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Iet C, be the class of real functions of a real variable that are 2z-periodic
and have a continuous derivative. The positive linear operators of the Jackson
type are denoted by L, , (z €N), where p is a fixed positive integer. The object
of this paper is to determine the exact degree of approximation when approximat-
ing functions fe C}, with the operators L, ,. The value of max,! L, ,(f; x)~F(x)|
is estimated in terms of wy(f} 8), the modulus of continuity of f/, with § = #/n.
Exact constants of approximation are obtained for the operators L, , (zelN,
7 > 2) and for the Fejér operators L, , (# €N). Furthermore, the limiting be-
haviour of these constants is investigated as # — co and p — o, separately or
simultaneously.

1. INTRODUCTION AND SUMMARY

1.1.  The class of real, continuous, 27-periodic functions of a real variable
is denoted by C,,. . Assume f e C,, and let p be a positive integer. The positive
linear operators L, , are then defined by

Lifs®) = [ foc+ Dk dr (1€ N) (1)

where

-1 [ sin nt[2 \2?
kn,p(t) - An.p ( Sil’l t/z ) H {}2)

with 4, , such that |7k, ,(¢) df = 1.

For p = 1 we obtain the Fejér operators, while the name of Jackson is
associated with L, ,. Approximation properties of the operators L, ,, in
particular those of L, , and L, ,, have been extensively studied; cf. Grlich
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and Stark’s survey paper [3], Matsuoka [5] and Schurer and Steutel [6].
Assuming f to be nonconstant, Wang Hsing-Hua [9] proved

max, | Lya(f; ) — )l _ 3 _ [ 1
s swp Sy — (W=l )

where w denotes the modulus of continuity of f. A similar result for the
Jackson operators in two dimensions was obtained by Bugaets and
Martynyuk [2].

1.2. 1In this paper the setting is the class C,, of real functions of a real
variable that are 27-periodic and have a continuous derivative. The degree
of approximation is measured in terms of w, , the modulus of continuity of f'.
In particular, we shall deal with the problem of determining the exact
constants of approximation for the operators L, ,. For neN, p —1eN
fixed, the exact constant of approximation for the operator L, , is defined by

crn it sup LD O et o (1) >,
(1.3)

whereas for the Fejér operators (p = 1) the definition reads

Cp,1 o= SUP % | L”’fof’ﬂr/;)f(x)[ ixeR, feCh, w, (f, ’—7;) > 0%. (1.49)

The norming is prescribed by the limiting behaviour. In order to keep the
constants ¢, , also bounded, definition (1.3) in the case n = 1 is replaced by

Crpi==10Cy s (p =3,4,.). (1.5)

For fixed pe N the exact constant of approximation for the sequence of
operators {L, , ; n € N} is then defined by

P 1= sup c,.p- (1.6)
neN

Finally, the exact constant of approximation for the whole class of operators
{Ln.»;reN, p =2} is defined by

¢ := sup c¢'?, (1.7

P22

1 [a] denotes the largest integer not exceeding a.
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1.3, We give a brief sketch of the contents of the various sections.
Section 2 contains 2 number of preliminary lemmas. In Section 3 the so-
called extremal functions are iniroduced; just as in the investigation of
the Bernsiein polynomials (cf. [7]), they play a crucial role in determining
the constents ¢, , . The pattern of deducing the extremal functions is in
part similar to the procedure given in [7]; a sericus complication however
is caused by the consiraint of periodicity. The main result of Section 4 is
the proof of ¢ = 2712 = 1.12837917%. We also determine the exact constant
of approximation for the Fejér operators; it is shown that ¢® =#{4 =
0.78539816. In Section 5 the limiting behaviour of ¢, , is considered as
n— = orjand s — 0. A separate discussion is devoted to the behaviour of

Cpq 858 — .

2. PRELIMINARY RESULT:

2.1. Approximation properties of the operators L, , were investigated
in [6]. There the following lemma is proved.

Lemva 2.1, The coefficients u® in the expansion

(SN ) 5 WP cos ki (2.1)

{W) = po 2 z cos ki (2.1
are given by

n 2 B - T‘ - 1 P Mo BY

( ) Z (—1) ( p)(n[) szp ‘L 1j > 2.2)

with the usual convention that (5) = 0 if a < b.

2.2. We proceed with a few inequalities that will be used in Section 4 to
estimate integrals over the kernel (2.1).

LemmaA 2.2. For ne N one has

sin ¢
nsin t/n

where

8 o g 5
a = log (T) — 0.366039. 2.3)

2 Here and elsewhere numbers are rounded to the last digit shown.
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Proof- As x~1sin x is decreasing on (0, 7r), we have

.t . 1 T
— < R —_— 2 4
1 SIn " BS (ﬂ - 1) sin n I (0 <t < 3 ) (‘... )

It is therefore sufficient to show that
. 1 T
-1 = 2 7
t 51nt>exp( zat) (0<t<2).
Put
q(t) := t~*sin t — exp(—iar?).
Taylor series expansion shows that ¢ is positive on the interval (0, 37/8].

Furthermore, ¢q is decreasing on [3#/8, #/2], while g(#/2) = 0. This proves
the lemma. [

Remark. If n =3 Lemma 2.2 can be sharpened as follows (cf. [8, p. 6]):

?:i%;/—?,— > exp (~ —;—btz) (0 <tr< —727—) (2.5)
where
b= % log (%) — 0.328658.

LemMMA 2.3. For ne N one has

sin ¢ 1 1y,
mgexp (—E(I—F)t) (O<t<7T). (2.6)
Proof. Inequality (2.6) can be rewritten in the form

sirtl t exp (é t2) < sirtl/;/n exp (é (7_2)2) (neN),

Therefore it is sufficient to show that r(z) := ¢t~ sin ¢ exp(¢%/6) is decreasing
on (0, 7). One has

r'(t) = 2 exp($t®{—3sin t + 3t cos t + t2sin t},

which is easily seen to be negative on (0, 7). |}
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Lemma 2.4, For 0 <t < /2 one has

. 1. 3 .
sinf + —sin®t 4+ —sin® ¢
MRt g T35

gt<Sin’+é3iﬂ3l‘+%sin5t+(%—%}sirﬁi.

Proof. This follows from the expansion of t = aresin{sin ¢} for 7 € {0, #/21.
For details see {8, p. 71. 1
Finally, we note that (cf. {4, p. 97))

/2 w (2
’ (sin 1)*¥ dt = [ (cos )2 dt =
s Jo

#(2p)!
22;n+1(p q)z 3

a resuli that will be frequently used in Section 4.

3. THE EXTREMAL FUNCTIONS
3.1, Asin (L.1) let

Lo x) = [ foe+ 0 ka o) i

where k, , is given by (1.2). Assuming ne N and p e N fixed, we shalil
determine o, , defined by

dy.p = sup{| Anp(f’ X;xeR, feF,),

il
p—
a’

m—

where
A)z,p(f; .’C) = Ln,p(f; X) _ f{X)

and %, := F is defined by

N

}
I;.
)

¥

F=\flm > RifeCh. o (fi )

Lemma 3.1,
dn,p = sup !An.pf[a

feF gy
where, defining f by f(t) = f(—1),

Fy =feF ] =1£10)=0,f() =0 for 1€{0. 7]}, (3.2)
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and A,,_,f is defined, for fe %, , by
Aoyt = Bnof 5 0) = | 0 o0 . (3.3)

Proof. As for xeR and fe % also f,e€#, where f, is defined by
JAt) = f{t 4 x), we have L, ,(f; x) = L, (f;0). Hence it is no restriction
to take x = 0. As L, , is linear and f — f(0) € # if fe &, it is no restriction
to take f(0) = 0. Furthermore, as k, , =k, , we have 4,, ,f =4, .f=
A4, (f -+ )]2; hence it is no restriction to take f such that £ = f. Finally,
it is no restriction to assume that 4, ,f > 0, as for fe # we have —fe F.
It follows that for even fe & with f(0) — 0 we have fe %, and f > fif we
define f by £(0) = 0 and f'(r) = max(0, f'(t)) for ¢ € [0, ], and by svmmetry
on [—m, 0]. As £(¢) > f(¢) for all ¢ it follows from (3.3) that 4, ,f = 4, ,f.
This proves Lemma 3.1. [

We now have to maximize

7 37 /2
Ao = | SO kst dt = [ f0) ey o(0)
for fe %, . We first prove two general lemmas.

LEmMMA 3.2. Let K be a finite, nondecreasing function on {—1%, 3} and for
Sfixedne N let 9, = 9, , be defined by

4, = 5g: [-— 1 ] — R; g =g, 2(0) = 0, g’ continuous, v, (g; %} < 1;,

sup [ gy aky = [ ) k()

ge¥; Y1/
where g, = §,,,, is defined by §,(0) = 0 and

J+19]—0 il :i:—: }

o ., 1
gl(t):]"l"i (J <r<
Proof. 'The proof of this lemma involves exactly the same steps as the
proof of Theorem 3.1 in [7]. This is apparent if we write the Bernstein

polynomial as B,(f; x) = [¢f(t) dK(x, 7).
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LemMa 3.3. Ler K be a finite, nondecreasing function on [—3%, 3} and for
fixedneN let ¥, = 9, , be defined by

G, = gg: [— é, %] —-R;g=g2¢ G) =0, g’ continuous, w, (vg; E} <1

=/ 5 28 +

Then

12 12
sup f g dK(t) = | g,(1) dK(),
ge¥y Y -1/2 Y_1m

where g, = g, ., is defined by §,(3) =0 and

N . 2j — 1 2i+1 . 3
if n=2m,
3.4)
5 b 'j il \
&) = — (./ + 5} (m <r< m:.! =0, +1§, iZ,.-v‘}
if no=2m 4 1.
Proof. For g€ ¥, we have, using integration by parts,
1/2 /2 f12
Dg:= [ g(t)dK(r) = f g dK@) dr. (3.5)
Jo1/2 —-1/2 ¢

We first state and prove three propositions.

ProposiTioN (i). It is no restriction to take g concave, ie. to take g’
Aonincreasing.

Proof. For ge &, we define an even funciion ¢ by g(4) = 9, and
g 2 &

OGRS sup gs) (—i<r<0).
<s5<0

It is easily verified that ¢’ is nonincreasing and that §€ %,. As §(—) —
g(—t)=g(t)—£&@®) =0 on {0,%] and ﬁ/“ dK (i) is nonincreasing, it

follows from (3.5) that Dg > Dg.

ProrositioN (ii). Let

Gy = ;g : [— %, %] —-R;g=g¢g (%) = 0, g’ nonincreasing, g’ continious

. . S AN )
except for finitely many jumps; wq (g; ;; < 15
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Then
sup Dg = sup Dg.

ge%, geG3

Proof. By Proposition (i) g’ may be taken to be nonincreasing. Further-
more, any g’ with g € #f is the pointwise limit of functions g, with g, € %,
and having the same w; value. By (3.5) this proves Proposition (ji).

PROPOSITION (iii). It is no restriction to assume that g € ¥ satisfies

’ . ’ 1 1 ]. l
gO=g(t—2)—1 (=54, <t<3) (.6)
Proof. If for ge@§ condition (3.6) is violated for =1, with
toe{—% -+ 1/n, 1/2n), then g can be replaced by g,c %5 as indicated in
figure 3.1 below, where the graphs of g’ and g, are shown. Here g, is obtained
from g’ for ¢ < 0 as follows:

g0+ 1 (1<t —1andg') <g(t) + 1)
gt =
g'® (otherwise),

and by symmetry for ¢ > 0.

Ficure 3.1

Clearly, Dg, = Dg (cf. the proof of Proposition (1)), and g, € 45 if g € 95.
Hence attention may be restricted to functions g satisfying (3.6), with the
possible exception of the point # = 1/2n, which does not affect the value of
Dg. This proves the proposition.

Now let g € 9f satisfy (3.6) and let g'(z) = (g'(t — 0) + g'(z + 0))/2 be
defined for r in [—4, 1]; redefining g’ in this sense at discontinuity points



JACKSON-TYPE OPERATORS 161

does not affect (3.6). Then, as we have g'(0) =0 and g(—i/2n) =
—g'(1)2n) = 4, it follows in view of (3.6) that for j = 0, 1,..., z we have

1 i 4

e L) =2 g (3.7
g ( 2 - n ) / 3.7)
We now replace g by § € ¢F obtained by joining the sirzight lines tangent
to the graph of g at the points (—3% + j/n, g(—3% + j/n), i.e., with tangents
given by (3.7). As g is concave we have § > g and hence DF > Dg. Finally,
we show that § € 9F. Writing y; == g(—1% + j/n) for g € ¥¥ satisfying (3.6),
we have by integration

1
Yisa — 2’VJ + Yiq = — a°

with y4 = v, = 0. It follows that all functions in %7 satisfying {3.6) have
graphs that pass through the points (— & + jfz, jii — jin)/2)forj =0, L,..., n
Thus the graph of § passes through these poinis, and hence § is identical
with the function g, as defined in (3.4). Clearly, from the previous proposi-
tions and the construction of g, it follows that Dg, > Dg for g ¥, . This
proves Lernma 3.3,

-

3.2. We are now in a position to prove the main result of this section.

Treores 3.1, Let d,,, be defined by (3.1), Then

dup= [ Fut) R o) 1 3.9)

where f, is defined by f,(0) = 0, £, is even, and

“v i i 1 (1
‘\j+% (é%<t<(“;ﬁ)"¢_01 m—1)
, i 2 — D= Zi+ D=
f‘ém(z) s ‘2”1 —J ( 2 < 4771 P< A = ?
‘! j=mm+ 1., -m)
| m=12,.) 329
‘ . 1 Jj . G+ Dw . A
g ) (2m + 1 <T<Tmri /T 0 Lo "
| [ G+ On
5 2
Fholt) = ¢ ’l“” its AT <t <t
é j=m-+1,m+ 2., 2m )

(m=20,1..0 (3.10)
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Proof. The function f, , except for a linear transformation, consists of
the functions g, , and §, , put together. To be precise we have

(L i),
FA) = Tigl’n(w) (0<t< 2)

)+t et) (i)

for t € [0, ], and by symmetry elsewhere. One easily verifies that (by good
luck) the jumps at (ot close to) t = /2 of f, are such that w,(f,, ;7/n) =1,
and hence that f, is the pointwise limit of derivatives of functions in %,
(cf. (3.2)). Finally we have ol

sup [ f(2) kn,o(t)

feF,q

< sup {7 A0 kus® i + 1 () [ ) ]

F1eF,

+ s A0 ko) dt

FaeF o Falm/2)=0 Yur/2
[ e () s () [ st

T

o t
b [ (= 1) Kna)
= [ Fi®) ken0) .
This proves the theorem. ||

COROLLARY. The (extremal) functions f, are given by

m—1

Jon®) = 5111 + ;(it\—%’,%)ﬁ%(““%ﬁ

- mZ_ ('I t— —(2]——4t;1)—”)+ (m=1,2,.), (3.11)

j=m

m

Z("'”E%FTL

i=1

Fomia(®) =%lr| +

2m

Jjrr
_ ,-=§+1 ([ t — WL m=0,1,2,.), (3.12)

where a, := max(0, a).
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4. Toe Exact CONSTANTS OF APPROXIMATION ¢, , FOR THE OPERATORS L, ,

4.1. Case p > 2. The main object of this section is to determine the exact
constant of approximation for the class of operators{L, ,;neN;p — 1 e N},
i.e. to determine (cf. (1.7))

€ := SUp SUp ¢, , .
p>2 neN
where ¢, , is defined by (1.3).

Both in (1.3) and in the definition of d, , in (3.1}, it is not an essential
restriction to take w; in fact equal to one. It then follows irom Theorem 3.1
that

Cn.p = ap*d, , = np'/? r Ful) Ky p(8) dt G, p =2.3,.) 4.5
and

Crp = 278271 fﬂ | t)dt = w232 = 1.1107.

According to definition (1.5) one has

CLQO = 61,2 = 1.1107 (p = 3’ 45_._)_ (42\;
Defining )
fult) = B 11+ ha2), (4.3)

we conclude from (4.1) that

cln,m = Sl(”= P) + S2(n7 p)i (44}
where
Suln, p) = mptt® [ § 111k, (1) d,
o {4.5)
Soln, p) = np*? | h(8) k, {(t) dt.
Using (1.2) and taking into account that £,(t) =0 if | 7| < @/n, we easily
find

napt/2 2 ; —1/2 2p —1
Sy(m, p) = ( f (__Sln_tp__._) a’z}
o nsin tp~titp—t J

naptle o oip tpii2 2p
X (J;, ! ( n sin ¢p~tiZp? ) dt\,)
== N_l(n> P) Tl("s }7)» (45*6)

nmpll2j2 sin gp1/2 (2P T
Sy = ([ (S vy,
27> p) 0 n sin fp—172 Py L)

an /2 ) ; 2 \
x (p L/z i (%)( n :rri ;/n ) i dt}
—: N-(n, ) T, p)- @7
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We observe (cf. Lemma 2.1) that

(n,p) ,1/2

aa
N(n, p) = —%ﬁ— . (4.8)

4.1.1. We proceed with giving a lower bound for 'N(n, p) and upper
bounds for Ty(#n, p) and To(n, p).

LemMma 4.1.
1/2 -
N p) =5 () et (5 (pare)  peN),  @9)
where (cf. (2.3))

a= % log (%) = 0.366039.

Proof. 1In view of (4.6) and Lemma 2.2 we have

wpl2/2 sin tpi/2 \2p
Mgy = [ (S e,
(. p) = 0 7 sin tp~i/2p~1

129 1

= foﬂp exp(—at?) dt = 3 (i;—)l‘/2 erf (—;L (pa)l/?”). i

This bound for N(n, p) increases with p. Numerical values can be obtained
from [1, p. 311]. "

LEMMA 4.2.

i <3 (1) e (=4 (1= ) o)

+ P ey p =2 3. (4.10)

ST
p—

Proof. Assuming n =2, p > 2 and taking into account (4.6) one has

rpti2 sin zp=1/2 20
nnn) = |t () AR

By means of the inequality

. 2 -
sin x = —; X (0 <x < T) (411)
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it is easily shown that

R <L __ 2o-ern,
p— 1

i

Furthermore, an application of Lemma 2.3 gives

~rptl2 sin £p=1/2 2p
o n sin tp~n

[ N—

< j”w f exp (~ % (1 — —1—) t2> dt

LEMMa 4.3,

TZ(": p\ < g

\Of 4~
——
Ju—
e
)
e
|
-
L
i
é\uc\
—
Pt
3| e
™
|

(n=2.p =23 (412)
Proof. One easilylveriﬁes that

W) < s (>0 4.13)
1, \27772 i = . ( .

Taking into account (4.7) and using (4.13) one has

12

< 32 1 o2 5 sin fp—i2 3
T p) < 77 T2 z_ doptitgs ( nsin tp=Li2p—t dt
(2 sin ¢ \2? e
+ f pre (5L ard. (4.14)
7 sin tfm | }

The first integral in the right-hand side of (4.14) is taken care of by an
application of Lemma 2.3, whereas #2p2-274/(27(p — 2}) is a crude estimate
for the second integral in (4.14). For details we refer to {8, pp. 19-20]. §

Lemmas 4.1, 4.2 and 4.3 will be used to estimate the constants ¢, , if
and p are not too small. For very small values of » and p a different approach
will be needed (cf. Sections 4.1.5, 4.1.6).
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4.1.2. Case n =2, p > 2. In this section we consider the behaviour of

the sequence {¢, ,}5. According to formulae (4.1), (3.11), (4.3) and (2.7) we
have

Cop = 20" [ fu0) Ko,o(0)

2p+2( p1\2 pl/2 ( pr/2 /2
_ ZrEp P { [ teos 2 di + [ h2)(cos 1y dtfa (4.15)
0 0

7(2p)!
where
0 (0<e<-)
e N L A
—t + *7—27-— (-3%— <r < %)

LEMMA 4.4, The sequence {¢y '3 is increasing and
q ¢, ps2 g

lim ¢, = 2712 = 1.12837917. (4.16)

PG

Proof. Only a sketch of the proof will be given; for details the reader is
referred to [8, pp. 21-23]. By use of Lemmas 2.4 and 2.3 an elementary but
rather tedious computation shows that ¢, , << ¢5 ,.y when p > 8. The
constants ¢, , (p == 2, 3,..., 8) can be evaluated explicitly (cf. Table 4.1 of
Section 4.1.7). Taking these data into account the first assertion of the
lemma follows. As for (4.16), it is easily seen that the limiting behaviour
of ¢y, is governed by the first integral in the right-hand side of (4.15). We
have

n.p1/z/2

/2
P [ / t(cos 1)*? dr = f u(cos up~1/%)*? du
Y0 0]

~ foo u exp(—u?) du =
[

[

(p — o0).

This, together with an application of Stirling’s formula proves (4.16). §

The remaining part of Section 4.1 will be devoted to showing that
¢ = 27172,

4.1.3. Case n >4, p > 5. Here we shall be concerned with estimating
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the constants ¢, , if n > 4 and p > 5. In view of (4.9) and using [I, p. 311]
we find that

1

o A 12
N, p) = 5 (-Z—) erf (—’zl (5a)1/2) > 14579  (reN.p=5. (417

An application of formulae (4.10) and (4.12) yields, forn = 4 and p = 35,

2
Ty, p) < % (1 — exp (~ 2?—’67)) 152271 < 1.6061, (4.18)
64 4096 ;2552 5o .
Toln, py < (ng + W) ex (— —64—) + 3184 < 0.0222. (4.15)

By (4.4), (4.6) and (4.7) it follows from (4.17), (4.18), (4.19) that
Cup < L1169 < 2977112 n=4,p = 95. (4.20
4.1.4. Case n =3, p = 5. Inequality (4.9) is not sharp enocugh to 1ake

care of this case. However, proceeding as in the proof of Lemma 4.1 and
applying (2.5) and (4.6) we obtain the following improvement on (4.9):

1 12 A
¥op =) e () em
where
8 3
b ——; log (5) - 0.328658.
Hence

NG, p) > 1538  (p = 95).

Using this estimate together with an application of Lemmas 4.2 and 4.3
one easily obtains

ey < L1177 < 277102 (p = 5. 420

4.1.5. In view of the results already obtained, the cases p =2, p =3
and p == 4 remain to be considered. The bounds provided by Lemmas 4.1,
4.2 and 4.3 are now not accurate enough to show that ¢, , <2713 We
shall do this in a different way. We first note that it is easy to get good
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bounds on N(#n, 2), N(n, 3) and N(n, 4). By means of (4.8) and (2.2) we have
for instance

7 312(1n® + 5u® + 4iz)

NG, 3) = 40

7312 > 14963 (neN). (4.22)

We now consider 7;(#, p), which, apart from a factor p, is identical with
Y b t((sin t)/(n sin t/n))?? dt. Using (2.4) we deduce that

. (n4)m /2 sin £ 22
lyiip i= J;) t ( (n -+ 1) sin l‘/(ﬂ + D ) d

nw /2 sin ¢ 21) (n+1)7‘r/7 , sin ¢t 2p
g.’; t(nsint/n) Tf (n-]—l) sin t/(n + 1)) dt

2(2p)! o ~27
<Ip, -t ZZZT(Q(I;)W— (n + )2+ (sm (ﬁ’ﬁ» , (4.23)

where we have used (2.7). »
Repeated application of (4.23) for a fixed #, € N gives

w2(2p)! . nym 2z
48,1 < + EY o —2p+l .

rovus < oo sy (03, THy) T ST 6N

(4.24)

A similar procedure will be used to obtain an estimate for T,(n, p), which,
apart from a factor p, is identical with (cf. (4.7)) the integral

In order to do this we need the following result, for the proof of which we
refer to [8, pp. 27-28].

LEMMA 4.5. Let the function h, be defined by (4.3). Then for n € N one has

nh,, (—i’—) < 0.26mm2 sinzg ( 1] < "2” ) (4.26)

In order to estimate the integral (4.25) it is convenient to have the graphs
of the functions »n#,(2¢/r) available for the first few values of ». These graphs
are shown in figure 4.1, in the construction of which formulae (3.11), (3.12)
have been used.
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FIGURE 4.1

Using Lemma 4.5 and taking into account (2.4), (2.7) and (4.11), we have
forn =35

phw (2 2 blH f A8 /2 P opk
Japi= mhy, {(— ( ) = +
e b ( n /\nsint/n J jgﬁ,z
37/2 2t sin ¢ \?? nr2 {sin )*?
< Shy (- (_) dt + 0.26 N
in_, s ( 5 ) 5sin¢/5 ™ g Jop (nosin Hnyr?
n-1 ; —2p+2 pj+D)w /2
. o ; - 3
< Js.p + 0267 Y (n sin 127) J! {(sin )22 dt
j=3 ! in/2
-1
0.267Cp)! 5 e _ 0267001 S i (40,

\15,.1)—!——?1?1—(55?;3 ~P+’<J5BTW/,,}

Inequalities (4.22), (4.24) and (4.27) will be used to dispose of the case
7 = 3 and # sufficiently large.

41.6. Casen =3, 2 <p <4 In Section 4.1.7 we shall give a set of
formulae with which the constants ¢, , may be computed explicitly. These
formulae yield (cf. (4.5))

5 10(3)/2 1246 246 56 61
Y Y /2 _*'___ | H
55,3 =373 17507 (1686 T T35 T4 TR0 T g
= 0.955187,
” 20(3)1/2 -
=27 312 s s 1
8:(5,3) =273 17317 (2 cos? 3 7+ cos 3 }
x (1686 — 1236 246, 35 2) ~ 0017208

Accordingly ¢; ; = 0.972395.



170 SCHURER AND STEUTEL

Using these data, formula (4.22) and the definitions of 7, , and J,, , we
obtain
I;,; = 0.485382, Js,3 = 0.008744.

Applying (4.24) and (4.27) in the case p = 3 gives forn > 5

Ly <1l + 567;' (sin ?2* =7y X 5 < 043635,

1372 &
320

Jng < Js5 Z Jj™ < 0.016693.

From these results and (4.22) it follows that

- 8i(n, 3) < 0.9737, Si(n, 3) < 0.0335 (n>5)
and hence
Cns < 1.0072 < 27112 (n > 3). (4.28)

The constants ¢35 and ¢, 3 can be computed explicitly; their values are
contained in Table 4.1 of Section 4.1.7.

The cases n >3, p =2 and n > 3, p =4 are treated in a similar way.
Using the values of $;(19, 2) and Sy(19, 2) from Table 4.1 we obtain

Cray < 11256 < 27712 (n > 19). (4.29)

Similarly one finds

Cng < 10107 < 27712 (n > 4). (4.30)

For computational details the reader is referred to [8, pp. 31-32].

4.1.7. As is apparent from the preceding sections, ¢, , has to be com-
puted explicitly for a few particular # and p. The values of ¢, , (p = 2, 3,..., 8)
(cf. Section 4.1.2), ¢z and ¢35, C,.2 (n =2,...,19), ¢34, and ¢, , (cf. Sec-
tion 4.1.6) are contained in Table 4.1. To obtain these numbers we use (4.5),
together with Lemma 2.1 and formulae (3.11), (3.12). It can then be shown
that one has

Har—1
]ggl “0(21( - 1)2

[(np—p-+1) /21
n
Sy, p) = ”73 — 8

e —

(4.31)

where the coefficients p, := p{>? are given by (2.2).
If n = 2m + 1 the expression for Sy(#, p) reads

1/2 m np-—-p {(m+iwin
Sy, p) — lﬂm_puz Lty [( > P, €O k’)]. T 432)

7T,u,0 j=1 jmin
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When # = 2m a similar formula for Sy{n, p) can be derived, which we
refrain from giving here. For details we refer to [8, pp. 32-36}.

By means of (4.31) and (4.32) the data of Table 4.1 was computed on the
Burroughs 7700 of the Computing Centre of the Eindhoven University of
Technology.

TABLE 4.1

n p Smp)  Simp) Cno np  Sdnp)  Sifup) Cup

2 2 10210 0.0291 10501 6 2 09571  0.1085  1.0655
2 3 10545 00123  1.0668 7 2 09528 0.1114 10642
3 4 1072t 0.0053 10773 § 2 09495  0.1127  1.0622
2 5 1.0829 0.0023 1.0852 9 2 0.9472 0.1143 1.0615
2 6 1.0903 0.0010 1.0913 10 2 0.9454 0.1144 1.0599
2 7 10956  0.0005  1.0960 11 2 09441  0.1149  1.05%0
2 8 1.0996 0.0002 1.0998 12 2 09430 0.1149 1.057%
3 2 0995 00733  1.0678 13 2 09422 01152 1.0573
33 0980 00197  1.0087 14 2 09414  0.1150  1.0565
2 4 09974 00063  1.0037 15 2 09409 01150 1.0559
4 2 0.9740 0.0917 1.0657 16 2 0.9404 0.1149 1.0552
4 3 09656  0.0181  0.9837 17 2 09400  0.1149 10549
4 4 09742 00051  0.9793 18 2 09396 01148 10543
5 2 0.9641 0.1059 1.0701 i9 2 0.9393 0.1147 10546

4.1.8. Taking into account (4.16) and (4.20), (4.21), (4.28), (4.29), {4.30),
together with the contents of Table 4.1 and formula (4.2), we have the
following theorem.

THEOREM 4.1. Let ¢, , be the exact constant of approximation for the
operator L, , as defined in (1.3). Then

€ 1= SUP SUP Cp.p = M ¢y, = 2712 = 1.12837917.
p*)\'ﬁ

»>2% meN

COROLLARY. Let fe CL, and let w; be the modulus of continuity of ',
then for ne N and p = 2, 3,... one has

max | L, {(fi x) — f(x)

2 * T,

2?7—1/2 LT
< 7?— iy (j - \~

where the value 27112 is best possible.
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4.2. Case p = 1. Taking into account definition (1.4) and the form of
the Fejér operators, together with the results on extremal functions of
Section 3, we have

sin ntf2

Cpna = ﬁ f_:. fn(t) (W)z dt (}’I € N). (433)

We write (cf. (4.3) and (4.4))

cﬂ,l = Sl(na 1) + SZ(”) 1)7

where
1 ™ osinngf2\2
Silm, 1) =5 fo (i 2 ) a
sin nt/2
Sy(n, 1) ~———f n()( sin 12 ) dr.

By means of Lemma 2.1 it is easily shown that S,(n, 1) decreases monotoni-
cally to zero as n — co. In order to determine ¢™ := sup,.y ¢, We need
an upper bound for S,(n, 1). As h,(t) = 0if | ¢ | < #/n one has

So(n, 1) = ;1,7— fj h (1) ( Sip ntf2 )2 gt = 2 {nw/z h, (31‘_)( §int ) i

sin #/2 mn? . n /\ sin t/n

nw /2
L 032 f sin? 7 dr < 0.137 = 0.4084  (n e N), (4.34)

n 7/2

by an application of formula (4.26). Furthermore, one easily verifies that

Ca= T =078,y = %’2’ _ —21; (217 £ 1) = 0.4993  (4.35)

and

™ _ 4 _ o36l0. (4.36)

SiG 1) =G ~ 4

|

As Sy(n, 1) is decreasing, formulae (4.34), (4.36), together with (4.35) imply
the following theorem.

THEOREM 4.2. Let ¢, be the exact constant of approximation for the
operator L, as defined in (1.4). Then (cf. (1.6))

eV 1= SUP Cpy = g = % = 0.78539816.
neN



JACKSON-TYPE OPERATORS

oy
~J
(VR

CoROLLARY. Let fe Cy. and let w, be the modulus of continuity of f',
ther: for n € N one has for the Fejér operators L, 4

max | Lya(f; ) — f(2)

T T
<goelfigh

where the value 7|4 is best possible.

5. THE LIMITING BEHAVIOUR OF THE CONSTANTS ¢, ,

5.1, In this section we investigate the limiting behaviour as n—
or/and p — oo of the exact constants of approximation ¢, , . There are four
cases to be considered, viz., n— 00, p = 2; 8 = 2, p — ©0; #—> 0, p > L}
n— o0, p =1, the last case corresponding to the Fejér operators. It turns
out that ¢, , has an asymptotic behaviour that is different from that of ¢, ,
forp = 2.

52. Casen— co,p = 2. Let 4, , be given by (2.8), ie. let

drp = | SO knsO)di (p =2

As g guide to norming we regard %, , as the prebability deunsity of a random
variable {r.v.} 7, ,. For the expectation E7, , and variance var 7, , we
have

5 T .
ET,, =0, varT,,=ET;, = %, (0)dr.

1t is easily verified (cf. [6, Lemmas 2 and 4]) that

var T, , ~ (n — o0, p — 0).

n*p

Denoting the probability density of a r.v. X by gy we generally have for
a >0
i {1
Lax(t) = 7 8% (—5),

and therefore, letting # — oo,

2¢
n. ()

o (25) = (7 (2557 ar)™ (S04Y < g0 G0

Einia) T“yp(f) ==

i

2



174 SCHURER AND STEUTEL

It follows by dominated convergence (f.(¢) < a|t| -+ bnt?; cf. (5.3)) that
for n — oo one has

1

3 Okt = [ J (2 by () dt > [ 0 20

where (cf. formulae (3.11) and (3.12))

£ = tim 2 f (25 =214 2(1z1———)+.

Summing up we have the following theorem.

THEOREM 5.1. Forp =2

¢, i=lime,, = llm np'/? fﬂ Fal?) ey (1) dt

H—%

o«

= pl/2 | 2] g.(t) dt + 4p*? z J i (t — —ZJ—) g,(1) dt,
kv

—® j=1
where g, is defined by (5.1).

Table 5.1 contains the values of ¢, for p = 2(1)10; 20(10)40. For details
concerning the numerical evaluation of these numbers we refer to [8, pp. 41—
42].

TABLE 5.1
p € p Cp r Cp
2 1.04547748 6 0.95729217 10 0.96499488
3 0.95048119 7 0.95991291 20 0.97109617
4 0.95047131 8 0.96199158 30 0.97313267
5 0.95404617 9 0.96365107 40 0.97415086

5.3. Case n =2, p— o. We begin by considering cnp*/?T, ,, where ¢
will be given a convenient value. It is easily verified that

1
cnpl/?

t
Zengriiz, (1) = kns (o) = g0 (2~ ),

where

st = ([ (= e (- S5 0)
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Lh

If we take (n? — 1)/(6n3c®) =1 it follows that (p(n®— L)/} T, , is
asymptotically standard normal. By dominated convergence this means that

STy

Grn | FiD ens @t = [ 7 F (Vb ()

212 42
-»L”Z—— 1) exp |
I \

— @mn,

where a,, , = (p(r? — 1)/6)'/2
We have now proved the following theorem.

THEOREM 5.2. Forn =2

lim ¢, = lim np'2 [ 7,(0) o o0) it = (-fT—)’ (1--

D

We note that if » = 2 we have lim,,, ¢, , = 27712 (cf. (4.16)). Further-
more, it follows that {lim,.,, ¢, o}5 is a decreasing sequence.

5.4. Case n— o, p— . From Theorems 5.1 and 5.2 we obtain (com-
pare Table 5.1)

THEOREM 5.3.

/3 12
lim c,, = lim np'/ f Fol) b o) dt = (= ) = 0.97720502,
Do P> -—‘n '

where the limits may be taken in either order.

Proof. Tt is an immediate consequence of Theorem 5.2 that lim . lim ..
£n.p = (3/7)*/%. On the other hand we obtain from Theorem 5.1, using
dominated convergence for integrals and sum,

F°gsin upTi/% 2P
U

. . RN y
lim ¢, = lim A" —_— du
= L pom P UO up*l-’z
I 2 / w2\ 7 sin up~t/2 2 )
Yy —= - Tut
j.%‘l }7,“,1/2/2 2 }{ Zpﬂllz /i 1
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where we have written

@ sin ypTt/E\2P
J; (TP_IT') du = Ap . l

5.5. Case n— o0, p = 1. The behaviour of ¢, , (cf. (1.4)) differs from
that of ¢, , for p > 2. This is due to the easily verified fact that

var Ty = ET3; = [ t%,,(0) di = O (%) (1—>w),  (52)

whereas for p > 2 we have var T, , = O(n2). In view of (3.9) and (3.10)
we deduce that

’2”2 -+ tO(1) (0 <t <=
Fult) = n: (m — 1) " (n — ). (5.3)
= n 5= 4 10() (—2—<I<Tr)

From (5.2) it follows that £ | T,,; | = O(n~'/?). Using this, (5.3) and formula
(4.33), ene has by dominated convergence

sin nt/2

Cn1 = 27m f G )( sin #/2 ) d
~ o] e G )
L E - e o)

1 w]2 72 1 T
e e Riha=1

V2

a2 1
{_2‘ — (@@= 2; sin? #/2 dt.

Here, the limit is obtained by the Riemann-Lebesgue lemma, By simple
transformations it follows that (cf. [4, p. 123])

2 /4 g2 2
; =2 = dt
Lim €az f sE 7 T J;, cos2 t + 4

>0 ‘7T2

2 J”/z ¢ _ 40
ECA sint 2’
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~J
ol

where 0 denotes Catalan’s constant: § = ¥, (—1){(2j + 1) = 0.91596559.
This proves the following theorem.

THEOREM 5.4,
. Y 48 i
lim ¢,, = lim | Ful®) Ko (1) dt = 5 = 037122687,

COROLLARY. Let fe Ch and let w, be the modulus of continuity cf f',
then for n = N one has the following inequality for the Fejér operaiors L, ,

T

max | Lya(fs ) = O] < eqaes (/5 —),

il

with lim,, ... ¢, , = 48/=% = 0.37122687.

Remark. With a little more effort it can be proved that ¢, , = 46/=* -
Ot as n — oo.
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