) 

In order to estimate the integral (4.25) it is convenient to have the graphs 
of the functions nh,(2t/n) available for the first few values of n. These graphs 
are shown in figure 4.1, in the construction of which formulae (3.1 I), (3.12) 
have been used. 
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_1 

0 
E 37r 3lr 51r 
2 7 p ? 277 -2- 3?r t--4- 

FIGURE 4.1 

Using Lemma 4.5 and taking into account (2.4), (2.7) and (4.11>, we have 
for n > 5 

Inequalities (4.22), (4.24) and (4.27) will be used to dispose of the case 
p = 3 and ~1 sufficiently large. 

4.1.6. Case 11 > 3, 2 < p < 4. In Section 4.1.7 we shall give a set oi 
formulae with which the constants c,,, may be computed explicitly. These 
formulae yield (cf. (4.5)) 

= 0.955187, 

g;(j, 3) = 27i 3V - x (2 cot? T + co3 f - 1) 

x (1686 - 7 ix - y; + sl + &, = 0.017208, 
I 

Accordingly cSS3 = 0.972395. 
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Using these data, formula (4.22) and the definitions of I,,, and Jn,e we 
obtain 

&, = 0.485382, Jj,Q = 0.008744. 

Applying (4.24) and (4.27) in the case p = 3 gives for n > 5 

In,3 < IS,3 + g (sin $-)-” zGj-5 < 0.485635, 

Jn,3 < J5,3 + g ,fx j-4 -=z 0.016693. 

From these results and (4.22) it follows that 

S,(n, 3) < 0.9737, s&2, 3) < 0.0335 (I2 > 5) 

and hence 

c,,,~ < 1.0072 < 2+Jn (n > 5). (4.28) 

The constants es,3 and cq,a can be computed explicitly; their values are 
contained in Table 4.1 of Section 4.1.7. 

The cases jr > 3, p = 2 and n 3 3, p = 4 are treated in a similar way. 
Using the values of S,(19, 2) and S,(19, 2) from Table 4.1 we obtain 

c,,~ < 1.1256 < 2rr-lp (?2 > 19). (4.29) 

Similarly one finds 

c,,q < 1.0107 < 2x-rp (n > 4). (4.30) 

For computational details the reader is referred to [8, pp. 31-321. 

4.1.7. As is apparent from the preceding sections, c,,~ has to be com- 
puted explicitly for a few particular n andp. The values of c.,,, (p .= 2, 3,..., 8) 
(cf. Section 4.1.2), c$,~ and cg,a , c,,~ (n = 2 ,..., 19), es,4 and c~,~ (cf. Sec- 
tion 4.1.6) are contained in Table 4.1. To obtain these numbers we use (4.5), 
together with Lemma 2.1 and formulae (3.1 I), (3.12). It can then be shown 
that one has 

where the coefficients plc : = pl*Z’nj are given by (2.2). 
If n = 2m + 1 the expression for &(n, p) reads 

(mfjhln 

)I 
(4.32) 

j,!n 
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4.2. Case p =: 1. Taking into account definition (1.4) and the form of 
the FejCr operators, together with the results on extremal functions of 
Section 3, we have 

We write (cf. (4.3) and (4.4)) 

where 

By means of Lemma 2.1 it is easily shown that S,(n, 1) decreases monotoni- 
cally to zero as n + cn. In order to determine cu) := supAEN c,,r we need 
an upper bound for S,(n, I). As h,(t) E 0 if i t ) < ~/PZ one has 

S,(n, 1) = & j-;,,, h,?(t) ( ‘;!$; )” dt = -$ c:‘” 11,~ ($-)(-$&)” dt 
., 

0.52 na/2 
<- 

.c 
sin2 t dt -=c 0.13~ = 0.4084 

71 
(n E N). 

a,‘2 
(4.34) 

by an application of formula (4.26). Furthermore, one easily verifies that 

37 
Cl,1 = - 4 = 0.7854, c2,1 = g - $ (21/” + 1) = 0.4993 (4.35) 

and 

Ls,(3, 1) = $ - $ = 0.3610. (4.36) 

As S,(n, 1) is decreasing, formulae (4.34), (4.36), together with (4.35) imply 
the following theorem. 

THEOREM 4.2. Let c,,~ be the exact constant of approximation for the 
operator L,,, as defined ipz (1.4). Then (cJ (1.6)) 

c(1) :- sup c,,~ = c;,~ = -? = 0.78539816. 
rlEhl 4 
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5. THE LIMITING BEHAVIOUR 0~ THE COssrA~rs c,,~ 

5.1. Tn this section we investigate the limiting behavionr as i? +- ~9 
oriand p -+ rm of the exact constants of approximation c,,:, . There are four 
cases to be considered, viz., II -+ gr,, p > 2; :Z > 2, p - r~j; IZ - ‘:c~ p - 3: ; 
;I -> sm: p = 1, the last case corresponding to the Fejkr opesa~ors. It turns 

out that c,,~ has an asymptotic behaviour that is diRerent frGfi1 that of c;?.~ 
f0F.p 3 2, 

5.2. Case 72 --f 00, p 3 2. Let dn,b be given by (3.S), i.e. Eet 

As a guide to norming we regard k,., as the prebabili.-&y density of a randon 
variable (T.V.) IT,,, . For the expectation ET,~, and variance var T,,, we 
have 

It is easily verified (cf. [6, Lemmas 2 and 43) that 

Denoting the probability density of a T.V. X by 00,~ we geoeraily have for 
a>0 

and therefore, letting n + 03, 
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It follows by dominated convergence (f;l(t) < a j t 1 + bnt”; cf. (5.3)) that 
for n -+ co one has 

where (cf. formulae (3.11) and (3.12)) 

f*(t) := $+z ;ji ($) = ; I t I + jz (I t I - T)+. 

Summing up we have the following theorem. 

THEOREM 5.1. Forp > 2 

where g, is defined bq’ (5.1). 

Table 5.1 contains the values of cz, for p = 2(1)10; 20(10)40. For details 
concerning the numerical evaluation of these numbers we refer to [S, pp. 41- 
421. 

TABLE 5.1 

P CIJ P GJ P G 

2 1.04.54774s 6 0.95729217 10 0.96499488 
3 0.95048119 7 0.95991291 20 0.97109617 
4 0.95047131 8 0.96199158 30 0.97313267 
5 0.95404617 9 0.96365107 40 0.97415086 

5.3. Case IZ ,> 2, p + CYJ. We begin by considering cnpl~“T,,, , where c 
will be given a convenient value. It is easily verified that 

where 
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i -7 ,= .: i3 

If we take (na - l)/(6n”cz) = 1 it follows that (p(rl’ - Z),@!“/” r,,, is 
asymptotically standard normal. By dominated convergence this Imeans that 

; * ( exp -t2 dt ; PPa s m 2 /I --J: i J 2, . 

where a,,, = (p(n” - 1)/6)1/“. 
We have now proved the following theorem. 

THEOREM 5.2. For n 3 2 

lim c,,, = lim npl/* 
P-a p+m jm j&) k,,,(t) dt = cfjl” (1 - &)-I”. 

-7 

We note that if n = 2 we have lim,,, c~,~ = 2+/’ (cf. (4 16)). Further- 
more, it follows that (limp+m c,,,>F is a decreasing sequence. 

5.4. Case II + co, p + co. From Theorems 5.1 and 5.2 we obtain (com- 
pare Table 5-l) 

THEOREW 5.3. 

where the limits may be taken in either order. 

Proof. It is an immediate consequence of Theorem 5.2 that lim,,, lim,,, 
c,,~ = (3/-rr)lp. On th e other hand we obtain from Theorem 5.1: using 
dominated convergence for integrals and sum, 
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where we have written 

5.5. Case rz -+ co, p = 1. The behaviour of c,,~ (cf. (1.4)) differs from 
that of c~,~ for p > 2. This is due to the easily verified fact that 

var Tn,l = ET:,, = 1-1 t2k,,l(t) dt = 0 (;) (n - co), (5.2) 

whereas for p 3 2 we have var T,,, = 0(1z-~). In view of (3.9) and (3.10) 
we deduce that 

L(t) = 1 -g + to(l) (O<t<$) 
IE~ 
_ - I1 (XL f12+ tQ(1) 

4 
(+ < t < T) (M - coh (5.3) 

From (5.2) it follows that E 1 T,,, I = cII(~-~/~). Using this, (5.3) and formula 
(4.33),“one has by dominated convergence 

1 
s 

lij2 
3 _ 

4s 0 
-z-&- dt + & s:, if - (n- - 02/ -if- dt. sm2 t/2 

Here, the limit is obtained by the Riemann-Lebesgue lemma. By simple 
transformations it follows that (cf. [4, p. 1231) 

2 
=-s 

7712 t 
rr2 0 

=dt=$, 
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where d denotes Catalan’s constant: 0 = XT==0 (- l)j(2.j + I)-” = 0.91590559. 

This proves the following theorem. 

THEORE;IX 5.4. 

Renxzrk. With a little more effort it can be proved that c,~;~ = 4B!s;r” T 
O(n-9 as n + x3. 
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