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INTRODUCTION 

We study strong radicals, i.e. radical properties that contain all onesided 
radical ideals. For alternative rings we show that the lower strong radical can 
be constructed beginning with any homomorphically closed class. For asso- 
ciative rings we show (Theorem 6) that this construction stops at w,, if the 
beginning class is hereditary and contains all zero rings. If the beginning 
class has two other conditions we can show (Theorem 3) that the construction 
stops at 2. We obtain a characterization of the lower strong radical class 
(Theorem 5) which is different from a more natural description since the 
natural one is too large (Example 5). 

For alternative rings we get a condition for upper radicals to be strong 
(Theorem 10) but this is not an if and only if condition. Finally we give 
an example (6) to show that not every upper radical is strong. 

1. LOWER RADICAL PROPERTIES 

Let R be a nonempty class of not necessarily associative rings and let it be 
universal, i.e. with the property that subrings and homomorphic images of 

* On National Research Council visitor grant at U.B.C. 
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rings in 53 are again in 53. Letabe a nonempty subclass ofsand suppose that 
‘3 is homomorphically closed [i.e. if R is in % then so is every homomorphic 
image of R]. Define ‘!RL, = ‘3 and define 

!l& = the class of all rings R in 53 which have the property that every 
nonzero homomorphic image of R contains a nonzero onesided 
ideal in 3s for some p < 01. 

Note that (0) belongs to ‘3, for every ordinal 01. Rings in ‘9&, will be said to be 
of degree 01 over ‘3, or %= rings. 

PROPOSITION 1. 

i) ‘8, is homomorphically closed, for every ordinal 01. 

ii) If/3<olthen%ec%a. 

Proof. Take R in ‘9& and let R’ be any homomorphic image of R. If 
R’ = 0 then it is in ‘%= . If R’ # 0 then any nonzero homomorphic image of 
R’ is also a homomorphic image of R. Thus it contains a nonzero onesided 
ideal in 92s for some /3 < 01 and therefore R’ is in ‘$& . 

If R is in 8, then every nonzero homomorphic image of R is also in ‘$ , 
by (i), and thus contains a nonzero onesided ideal, namely itself, in %s . 
Therefore if j3 < 01, R is in ‘9& by definition. Thus %a _C an, . 

This proposition holds for any universal class defined above. Now we turn 
our attention to the case when A contains only alternative rings. 

LEMMA 1. If R is an alternative ring and I is a left ideal of R then 
I* = I + IR is a two sided ideal of R. 

Proof. Consider RI* = R(I + IR) C RI + R . IR C I + R . IR. We 

must therefore show that R .IRCI*. Now R -IRC RI. R + (R, I, R) 
where (R, I, R) = the set of all finite sums of elements of the form 
x’ay-xa.y, where a is in I and x,y are in R. Since RICI, RI.RC 
IR C I*. Also (R,I,R)=(R,R,I)CRR.I+R.RICICI*. Thus 
RI* C I* and I* is a left ideal of R. 

Furthermore I*R = (I + IR)R C IR + IR . R C I* + IR . R. We must 
therefore show that IR . R C I*. Now IR . R C I . RR + (I, R, R). Clearly 
I.RR_CIRCI*.Also(I,R,R)=(R,R,I)CRR.I+R.RICRICICI*. 
Therefore I* is a right ideal of R and the lemma is proved. 

LEMMA 2. Let % be a homomorphically closed class of alternative rings. 
Consider any alternative ring R with a nonzero left ideal I which belongs to ‘%. 
Then R contains a nonzero two sided ideal in a, . 

Proof. Consider I* = I f IR. Th is is a nonzero two sided ideal of R 
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(Lemma 1) and we shall show it is in $1,. Take any nonzero homomorphic 
image I*/W of I*. If I $ W then 

z+w I 
peInW W 

is a nonzero left ideal of I*/ W and it is in % since it is a homomorphic image 
of I. 
If I C W there must exist an element x in R such that 1x g W, otherwise 
IR C Wand W = I*. Consider W + Ix. This is a left ideal of I* because 

z* . (W + Ix) c z* w + z* . Ix; 
z*wc W; 

since 

finally 

I* . Ix = (I + IR) Ix C I . Ix + IR . Ix; 

IC w, I.Ixxc w.zxxc w.z*cw, 

since 

and 

IR . Ix C (IR . I)” + (IR, I, x); 

IR.ICR.ICI, (IR . I)x C Ix C W + Ix; 

then 

(IR * I, x) = (IR, x, I) = (IR . x)I + IR . XI, 

(IR.x)ICRILIC WC W+Ix 

and 

Therefore everything is in W + Ix and it is a left ideal of I*. Thus 
(W + Ix)/ W is a nonzero left ideal of I*/ W. We want to show it is in %. 

Define 0: I+ (W + 1x)/W by 0: a -+ ax + W. Clearly 0 preserves 
addition. To see that it also preserves multiplication we consider 
e:ab-+ab~x+ w. 
Now ab~x=u~bx+(u,b,x). Since uisinICW,u.bxEW.I*CW. 
Also(a,6,~)=(~,a,b)=x~ab-xu~b.Nowx~abisinx~CICW,and 
xu*bisinR.ICICW.Thereforeub.x+ W=O+ W. Wemustthere- 
fore show that (ax + W)(bx + W) = 0 + W. Now (ax + W)(bx + W) = 
ax .6x + W. Since ax . bx = u(x . bx) + (a, x, bx), and bx is in I*, then 
x . bx is in RI* C 1*, and u(x ’ bx) E 1 . I* C W .1* _C W. Finally (a, x, bx) = 
(x, bx, a) = x(x, a, b) and (x, a, b) = x * ub - xu . b ~1, thus x(x, a, b) is 
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inRICI~l4’. Therefore (ax+ W)(bx+ W)=O+ W=ab.x+ W, 
and 0 preserves multiplication. Thus 0 is a homomorphism and since I is 
in ‘iQ, so is (IV + 1x)/W. Thus every nonzero homomorphic image of I* 
contains a nonzero left ideal in % and by definition I* is in %a . 

COROLLARY If an alternative ring R has a nonxero right ideal which belongs 
to a homomorphically closed class ‘9, then R has a nonzero two sided ideal in an, . 

Let si again be an arbitrary nonempty universal class of rings (i.e. not 
necessarily alternative). Then a nonempty subclass 6 of 52 will be called a 
strong radical class if it satisfies: 

1. 6 is homomorphically closed, 

2. Every ring R in A has an ideal S(R) which is in 6 and which contains 
all onesided ideals of R which are in 6. 

3. For every ring R in R, S(R/S(R)) = 0. 

Thus a strong radical is an ordinary radical with the extra condition that 
onesided radical ideals are contained in it. We begin with a result of Amitsur 
[I, page 1081. 

PROPOSITION 2. A radical property 6 is a strong radical property if and 
only if every G-semi-simple ring has no nonzero onesided ideals in 6. 

Proof. If 6 is a strong radical property, if I is a onesided ideal of R, and 
if I is in 6 then I C S(R). And if R is G-semi-simple, S(R) = 0 and I = 0. 

Conversely if I is in 6, is a onesided ideal of R and I g S(R), then 

(I + S(R))IS(R) E I/U n S(R)) # 0 is a onesided ideal of R/S(R) and it is 
in 6. Thus if every G-semi-simple ring has no nonzero onesided ideals in 6, 
we must have I C S(R) and 6 is a strong radical property. 

THEOREM 1. Let 9 be a nonempty universal class of alternative rings. 
A nonempty subclass G of S is a strong radical class if and only if 6 satisfies: 

(a) 6 is homomorphically closed 

(b) If every nonzero homomorphic image of a ring R in R, contains a 
nonzero onesided ideal in 6, then R itself is in 6. 

Proof. If 6 is strong it certainly has (a). To establish (b), let R be any 
ring of si not in 6. Then R/S(R) is a nonzero G-semi-simple ring and thus it 
has no nonzero onesided ideals in 6 (Proposition 2). This gives us (b). Note 
that this half of the theorem does not make use of alternativity. 

To prove the converse, suppose 6 satisfies (a) and (b). Then it is clear that 
6 is at least an ordinary radical class for (b) implies that a ring R is in G if 



STRONG RADICAL PROPERTIES 373 

every nonzero homomorphic image of R contains a nonzero ideal in 6 (see 
for example [S, Theorem 1, page 4,]-the proof does not depend on associati- 
vity). To show that 6 is strong, let Z be a onesided ideal of R and assume Z 
is in 6. We will show that Z C S(R). 

By Lemma 2 or by the corollary to Lemma 2, R contains a nonzero two 
sided ideal J in 6, with Z C J. However (b) implies that 6, = 6 and thus 
ZCJCS(R)sinceJisin 6. 

The construction of lower strong radicals does not present any serious 
difficulties for alternative rings. If we begin with any nonempty homomorphi- 
tally closed subclass ‘!X of a nonempty universal class R of alternative rings, we 
consider the chain ‘$J = ‘9Ii C ‘%s C ... C 111, C ... and let 

LS(%) = (J SE = {R in a : R is of some degree over %}. 
OL 

THEOREM 2. LS(%) is a strong radical and it is the smallest strong radical 
containing 9I. We call it the lower strong radical determined by %. 

Proof. By Proposition I, LS(%) has (a). To establish (b) let R in R have 
the property that every nonzero homomorphic image R’ of R has a nonzero 
onesided ideal I’ in LS(!JI). Then I’ is in some !I& . For various homomorphic 
images we obtain various 0’s. Let 01 be an ordinal which is bigger than or 
equal to all of these u’s. Then for every R’, I’ is in %, C ‘9Ja . Therefore R 
is in %=+i and thus R is in LS(%). This establishes (b) and shows, by 
Theorem 1, that LS(%) is a strong radical. 

To show that LS(‘9I) is the smallest strong radical containing ‘32, let 8 be 
a strong radical 3 ‘92. We must show that LS(%) C Q We proceed by induc- 
tion and assume that ‘%,, C Q for every y < 01. Let R be in %, . Then every 
nonzero homomorphic image of R contains a nonzero onesided ideal inaL, 
for some y < 01. These onesided ideals are thus all in II. However a is strong 
and has (b) and thus R must be in 8. Therefore ‘3, C CI. Since % = 91, C 8, 
we have LS(%) = u an, C 0 

Remarks. For a given nonempty homomorphically closed class % we can 
construct L(%) = the ordinary lower radical determined by %. Since L(a) 
is contained in any radical class that contains %, we must have 

!n c L(!II) 2 LS(%). 

For some s’s, L(s) = LS(%). For example if % is the class of all zero 
rings in the class A of all associative rings, then L(%) is the Baer lower radical. 
It is known [5, Theorem 21 that every Baer radical ring R is in ‘3s (two sided 
construction), i.e. every nonzero homomorphic image of R has a nonzero zero 
ideal. To prove that the Baer lower radical is strong we shall use Proposition 2. 
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Assume then that T is a Baer semi-simple ring and that I is a nonzero right 
ideal of T and a Baer radical ring. Then I has some nonzero zero ideals. 
By Zorn’s Lemma select a nonzero maximal zero ideal W of I. This can be 
done since the vi Zi when 2, C Z, C ... is again a zero ideal if each of 
the Zi is a zero ideal. Now WI is a right ideal of T, it is in Wand therefore 
it is a zero ring. If WI f 0 then WI + TWI is a two-sided ideal of T and 
(WI + TWI)2 = 0. This is impossible since T is Baer semi-simple. Thus 
WI=O. 

Consider I/W. Since I2 # 0 (if P = 0, I + TI would be nonzero zero ideal 
of T), I/W # 0. It is again a Baer radical ring and thus has a nonzero zero 
ideal Q/W. Thus Qs C W. Then QI . QI CQQI_C WI = 0. Thus QI = 0 
else T has a nonzero zero ideal QI + TQI. Therefore Qz = 0. Since Q 2 W 
this contradicts the maximality of Was a zero ideal of I. Therefore no such I 
exists and the Baer lower radical is strong. 

In general, L(%) 5 LS(%). We shall show later that for example the Brown- 
McCoy radical in associative rings is not strong. 

The question of when the construction of L(‘%) stops, was examined in [5]. 
It was shown that for associative rings, L(!R) = 9JU0 and for alternative rings, 
L(S) = an,:. Rubikin has shown [l l] that for general nonassociative classes, 
there is no upper bound. In the associative case, if % contains all zero rings 
and is hereditary (i.e. ideals of rings in ‘% are also in %) [5], or if % contains all 
zero rings and if R/I is a zero ring and I is in % implies R is in ‘% [7], then 
L(%) = ‘%s . With just heredity L(a) = 8,) see [6] and [12]. However 
Heinicke [9] showed that there are associative classes ‘% for whichL(%) does 
not stop until 9& . The subscripts in this paragraph refer to the two sided 
construction. 

The construction of LS(%) goes further out than L(%) but the steps are 
larger than the corresponding two sided steps for L(s). 

THEOREM 3. Let S be the class of all associative rings and let % be a non- 
empty homomorphically closed subclass of R, satisfying: 

1. % contains all zero rings; 

2. ‘% is hereditary; 

3. If a ring R has a nonzero right (kft) ideal in ‘8 then R also has a 
nonzero left (right) ideal in %; 

4. If I is an ideal of R, if I2 = 0 and if R/I is in %, then R is in 6X; 
then 

LS(%) = m, 

= {R: every nonzero homomorphic image of R contains a nonxero 

onesided ideal in %}. 
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[Note that 4 can of course be replaced by 4’: If I and R/I are in % then R is 
in %. 4’ is stronger than 4 but perhaps more elegant]. 

Proof. We will show that %a = sM, and this yields LS(‘%) = %a . Take 
R in %a and let R’ be any nonzero homomorphic image of R. Then R’ has 
a nonzero onesided ideal I in ‘9?, . Suppose without loss of generality that I is 
a right ideal. Now I must contain a nonzero onesided ideal J in %, = % and 
by 3. we may take / to be a right ideal of I. 

Consider JI. It is a right ideal of R’, it is contained in J and it is a two sided 
ideal of J. Since J is in %, by 2., we have JI in %. Thus if /I f 0, R’ contains 
a nonzero onesided ideal in 8. 

Assume then that JI = 0. Then J C e(I) = {x in I: XI = O}. Now /(I)is 
an ideal of I. If e(I) = I then I2 = 0 and I is in ‘$ by 1. Again, then, R’ 
contains a nonzero onesided ideal in %. So assume that /(I) # I. Then 
Z/L’(I) # 0. It is in 5R, since I is in !X2 . Thus I/t(I) contains a nonzero onesided 
ideal P/E(I) in ‘R We may take this to be a right ideal, by 3. By 4., P itself 
must be in % since /(I)z = 0. Now PI # 0 since P g /(I). Furthermore PI 
is a right ideal of R’, it is contained in P and it is a two sided ideal of P. 
Thus PI is in % by 2. Thus even in this case R’ has a nonzero onesided ideal 
in ‘zX, and therefore R is in ‘9J2 . 

Remark. The theory of strong radicals can be weakened to consider right 
strong radicals (or left); i.e. radicals 6 which contain all right 6 ideals. Then 
beginning with a nonempty homomorphically closed class (3n = ‘Di , one 
considers 91j32, as the class of all rings R such that every nonzero homomorphic 
image of R contains a nonzero right ideal in YJJ,, for y < 0~. The (J 9X, is 
then the lower right strong radical. 

The proof of Theorem 3 then goes through without using the condition 3. 
and one has: 

COROLLARY If a nonempty homomorphically closed class ‘9J satisjies: 

1. 93 contains all zero rings, 

2. 911 is hereditary, 

4. Zf I is an ideal of R, I2 = 0 and if R/I is in m then R is in IrJ1; 
then the lower right strong radical determined by 9.X is 9X2 , and the lower left 
strong radical determined by YJ is 59X2 . 

There exist nonempty homomorphically closed classes % satisfying the 
four conditions of Theorem 3. 

EXAMPLE 1. Let % be the class of all associative rings which satisfy 
a polynomial identity. Then it is clear that 5X is homomorphically closed, 
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contains all zero rings and is hereditary. To establish 4., suppose that I is 
an ideal of R, I2 = 0 and R/I is in !R. Let ,f(r, , y2 ,..., r,) in I for every 
y1 ,..., Y, in R be the polynomial identity associated with R/I. Define 

g(x1 ,*a*, x,) .=. f(xl ,..., x,) .f(X1 ,..., x,). 

Then for any rl ,..., yn in R we have g(r, ,..., Y,) = 0 because I2 = 0. Thus 
R itself satisfies a polynomial identity and R is in ‘92. 

Finally, to establish 3., suppose J is a nonzero right ideal of R, J in %, and 
letf(tr ,..., tn) = 0 for any t, ,..., t, in 1. We may assume that f is multilinear 
because any ring that satisfies a polynomial identity, also satisfies a multi- 
linear identity [lo, page 2241. 

If J2 = 0 then 1” = 0 where J is the two sided ideal of R generated by J. 
Then 1 is in !lI and R has a nonzero left ideal in 8. If J2 # 0 then there 
exists an element t in J such that Rt # 0. We shall prove that this left ideal 
Rt is in ‘%. Define 

gh ,***> x?z , %+1) -=* x,+1 .f(Xl ,...t 4. 

This is not identically zero since f is not identically zero. Take any elements 
rl ,..., Y, , Y~+~ in Rt. Then yi = yit with the yi in R, for i = l,..., n + 1. 
Then 

g(y1 ,***, yn , y,,,) = yn+1 .f(Yl ,***, y,) 

= Yn+$ .f(YA-3 Y?J) 

= Yn+1 .fGYl >**.1 tm) t 

since f is multilinear. Furthermore tyi is in J for i = l,..., II, since t is in J 
and J and J is a right ideal. Thus f (tyl ,..., tyn) = 0 and g(r, ,..., rn , Y,,,) = 0. 
Therefore Rt satisfies a polynomial identity, is in % and 3. is established. 

Remark. For this class % of polynomial identity rings it turns out that 
L(8) sLS(X). To see this we adapt an example of Amitsur [2, page 1331. 

Let R be the class of all associative algebras over a fixed field 4. Let % be 
the class of all algebras in R which satisfy a polynomial identity with coeffi- 
cients in 4. It is clear that % is homomorphically closed, contains all zero 
algebras over $J and is hereditary. Therefore by [5, Theorem 2, page 4201, 
L(‘%) = (R: every nonzero homomorphic image of R has a nonzero ideal 
in %}. 

Let M* be the algebra of all infinite matrices of finite rank over 4. Then M* 
is simple and does not satisfy any polynomial identity. Therefore M* isL(%) 
semi-simple. However M* has a nonzero right ideal e,, . M*, the set of all 



STRONG RADICAL PROPERTIES 377 

one-rowed matrices. This right ideal is in % for it satisfies the identity 

(x1x2 - x2x1) xg = 0. 

Thus M* is an LS(%) algebra. 

EXAMPLE 2. Let 511 be the class of all associative nilrings. Clearly this is 
homomorphically closed, contains all zero rings, and is hereditary. Also if 
R/I is nil and I2 = 0 then R is nil. Finally if J is a nonzero right nilideal of R 
we will construct a nonzero left nilideal in R. If J” = 0 then J + R J is 
an ideal of R and (J + R J)” = 0. If J2 # 0, there exists an element t in J 
such that Rt f 0. For any element rt in Rt, 

(Yt)a+l = Y(tYp t. 

Since tr is in J, (tv)” = 0 for some n and thus rt is nilpotent, Rt is a nil left 
ideal of R. 

Thus this % is another example of a class satisfying the four conditions 
of Theorem 3. 

We have already pointed out that the Baer Lower radical is strong. It is 
also well known that both the Jacobson and Levitzki radicals are strong. 
Thus it is a bit surprising that the Brown-McCoy radical is not. 

EXAMPLE 3. 18, Page 551. Let S be the set of all polynomials in x, 
a0 + xal + “. + xmci, ) where the coefficients 01~ are rational functions in y 
with real coefficients. Addition is defined in the usual way, and multiplication 
is defined normally except that a~ = xa + 01’ where 01’ is the derivative of 
QI rey. Then S is a simple associative ring with unity. It is a principal ideal 
domain and has the ascending chain condition on both right and left ideals. 

Every onesided ideal of S is also simple. To see this let I be a nonzero right 
ideal of S. Then I =f(x) . S. Suppose T is a nonzero ideal of I. Then 
ZTI =f(x) STf(x)S C T. However STf(x)S being an ideal of S is either 
0 or S. If it is S then ITI =f(x)S = I C T and thus T = I. If STf(x)S = 0 
then Tf (x) = 0 since S has a unity, and then T = 0 since there are no 
zerodivisors in S. Thus I is simple. A similar argument holds for left ideals 
of s. 

Since the degree of f(x) . g(x) = d egree of f(x) + degree of g(x), no 
proper onesided ideals of S have a unity element. In fact there is only one 
idempotent in S, namely 1. 

Thus S is Brown-McCoy semi-simple but every proper onesided ideal of S 
is Brown-McCoy radical (they are Jacobson semi-simple). Therefore the 
Brown-McCoy radical does not contain all the onesided Brown-McCoy 
ideals. 
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Returning to Example 2, where ‘S = all nil rings, we know this is an ordi- 
nary radical property and by Theorem 3, LS(%) = 92, . Thus 

ix = L(92) c LS(%) = a*. 

It is an open question whether !R is a strong radical, equal to LS(!R), or not. 
This open question is equivalent to Koethe’s famous conjecture about the 
existence of rings with nonzero onesided nilideals but without twosided 
nilideals. Restating it in terms of ‘%s we can pose Koethe’s conjecture as 
follows: 

If every nonzero homomorphic image of a ring R contains a nonzero 
onesided nilideal, must R be a nil ring ? 
Another easier question is whether there exists a simple ring which is not nil 
and which has a nonzero nil onesided ideal. Amitsur [3, Theorem 10, page 471 
has proved that for algebras over nondenumerable fields % = LS(%). 

It is natural to try and extend Theorem 3 and one hope would be to show 
that for any nonempty homomorphically closed class ‘% of associative rings, 
LS(Yt) = !J& . The proof of this theorem (L(g) = !RUO) in the two sided case 
is based on two lemmas [5, page 4181: 

LEMMA 1. If R # 0 is in L(%) then R has a nonxero accessible subring B, 
with B in ‘9l. 

LEMMA 2. If B in 111 is a nonzero accessible subring of R then the ideal in R 
generated by B is in !T$ for some$nite q. 

There is no trouble with the first result, in fact almost the same proof holds. 

LEMMA 3. If R # 0 is in LS(%) then R has a nonzero subring B, B in % 
and B is onesided accessible to R, i.e. B = A,, C A, C A, C *.. C A, = R 
where Ai is a onesided ideal in Ai+l for every i = 0, l,..., n - 1. 

However the second result is simply false. 

EXAMPLE 4. Let R be the set of all 2 x 2 matrices over the reals. Let 
A = {(~~)}, let B = {(if)}. Then B is an ideal of A, A is a right ideal of R and 
R is simple with unity. 

Let W be the class of all zero rings (associative). Then B is in % and B 
is accessible to R. The right ideal of A generated by B is A itself. Now is A 
in $Rg with q finite ? The ring A can be mapped onto the reals {(g)} and this 
has no nonzero onesided ideals except itself and therefore no nonzero 
onesided accessible subring in 92. Thus A is not in %a for any q. 

In the two sided situation we have L(%) = {R: every nonzero homo- 
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morphic image of R contains a nonzero subring B in % which is accessible 
to R}. In the onesided case all we have is 

LS(!R) 2 {R: every nonzero homomorphic image of R contains 
a nonzero subring B in % which is onesided accessible 
to R} .=. B(S). 

The inclusion follows from Lemma 3, and the strictness follows from 
Example 4, because the ring of 2 x 2 matrices belongs to the class B(%) but 
not to U(8). This is so because LS(‘%) C class of all Jacobson radical rings 
(which is a strong radical) and the ring of 2 x 2 matrices is a Jacobson 
semisimple ring. 

The problem then is to get some useful characterization of LS(%) and 
the seemingly natural one B(S) turns out to be too large. 

A second candidate is 

V(S) .s. the class of all rings R such that every nonzero homomorphic 
image RR’ of R contains a nonzero subring B in % such that 
B =A,CA,C ... C A, = R’ where each Ai is a onesided 
ideal of A,+1 for i = 0, l,..., n - 1 and for every i, every 
nonzero homomorphic image Ati of Ai contains a nonzero 
subring in % which is onesided accessible to Ali . 

Then clearly V(S) $ B(S) because Example 4 is in B(%) but not in V(S). 
We also have LS((J1) C V(S) because of 

THEOREM 4. V(S) is a strong radical class containing %. 

Proof. It is clear that I’(%) contains % and that it is homomorphically 
closed. If every nonzero homomorphic image R’ of a ring R contains a 
nonzero onesided ideal I in I’(‘%) then 

R’>I = A,2A,-,> ~..IA,>A,,=BfOin% 

where Ai is a onesided ideal of Ai+l for i = O,..., 11 - 1, and every nonzero 
homomorphic image Ali of A, contains a nonzero subring in % which is 
onesided accessible to A’, for i = O,..., n. It is clear then that R itself is 
in V(S). By Theorem 1, Y(8) is a strong radical. 

It turns out that even V(%) is too large and 

EXAMPLE 5. Let R be the ring of all infinite matrices over the reals, 
which are column finite and such that each matrix has only a finite number of 
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nonzero rows. It is well known that R is simple and Jacobson semi-simple. 
Thus R is not in LS(%) when % is the class of all zero rings (associative). 

Let A be the subset of all matrices in R which have zeros in the first column 
and let 2 be the subset of all matrices in A which have nonzero entries only 
in the top row. Now .Z2 = 0 and thus 2 is in %, Also 2 is an ideal of A and A 
is a left ideal of R. We will show that every nonzero homomorphic image 
of A contains a zero subring which is onesided accessible. This will prove that 
R is in V(8) and give us the strict inclusion we seek. 

First we note that A/Z consists of classes represented by matrices in R with 
zeros in the first row and first column. Then it is clear that A/Z g R, for 
if M is any matrix in R then we associate the class in A/Z represented by 

and this map is a homomorphism. Since R is simple, A/Z E R. Thus Z is 
a maximal ideal in A. 

Let Q be any nonzero ideal in A. If Q $ Z then there is a matrix iV in Q 
with a nonzero entry xii in the ijth position with i > 1, j > 1. Let C be the 
matrix (in A) with 1 in the first row, ith column and zeros elsewhere. Then 

cN = 

( 

0 xi2 xiy x$0 . ..). 

Let D be the matrix (in A) with x;l in the jth row, kth column (any k > 1) 
and zeros elsewhere. Then CND has a 1 in the first row Kth column, and zeros 
elsewhere. This is possible for any K > 1 and all the CND are in Q. Thus Q 
contains all of Z and if Q # Z then Q = A. Thus if Q is a proper ideal of A, 
Q CZ. 

Now let us consider any nonzero homomorphic image of A. It is either 
A/Z= R which has a onesided accessible subring in 8 or it is A/Q which 
contains Z/Q as an ideal and this ideal is in %. Therefore R is in I’(%). 

We must therefore find a characterization of LS(%) in a different way. 
To this end we make the following definitions: 

A path of a ring R is a sequence (R = R, , RI , R, ,..., Ri , Ri,, ,...) where 
each Ri+l is either a nonzero proper homomorphic image of Ri , or is a 
nonzero proper onesided ideal of Ri , with the proviso that for any i, Ri and 
R,+l are not both homomorphic images (Ri of R,-, and R,+l of RJ. 

In general, paths are infinite sequences, but if R, has no proper nonzero 
onesided ideals, then the path is finite. 

Two paths are said to be similar if the first place where they differ is a place 
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where the entries are different onesided ideals of the previous entry, i.e. if 
Pl = (RO , R, ,..., R,, , I ,...) and Pz = (R, , R, ,..., R, , J ,...) where I # J, 
both onesided ideals of R, . 

A clan of R is a class of paths of R, no two of which are similar, and such 
that every path of R is similar to at least one path in the class. 

If M is any nonempty class of rings, a clan of a ring R will be said to meet M 
if every path in the clan meets M after a finite number of steps, i.e. for every 
path P = (R, , R, ,..., R, ,... ) there exists an integer t such that R, is in M. 

Now let % be any nonempty homomorphically closed class of rings (asso- 
ciative) and define 

Z(%) .=. {R: there exists a clan of R which meets ‘%}. 

THEOREM 5. LS(%) = Z(s). 

Proof. It is clear that % 2 Z(%) for if R is in W then every path of R 
begins with R = R, in 5X and thus meets fl immediately. Thus any clan of 
R will do. 

To see that Z(‘92) is homomorphically closed, take R in Z(s) and let R 
be any nonzero homomorphic image of R. Take a clan W for R that meets % 
and take all paths in W that begin with (R, R’,...). If we remove the first R 
from these paths we obtain a class C of paths for R’. Clearly no two paths in C 
are similar. Furthermore if P is any path of R’, P = (R’, S,...) where S is 
a onesided ideal of R’, then the extended path (R, R’, S,...) is a path for R 
and thus must be similar to a path in W. Since similar paths cannot differ at 
a homomorphic step, the path in W must begin with (R, R’,...). Dropping 
the first R we thus get a path for R’ which is in C and which is similar to 
P = (R’, S ,... ). If on the other hand P = (R’, S ,...) where S is a homomorphic 
image of R’, then (R, S,...) is a path for R. It must be similar to a path in W 
and since S is a homomorphic image of R, the path in W must begin with 
(Ii, S,...). Replacing R by R’ we get a path (R’, S,...) of R’ which is similar 
to P. If we adjoin, to C, all such paths of R’ obtained by replacing R’ by R, 
picking a similar path in Wand replacing R by R’, we then obtain a clan W 
for R’. This clan meets !R for W meets %, and paths in w’ are the same as 
paths in W from the second entry on. If a path in W meets % in the first 
entry, then R is in ‘% and then R‘ is in %. 

To see that Z(%) is a strong radical property, suppose that every nonzero 
homomorphic image T’ of a ring T, has a nonzero onesided ideal I’ in Z(s). 
We will show that T is in Z(m) by constructing a clan for T that meets Z(%). 

For every T’ # 0, with onesided ideal I’ # 0 in Z(8), take a clan B for I 
that meets 9X Extend each path in B of the form (I’, I1 , I, ,...) to 
(T, T’,I’,I, ,I, ,...) when T # T’ and to (T,I’,I, ,I, ,...) when T = T’. 
Let V be the class of all such extended paths. Clearly no two are similar. Let 



382 DIVINSKY, KREMPA, AND SULINSKI 

P = (T, Tl , T, ,...) be any path for T. If Tl is a onesided ideal of T then P 
is similar to some one of the paths (T, I’, I, ,...). If however, Tl is a homo- 
morphic image of T then T, must be a onesided ideal of Tl and P is similar 
to some one of the (T, T’, I’,...) where T’ = Tl . Therefore I’ is a clan for T. 
Also V meets ‘R Therefore T is in Z(%) and by Theorem 1, Z(a) is a strong 
radical. Therefore LS(‘%) c Z(g). 

To see that Z(m) CLS(‘%) take R not in LS(%). Then there exists a non- 
zero homomorphic image R’ of R, which isLS(%) semi-simple. Thus R’ has 
no nonzero onesided ideals in LS(‘%). Take any one, say Zr . Then Zr is not in 
LS(%) and it has a nonzero homomorphic image I,’ which is LS(lt7) semi- 
simple. Continuing in this way we obtain a path (R, R’, Zl , Zl’, I, , I,‘,...) 
where the Zn are nonzero onesided ideals of the previous entry and the Z,’ are 
nonzero homomorphic images of the corresponding In’s and these Z,’ are all 
LS(%) semi-simple (they are of course obtained by factoring out the LS(%) 
radical of I,). By choosing all possible Zr’s and for each Zr , all possible Is’s 
etc. we obtain a class of such paths and it is clear that none of them meet ‘%. 
We propose to show that for any clan C of R, C must contain at least one of 
these paths that does not meet !JL Then C does not meet % and R is not 
in Z(s). 

Assume then that we are given a clan C of R. Every path of R is similar 
to some path in C. Thus there must exist paths in C that begin with R, R’. 
Since no two distinct paths in C are similar, all paths in C that begin with R, 
R’ must continue with the same one-sided ideal /i of R’. Thus they all start 
with R, R’, Jr . We take Ji’ to be Jr modulo its LS(%) radical. Then there 
must exist paths in C which are similar to R, R’, Jl , J1’,... . However, any 
path in C that is so similar must in fact begin with the same four first evtries 
because similar paths can differ at first only at a one-sided ideal step, that is 
from R’ to Jr . But all paths in C that begin R, R’ continue on to Jr . 

We continue this construction, at each stage choosing the one-sided 
ideal Jn+r of 1% which appears in every path of C that begins with 

R, R’, J1 , J1’,..., Jn > J,z’; and then observing that for Jk+l equal to J,+l 
modulo its LS(%) radical, there must exist a path in C which is similar to 

R R’, J1 , J1’ >..., /n-cl , J;,, ,..- and identical with it up to that point. In 
this way we obtain a path in C which does not meet %. 

Therefore R cannot have a clan that meets %, R is not in Z(%) and there- 
fore L!?(a) = Z(m). 

Remarks. It is clear that Example 5 does not have a clan that meets the 
class of zerorings. 

This clan approach should also give us a representation of L(‘%), using 
of course, two sided ideals. 

We return now to our analysis of the construction of LS(%) = WE SW, 
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where % is a nonempty homomorphically closed class of associative rings. 

LEMMA 4. If R has a nonzero onesided ideal in ‘S, then R has a nonzero 
ideal in ‘%tor+l . 

Proof. The same as Lemma 2, together with the fact that ‘9&, is homo- 
morphically closed (Proposition 1). 

COROLLARY 1. If R is in ‘SW0 then every nonzero homomorphic image of R 
has a nonzero ideal in ‘S,, , n finite. 

COROLLARY 2. If R has a nonzero left (right) ideal in ?Xn , nJinite, then it 
has a nonzero right (left) ideal in %n+l . 

THEOREM 6. If % is a nonempty homomorphically closed subclass of the 
class of all associative rings, and if ‘% is hereditary and contains all zero rings 
then IS’(%) = ‘SW0 . 

Proof. Let M = Un finite sfi . We will show that M satisfies the four 
conditions of Theorem 3. Then LS(‘%) = LS(M) = Ma = ‘9&. It is clear 
that M contains all zero rings. If R has a onesided ideal I in M then I is in ‘$n 
for some n. By Corollary 2, Lemma 4, R has a onesided ideal of the other side 
in % n+l C M. This is condition 3. Next, if R/I is in M and I2 = 0, then we 
show that R is in M. Since R/I is in M, it is in !Rn, for some finite n. The ideal I 
of course is in %i . Then R is in &+i. To prove this let R/K be any nonzero 
homomorphic image of R. If I $ K then R/K contains the nonzero ideal 
(I + K)/K E I/(I n K) in !J& c %a . If however I C K then R/I/K/I g R/K. 
Now R/I is in %m and this is homomorphically closed (Proposition 1) and 
therefore R/K is itself in !Xn . Thus every nonzero homomorphic image of 
R contains a nonzero ideal in ‘%,, and therefore R is in 91n+i C M. This is 
condition 4. 

Finally, to show that M is hereditary, we proceed by induction. Assume 
that for every m < n, if R is in %, and I is an ideal of R, then I is in ‘$&, . 
Take R in !&, I an ideal of R, and let I/J be any nonzero homomorphic 
image of I. Let 1 be the ideal of R generated by J. If 13 J then [8, page 107, 
Lemma 611, (f//)3 = 0. If (I2 + J)/J # 0 it is a zero ring and thus in %, . 
If /” C / then j/J is a zero ring. In either case then, I/J has a nonzero 
onesided ideal in ‘%i . 

If however f = J then we consider RI J. It is in ‘%% and thus has a nonzero 
onesided ideal Q/J in ?Rm for some m < n. If (I A Q)/ J f 0, then it is in ‘i& 
since it is an ideal of Q/ J. It is also a onesided ideal of I/J. 

If however I n Q = J then we consider Q, the ideal of R generated by Q. 

481/17/3-6 
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If Q = R, suppose that Q is a left ideal of R. Then Q = Q + QR = R. Also 
IQCInQ = J. Then IR=IQ+IQRC J+ JRC J. Thus IIC J and 
(I/ _I)” = 0. Thus I/J is itself in ‘%r . Similarly if Q is a right ideal of R we get 
I/J in ‘%i . 

If however Q s R, we consider & n I. This contains J. If Q n I3 J then 
(& n I)/ J is a nonzero ideal of I/J. Suppose Q is a left ideal of R. Then 
IQCInQC J. Also g=Q+QR. Thus Ip=IQ+IQR-c J+ JRC J. 
Therefore (Q n I) * (Q n I) C IQ C J. Thus (Q n I)/ J is a zero ring and is 
in ‘i& . Similarly if Q is a right ideal of R we get (Q n I)/ J in !I& . 

If however Q n I = J, we consider all ideals of R which contain Q, and 
which intersect I in J. This set is not vacuous for it contains Q. By Zorn’s 
lemma, choose K to be maximal in this set. Then K is an ideal of R, it contains 
both Q and Q, and K n I = J. And K is maximal of this type. We consider 
R/K. It is nonzero and it is in fin . Then it has a nonzero onesided ideal P/K 
in 9X2, with m < n. If (P n I)/ J # 0 then 

PnI PnI 
-= PnInK s 

(PnI) +K 

J K 

and this is in $I&,, since it is an ideal of P/K. Also it is a onesided ideal of I/J. 
If however P n I = J, we consider p. As for Q, if P = R, then I/J is a zero 

ring and is in 5X1 . If however P s R, then at last we can be certain that 
P n Ia J because K is maximal of this type. Then (p n I)/ J is a nonzero 
ideal of I/J. It is a zero ring because (P n I) * (P n I) C IF C J. Thus it is 
in 8&. 

Therefore in every case, I/J has a nonzero onesided ideal which is either 
in !R1 or in ‘i& . Therefore I is %,, . This completes the induction and 
proves the theorem. 

Remark. We have actually proved that if a class ‘%I is hereditary and 
contains all zero rings, then 5Rm is hereditary for every positive integer m. 

If Ilt is not hereditary or if % does not contain all zero rings, or if % lacks 
both of these conditions, then it is unclear when the lower strong radical 
construction stops. For this general case we can prove: 

THEOREM 7. ‘SW0 is a radical class. (% is an arbitrary nonempty homo- 
morphically closed class of associative rings.) 

Remarks. The subscript here denotes the strong radical construction. 
In general it seems that !J& is not all of LS(W). What we can prove is that 
it is at least an ordinary radical property. Then of course we have 
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Proof. SUO is homomorphically closed. Furthermore, if every nonzero 
homomorphic image R of R’ contains a nonzero ideal I in Y& , then we shall 
prove that R’ is in !I&,, . Since I is in $I& it must have a nonzero onesided 
ideal in %,,, and therefore a nonzero two sided ideal J in W,,, (Corollary 2, 
Lemma 4). Consider J + JR. It is in sm+a since every nonzero homomorphic 
image (J + JR)/K has a nonzero one-sided ideal in !Rn,+, . To see this one can 
use the argument of Lemma 2 (simplified to the associative case) or see [5]. 
Thus every nonzero homomorphic image of R’ has a nonzero right ideal in 
% m+2 , and therefore R’ is in !I&. 

Remark. A similar argument proves that ?RI, is a radical class, for every 
limit ordinal 01. 

2. UPPER RADICAL PROPERTIES 

Let R be a nonempty universal class of not necessarily associative rings. 
Let 1u1 be a nonempty subclass of J3. 
We shall say that 

m is regular if every nonzero ideal of a ring in !IJI can be homomorphi- 
tally mapped onto a nonzero ring in !LR. 

9.N is onesided regular if every nonzero onesided ideal of a ring in !I3 can 
be homomorphically mapped onto a nonzero ring in ‘$.R. 

lJm is defined as the class of all rings in A which cannot be homomorphi- 
tally mapped onto a nonzero ring in 93. 

Then the following theorem is well known [S]; 

THEOREM 8. If !)X is regular then (Jm is the upper radical property deter- 
mined by 9X. 

If $3 contains only alternative rings we have 

THEOREM 9. If ‘D is onesided regular then urm is the upper strong radical 
property determined by !X@, i.e. it is the largest strong radical property for which 
all rings in ))32 are semi-simple. 

Proof. To prove um is strong we shall use Theorem 1. It is clear the Usn 
is homomorphically closed. To establish the other condition of Theorem 1, 
take R not in Um . Then R can be mapped onto a nonzero ring R’ in 93. 
Then R’ has no nonzero onesided ideals in Uw since sm is onesided regular. 
This proves that if every nonzero homomorphic image of R has a nonzero 
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onesided ideal in (Jm then R is itself in (Jw . Thus by Theorem 1, lJw is 
a strong radical property. 

Since 9JI is also regular, by the previous theorem we have that urm is the 
upper radical re *9X and therefore it is the upper strong radical re !IR. 

Continuing with an alternative universal class si, we define: 
A radical property G to be semi-simple hereditary or S.S. hereditary, if every 

ideal of an 6 semi-simple ring is also 6 semi-simple. It is known [4, Corollary 
2, page 6021 that for alternative rings every radical property is S.S. hereditary. 

A radical property 6 is onesided S.S. hereditary if every onesided ideal of an 
6 semi-simple ring is also 6 semi-simple. 

THEOREM 10. If a radical property 6 is onesided S.S. hereditary then it is 
a strong radical. 

Proof. Let I be a nonzero onesidedGidea1 of a ring R. Let S(R) be the 6 
radical of R. Then consider (I+ S(R)/S(R) z I/(I n S(R)). 

If I is not in S(R) then I/In S(R) is nonzero and is in 6. Then the 6 
semi-simple ring R/S(R) has a nonzero onesided G-ideal. This contradicts 
the onesided S.S. hereditary assumption. Thus I C S(R) and 6 is a strong 
radical. 

Remark. The converse of this theorem is false because the Baer Lower 
radical is a strong radical, yet Example 4 shows it is not onesided S.S. heredi- 
tary. 

Not every um , with !LR regular, is a strong radical. 

EXAMPLE 6. Let R be the class of all finite dimensional algebras over an 
algebraically closed field $. Then the only nontrivial simple algebras in 52 
are the matrix algebras $,, , for 1z = 1, 2, 3,... . Let llJz be a nonempty set of 
some (or all) of these &‘s. Then %II is regular and um is a radical property. 
However not all such umm’s are strong radicals. To see this let YJI = {+J. 
Now +a is lJm semi-simple, and it contains the onesided ideal 1 = {($)}. 
But I cannot be mapped onto $a and thus I is a a nonzero onesided lJm ideal 
of & . Thus (Jw is not strong. 

What we can say in connection with this example is: 

THEOREM 11. (Jm is a strong radical if and only if +n E %3---f & E $R for 
every m such that 1 < m < n. 

Proof. First we observe that any (Jw semi-simple algebra in R is a finite 
direct sum of simple algebras from +9X38, Theorem 46, page 1211. 

Suppose now that & E %X---P & E ‘9JI for all m such that 1 < m < n. Let 
R be (Jm semi-simple and I a nonzero onesided ideal of R with I in Urm . We 
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know that R = J$ @ Ri , where the Ri E ‘D, i = l,..., k. Let hi : R -+ Ri 
be the natural homomorphism from R onto Ri . Then there must exist a j 
such that h, : 1-t I’ # 0, else I C ni kernels hi = 0. Then I’ is a nonzero 
onesided ideal of R, = q& . Let Wbe the classical nilpotent radical in R. It is 
known that W is a strong radical. Now & is W semi-simple and therefore I 
cannot be a W-ring. Then I’/W(I’) is nonzero and is a finite direct sum of 
matrix algebras each of degree < n. Thus 1’ and therefore 1, can be mapped 
onto some & with 1 < m < n. By our condition this q& is in 5Y.R and therefore 
I can be mapped onto a ring in %JI. However this contradicts the assumption 
that I is in (Jm . Therefore um is a strong radical. 

Conversely suppose that (Jw is a strong radical property. Take & in ‘93 
and let m be any integer such that 1 < m < n. Define 

1, .=. all matrices A = (olij) in & such that qk = 0 for all i and all k 
such that m < k < n. 

Then I, is a left ideal of q& . Define 

Pm .G. all matrices A = (aij) in I, such that olij = 0 for any i < m. 

Then Pm is a two sided ideal of 1m . Pictorially 

Define a mapping h from I, to & which sends 

A= ;$ ( I 1 in I, to (*), 

the top left hand corner of A. Thus h: A = (qj) in I, -+ (aij) in & , where 
iand j = 1, 2 ,..., m. 

This map h is onto & and it clearly preserves addition. To see that it also 
preserves multiplication, take A = (Q) and B = (pii) in I, . Then AB = (yij) 

where yij = Cy=“=, ai$kj , since qk = 0 for k > m. Therefore h(AB) = 
h(A) . h(B). 

The kernel of h is precisely P,,, . Thus Im/Pm G q& . Now P 2 = 0 and 
thus Pm is in (Jrm. If $,,, is not an 9JI ring then since it is simpleyit must be 
in (Jrm . Since um is a radical property, Pm and &/Pm in Um implies I,,, in 
IJm . This is impossible since the Um semi-simple ring +n cannot contain 
a nonzero left (Jm ideal. Therefore &, is in 9X, and the theorem is finished. 
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