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INTRODUCTION

We study strong radicals, i.e. radical properties that contain all onesided
radical ideals. For alternative rings we show that the lower strong radical can
be constructed beginning with any homomorphically closed class. For asso-
ciative rings we show (Theorem 6) that this construction stops at wj if the
beginning class is hereditary and contains all zero rings. If the beginning
class has two other conditions we can show (Theorem 3) that the construction
stops at 2. We obtain a characterization of the lower strong radical class
(Theorem 5) which is different from a more natural description since the
natural one is too large (Example 5).

For alternative rings we get a condition for upper radicals to be strong
(Theorem 10) but this is not an if and only if condition. Finally we give
an example (6) to show that not every upper radical is strong.

1. Lower RapicaL PROPERTIES

Let & be a nonempty class of not necessarily associative rings and let it be
universal, i.e. with the property that subrings and homomorphic images of

* On National Research Council visitor grant at U.B.C.

369


https://core.ac.uk/display/82653821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

370 DIVINSKY, KREMPA, AND SULINSKI

rings in K are again in 8. Let9tbe a nonempty subclass of R and suppose that
9t is homomorphically closed [i.e. if R is in 9 then so is every homomorphic
image of R]. Define %, = N and define

Jt, = the class of all rings R in & which have the property that every
nonzero homomorphic image of R contains a nonzero onesided
ideal in g for some B < a.

Note that {0} belongs to 9, for every ordinal «. Rings in R, will be said to be
of degree o over 9, or N, rings.

ProrosiTION .

1) N, is homomorphically closed, for every ordinal .
i) IfB<athenM;CNR,.

Proof. Take R in N, and let R’ be any homomorphic image of R. If
R’ =0 then itisin R, . If R’ % 0 then any nonzero homomorphic image of
R’ is also a homomorphic image of R. Thus it contains a nonzero onesided
ideal in N, for some B <C « and therefore R’ is in N, .

If R is in M, then every nonzero homomorphic image of R is also in Ny,
by (i), and thus contains a nonzero onesided ideal, namely itself, in 9.
Therefore if 8 << «, R is in N, by definition. Thus R, C R, .

This proposition holds for any universal class defined above. Now we turn
our attention to the case when & contains only alternative rings.

Lemma 1. If R is an alternative ring and I is a left ideal of R then
I* =1 4 IR is a two sided ideal of R.

Proof. Consider RI* =R(I +IR)CRI+R-IRCI-+R-IR. We
must therefore show that R-JRCI*. Now R-IRCRI-R + (R,I,R)
where (R, I, R) = the set of all finite sums of elements of the form
x-ay — xa -y, where a is in I and x,y are in R. Since RICI, RI-RC
IRCI*. Also (RILR)=R,RICRR-I+R-RICICI* 'Thus
RI* C I* and I* is a left ideal of R.

Furthermore I*R = (I + IR)RCIR 4+ IR- RCI* 4+ IR - R. We must
therefore show that IR - RCI*. Now IR-RCI-RR + (I, R, R). Clearly
I-RRCIRCI* Also (I, R, R)=(R RI)CRR-I+R-RICRICICI*
Therefore I'* is a right ideal of R and the lemma is proved.

Lemma 2. Let St be a homomorphically closed class of alternative rings.
Consider any alternative ring R with a nonzero left ideal I which belongs to R.
Then R contains a nonzero two sided ideal in N, .

Proof. Consider I* =1 + IR. This is a nonzero two sided ideal of R
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(Lemma 1) and we shall show it is in R, . Take any nonzero homomorphic
image I*/W of I*. If I { W then

I+w 1
w —InW

is a nonzero left ideal of I*/W and it is in ¢ since it is a homomorphic image
of I.

If I C W there must exist an element x in R such that Ix € W, otherwise
IRC W and W = I*. Consider W 4 Ix. This is a left ideal of I'* because

I* - (W + Ix) CT*W + I* - Ix;
*WCw,
I* Ix =+ IR)IxCI -Ix 4 IR - Ix;

since
Icw, I-IxCW - IxCW-I*C W,
finally
IR - Ix C(IR - I)x + (IR, I, x);
since
IR-ICR-IC], (IR - DxClIxC W + Ix;
and
(IR -1, x) = (IR, x,I) = (IR - x)] + IR - I,
then
(UR-x)ICRICICWC W+ Ix
and

IR -xICIR-ICRICIC W 4 Ix.

Therefore everything is in W 4 Ix and it is a left ideal of I*. Thus
(W + Ix)] W is a nonzero left ideal of I*/IW. We want to show it is in R.
Define 6: I — (W 4 Ix)/W by 0: a—>ax + W. Clearly @ preserves
addition. To see that it also preserves multiplication we consider
O:ab—ab-x-+W.
Now ab-x =a bx + (a,b,x). Since aisinICW,a-bxeW- -I*CW.
Also (a,b,x) = (x,a,b0) =x -ab — xa - b. Now x - ab is in xI CICW, and
xa-bisin R-I1CIC W. Therefore ab - x + W = 0 + W. We must there-
fore show that (ax + W)(bx + W) =04 W. Now (ax + W)bx 4+ W) =
ax - bx 4 W. Since ax - bx = a(x - bx) 4 (a, x, bx), and bx is in I*, then
x-bxisin RI*CI* and a(x - bx) el - I* C W - I* C W. Finally (a, x, bx) =
(%, bx, a) = x(x, a,b) and (x,4,b) =x-ab — xa-bel, thus x(x,a,b) is
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in RICICW. Therefore (ax + W)bx + W)=0+ W =ab-x -+ W,
and 6 preserves multiplication. Thus 6 is a homomorphism and since I is
in N, sois (W + Ix)/W. Thus every nonzero homomorphic image of I*
contains a nonzero left ideal in 9% and by definition I* is in N, .

CoRrOLLARY If an alternative ring R has a nonzero right ideal which belongs
to a homomorphically closed class R, then R has a nonzero two sided ideal in N, .

Let & again be an arbitrary nonempty universal class of rings (i.e. not
necessarily alternative). Then a nonempty subclass & of | will be called a
strong radical class if it satisfies:

1. & is homomorphically closed.

2. Everyring R in & has an ideal S(R) which is in € and which contains
all onesided ideals of R which are in €.

3. For every ring R in &, S(R/S(R)) = 0.

Thus a strong radical is an ordinary radical with the extra condition that
onesided radical ideals are contained in it. We begin with a result of Amitsur
[1, page 108].

ProposITION 2. A radical property S is a strong radical property if and
only if every S-semi-simple ring has no nonzero onesided ideals in ©.

Proof. 1If & is a strong radical property, if I is a onesided ideal of R, and
if I is in & then I C S(R). And if R is S-semi-simple, S(R) = 0 and I = 0.

Conversely if I is in &, is a onesided ideal of R and I { S(R), then
(I + S(R)/S(R) =~ I/(I N S(R)) # 0 is a onesided ideal of R/S(R) and it is
in €. Thus if every S-semi-simple ring has no nonzero onesided ideals in &,
we must have I C S(R) and & is a strong radical property.

THEOREM 1. Let K be a nonempty umiversal class of alternative rings.
A nonempty subclass S of K is a strong radical class if and only if S satisfies:

(a) & is homomorphically closed

(b) If every nonzero homomorphic image of a ring R in K, contains a
nongero onesided ideal in S, then R itself is in S.

Proof. If & is strong it certainly has (a). To establish (b), let R be any
ring of & not in &. Then R/S(R) is a nonzero S-semi-simple ring and thus it
has no nonzero onesided ideals in & (Proposition 2). This gives us (b). Note
that this half of the theorem does not make use of alternativity.

To prove the converse, suppose & satisfies (a) and (b). Then it is clear that
@ is at least an ordinary radical class for (b) implies that a ring R is in & if
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every nonzero homomorphic image of R contains a nonzero ideal in & (see
for example [8, Theorem 1, page 4,]—the proof does not depend on associati-
vity). To show that & is strong, let I be a onesided ideal of R and assume I
is in S. We will show that I C S(R).

By Lemma 2 or by the corollary to Lemma 2, R contains a nonzero two
sided ideal | in &, with I C J. However (b) implies that &, = & and thus
IC JC S(R)since Jisin &.

The construction of lower strong radicals does not present any serious
difficulties for alternative rings. If we begin with any nonempty homomorphi-
cally closed subclass 3t of a nonempty universal class & of alternative rings, we
consider the chain # = R, TN, C - CN,C - and let

LSM) = YR, = {Rin & : R is of some degree over N}.

THEOREM 2. LS(M) is a strong radical and it is the smallest strong radical
containing . We call it the lower strong radical determined by N.

Proof. By Proposition 1, LS(R) has (a). To establish (b) let R in | have
the property that every nonzero homomorphic image R’ of R has a nonzero
onesided ideal I’ in LS(M). Then I’ is in some N, . For various homomorphic
images we obtain various ¢’s. Let o be an ordinal which is bigger than or
equal to all of these ¢’s. Then for every R, I’ is in 9%, C N, . Therefore R
is in MN,,; and thus R is in LS(N). This establishes (b) and shows, by
Theorem 1, that LS(N) is a strong radical.

To show that LS(M) is the smallest strong radical containing N, let Q be
a strong radical 2 M. We must show that LS(M) C Q. We proceed by induc-
tion and assume that N, C Q for every y << a. Let R be in 9, . Then every
nonzero homomorphic image of R contains a nonzero onesided ideal in%R,
for some y <C . These onesided ideals are thus all in Q. However Q is strong
and has (b) and thus R must be in Q. Therefore M, C Q. Since Nt = N, C Q,
we have LS() = YR, C Q.

Remarks. For a given nonempty homomorphically closed class 9t we can
construct L(J) = the ordinary lower radical determined by M. Since L(N)
is contained in any radical class that contains 9%, we must have

9t C L(9) CLS(N).

For some N’s, L(M) = LS(M). For example if N is the class of all zero
rings in the class § of all associative rings, then L() is the Baer lower radical.
It is known [5, Theorem 2] that every Baer radical ring R is in R, (two sided
construction), i.e. every nonzero homomorphic image of R has a nonzero zero
ideal. To prove that the Baer lower radical is strong we shall use Proposition 2.
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Assume then that T is a Baer semi-simple ring and that I is a nonzero right
ideal of T and a Baer radical ring. Then I has some nonzero zero ideals.
By Zorn’s Lemma select a nonzero maximal zero ideal W of I. This can be
done since the |J; Z;, when Z, CZ,C - is again a zero ideal if each of
the Z; is a zero ideal. Now W1 is a right ideal of T, it is in W and therefore
it is a zero ring. If WI 5= O then WI + TWI is a two-sided ideal of T and
(WI -+ TWI)? = 0. This is impossible since T is Baer semi-simple. Thus
WI =0.

Consider I/ W. Since 12 % 0 (if 12 = 0, I + T would be nonzero zero ideal
of T'), I/W s 0. It is again a Baer radical ring and thus has a nonzero zero
ideal Q/W. Thus Q*C W. Then QI -QICQQIC WI=0. Thus QI =0
else T has a nonzero zero ideal QI -+ TQI. Therefore Q* = 0. Since Q2 W
this contradicts the maximality of ¥ as a zero ideal of I. Therefore no such I
exists and the Baer lower radical is strong.

In general, L() C LS(M). We shall show later that for example the Brown-
McCoy radical in associative rings is not strong.

The question of when the construction of L(N) stops, was examined in [5].
It was shown that for associative rings, L(9) = R,, and for alternative rings,
L(9t) = N,z . Rubikin has shown [11] that for general nonassociative classes,
there is no upper bound. In the associative case, if | contains all zero rings
and is hereditary (i.e. ideals of rings in R are also in R) [5], or if N contains all
zero rings and if R/I is a zero ring and 7 is in N implies R is in ¢ [7], then
L(Jt) = 9N, . With just heredity L() = N,, see [6] and [12]. However
Heinicke [9] showed that there are associative classes i for which L(3t) does
not stop until N, . The subscripts in this paragraph refer to the two sided
construction.

The construction of LS(M) goes further out than L(M) but the steps are
larger than the corresponding two sided steps for L(M).

TuroreM 3. Let K be the class of all associative rings and let N be a non-
empty homomorphically closed subclass of R, satisfying:
1. 9 contains all zero rings;
2. N is hereditary;

3. If a ring R has a nonzero right (left) ideal in M then R also has a
nonzero left (right) ideal in N;

4. Iflisanideal of R, if I* = 0 and if R/I is in N, then R is in N;
then
LS(M) =N,
= {R: every nonzero homomorphic image of R contains a nonzero
onesided ideal in N}.
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[Note that 4 can of course be replaced by 4': If I and R/I are in 9 then R is
in 9. 4’ is stronger than 4 but perhaps more elegant].

Proof. We will show that R, = N, and this yields LS(MR) = N, . Take
R in M, and let R’ be any nonzero homomorphic image of R. Then R’ has
a nonzero onesided ideal I in R, . Suppose without loss of generality that 7 is
a right ideal. Now I must contain a nonzero onesided ideal [ in 9; = 9% and
by 3. we may take [ to be a right ideal of .

Consider JI. It is a right ideal of R, it is contained in J and it is a two sided
ideal of J. Since Jisin R, by 2., we have JIin N. Thus if JI 5= 0, R’ contains
a nonzero onesided ideal in R.

Assume then that JT =0. Then JC/(I) = {xinI: xl = 0}. Now /(I)is
an ideal of I. If /(I) = I then I?2 =0 and [ is in 9 by 1. Again, then, R’
contains a nonzero onesided ideal in M. So assume that /(J) # I. Then
II{(I) # 0. It is in M, since 1 is in N, . Thus I/£(I) contains a nonzero onesided
ideal P//(I) in M. We may take this to be a right ideal, by 3. By 4., P itself
must be in 9 since ()2 = 0. Now PI 5 0 since P € /(I). Furthermore PI
is a right ideal of R’, it is contained in P and it is a two sided ideal of P.
Thus PI is in R by 2. Thus even in this case R’ has a nonzero onesided ideal
in N, and therefore R is in N, .

Remark. 'The theory of strong radicals can be weakened to consider right
strong radicals (or left); i.e. radicals & which contain all right € ideals. Then
beginning with a nonempty homomorphically closed class 9 = M, , one
considers M, as the class of all rings R such that every nonzero homomorphic
image of R contains a nonzero right ideal in M, for y << «. The M, is
then the lower right strong radical.

The proof of Theorem 3 then goes through without using the condition 3.
and one has:

COROLLARY If a nonempty homomorphically closed class I satisfies:

1. M contains all zero rings,

2. IR is hereditary,

4. If Iis anideal of R, I* = 0 and if R/I is in I then R is in M;
then the lower right strong radical determined by R is M, , and the lower left
strong radical determined by I is M, .

There exist nonempty homomorphically closed classes 9 satisfying the
four conditions of Theorem 3.

ExampLE 1. Let M be the class of all associative rings which satisfy
a polynomial identity. Then it is clear that 9t is homomorphically closed,
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contains all zero rings and is hereditary. To establish 4., suppose that [ is
an ideal of R, I =0 and R/l is in N. Let f(ry,75,...,7,) in I for every
71 .., ¥, in R be the polynomial identity associated with R/I. Define

Sy ey X)) = f(5p ey %) F (%) 5enny %)

Then for any 7y ,..., 7, in R we have g(r, ,..., 7,) = 0 because 12 = 0. Thus
R itself satisfies a polynomial identity and R is in N.

Finally, to establish 3., suppose [ is a nonzero right ideal of R, J in 9, and
let f(2; yoees tn) = O for any ¢, ,..., ¢, in J. We may assume that f is multilinear
because any ring that satisfies a polynomial identity, also satisfies a multi-
linear identity [10, page 224].

If J2 = 0 then J? = 0 where [ is the two sided ideal of R generated by J.
Then [ is in 9 and R has a nonzero left ideal in M. If J2 5= 0 then there
exists an element # in J such that R# # 0. We shall prove that this left ideal
Rt is in N. Define

G0y ooy Xy s X py) == Xy - f(Rg e,y X)

This is not identically zero since f is not identically zero. Take any elements
71 seeey Ty Tnyy in RE Then r; =yt with the y; in R, for i = 1,...,n 4 1.
Then

8ry sy Ty Tngn) = gy " f(ry s 1)
= Ypnt 'f(ylta"'y ynt)
= Yn+1 'f(tyl yeres tyn) ot

since f is multilinear. Furthermore ty; is in J for i = 1,..., n, since ¢ is in |
and Jand Jis arightideal. Thus f (ty, ..., t¥,) = Oand g(r, ..., 75 , 7n1q) = 0.
Therefore Rt satisfies a polynomial identity, is in 9 and 3. is established.

Remark. For this class M of polynomial identity rings it turns out that
L(9) CLS(M). To see this we adapt an example of Amitsur [2, page 133].

Let & be the class of all associative algebras over a fixed field ¢. Let 9t be
the class of all algebras in & which satisfy a polynomial identity with coeffi-
cients in é. It is clear that 9t is homomorphically closed, contains all zero
algebras over ¢ and is hereditary. Therefore by [5, Theorem 2, page 420],
L(MN) = {R: every nonzero homomorphic image of R has a nonzero ideal
in 9.

Let M* be the algebra of all infinite matrices of finite rank over ¢. Then M*
is simple and does not satisfy any polynomial identity. Therefore M* is L(J)
semi-simple. However M* has a nonzero right ideal e;; - M*, the set of all
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one-rowed matrices. This right ideal is in R for it satisfies the identity
(2320 — 251) %3 = 0.

Thus M* is an LS() algebra.

ExampLE 2. Let N be the class of all associative nilrings. Clearly this is
homomorphically closed, contains all zero rings, and is hereditary. Also if
R/ is nil and 1?2 = 0 then R is nil. Finally if J is a nonzero right nilideal of R
we will construct a nonzero left nilideal in R. If J2=0 then [+ RJ is
an ideal of R and (J + RJ)? = 0. If ]2 = 0, there exists an element ¢ in ]
such that Rt == 0. For any element rt in Rt,

(rt)n+1 — r(tr)” f.

Since tr is in ], (tr)* = O for some n and thus 77 is nilpotent, Rt is a nil left
ideal of R.

Thus this 9t is another example of a class satisfying the four conditions
of Theorem 3.

We have already pointed out that the Baer Lower radical is strong. It is
also well known that both the Jacobson and Levitzki radicals are strong.
Thus it is a bit surprising that the Brown-McCoy radical is not.

ExampLe 3. [8, Page 55]. Let S be the set of all polynomials in x,
oy + xo; + -+ + 2™, , where the coefficients «, are rational functions in y
with real coefficients. Addition is defined in the usual way, and multiplication
is defined normally except that ax = xa -+ o’ where « is the derivative of
a rey. Then S is a simple associative ring with unity. It is a principal ideal
domain and has the ascending chain condition on both right and left ideals.

Every onesided ideal of S is also simple. To see this let I be a nonzero right
ideal of S. Then I = f(x) - S. Suppose T is a nonzero ideal of I. Then
ITI = f(x) STf (x)S C T. However STf(x)S being an ideal of S is either
Oor S. If itis Sthen ITI = f(x)S =IC Tand thus T = 1. If STf(x)S =0
then Tf(x) = 0 since S has a unity, and then T = 0 since there are no
zerodivisors in S. Thus [ is simple. A similar argument holds for left ideals
of S.

Since the degree of f(x) - g(x) = degree of f(x) + degree of g(x), no
proper onesided ideals of S have a unity element. In fact there is only one
idempotent in S, namely 1.

Thus S is Brown-McCoy semi-simple but every proper onesided ideal of S
is Brown-McCoy radical (they are Jacobson semi-simple). Therefore the
Brown-McCoy radical does not contain all the onesided Brown-McCoy
ideals.
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Returning to Example 2, where %t = all nil rings, we know this is an ordi-
nary radical property and by Theorem 3, LS(MR) = N, . Thus

N = LMW CLSM) = N, .

It is an open question whether 9 is a strong radical, equal to LS(M), or not.
This open question is equivalent to Koethe’s famous conjecture about the
existence of rings with nonzero onesided nilideals but without twosided
nilideals. Restating it in terms of 9, we can pose Koethe’s conjecture as
follows:

If every nonzero homomorphic image of a ring R contains a nonzero
onesided nilideal, must R be a nil ring?

Another easier question is whether there exists a simple ring which is not nil
and which has a nonzero nil onesided ideal. Amitsur [3, Theorem 10, page 47]
has proved that for algebras over nondenumerable fields 9t = LS(RN).

It is natural to try and extend Theorem 3 and one hope would be to show
that for any nonempty homomorphically closed class 9 of associative rings,
LS(9) = N,,, . The proof of this theorem (L(t) = N,, ) in the two sided case
is based on two lemmas {5, page 418]:

LemMA 1. If R 55 0 is in L(N) then R has a nonzero accessible subring B,
with B in N.

Lemmva 2. If B in M is a nonzero accessible subring of R then the ideal in R
generated by B is in R, for some finite q.

There is no trouble with the first result, in fact almost the same proof holds.

LemMA 3. If R # 0 is in LS(R) then R has a nonzero subring B, B in N
and B is onesided accessible to R, ie. B=A4,CA4,CA4,C--CA4,=R
where A, is a onesided ideal in A; , for every i =0, 1,....,n — 1.

However the second result is simply false.

ExampLE 4. Let R be the set of all 2 X 2 matrices over the reals. Let
A = {(@}, let B = {($5)}. Then B is an ideal of 4, 4 is a right ideal of Rand
R is simple with unity.

Let M be the class of all zero rings (associative). Then B is in R and B
is accessible to R. The right ideal of R generated by B is A4 itself. Now is 4
in M, with ¢ finite ? The ring 4 can be mapped onto the reals {(30)} and this
has no nonzero onesided ideals except itself and therefore no nonzero
onesided accessible subring in ®. Thus 4 is not in 9%, for any g.

In the two sided situation we have L(:) = {R: every nonzero homo-
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morphic image of R contains a nonzero subring B in 9t which is accessible
to R}. In the onesided case all we have is

LS(M) C{R: every nonzero homomorphic image of R contains
a nonzero subring B in 9t which is onesided accessible

to R} .=. B®).

The inclusion follows from Lemma 3, and the strictness follows from
Example 4, because the ring of 2 X 2 matrices belongs to the class B(R) but
not to LS(M). This is so because LS(M) C class of all Jacobson radical rings
(which is a strong radical) and the ring of 2 X 2 matrices is a Jacobson
semisimple ring.

The problem then is to get some useful characterization of LS(9t) and
the seemingly natural one B(9) turns out to be too large.

A second candidate is

V(M) .=. the class of all rings R such that every nonzero homomorphic
image R’ of R contains a nonzero subring B in i such that
B=A4,C4,C--CA4, =R where each 4, is a onesided
ideal of A4;,, for i =0, 1,...,n — 1 and for every i, every
nonzero homomorphic image 4’; of 4, contains a nonzero
subring in M which is onesided accessible to A'; .

Then clearly V(9t) C B(3t) because Example 4 is in B(9) but not in V(N).
We also have LS() C V() because of

THEOREM 4. V(M) is a strong radical class containing N.

Proof. Tt is clear that V(M) contains N and that it is homomorphically
closed. If every nonzero homomorphic image R’ of a ring R contains a
nonzero onesided ideal I in V() then

RDOI—=A,24,,2 24,24, =B #0in N

where A; is a onesided ideal of 4,,, for i = 0,..., n — 1, and every nonzero
homomorphic image A4’'; of A; contains a nonzero subring in 9 which is
onesided accessible to A’; for £ = 0,..., n. It is clear then that R itself is
in V(). By Theorem 1, V() is a strong radical.

It turns out that even V(M) is too large and

LS() C V(:) S BO).

ExampLE 5. Let R be the ring of all infinite matrices over the reals,
which are column finite and such that each matrix has only a finite number of
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nonzero rows. It is well known that R is simple and Jacobson semi-simple,
Thus R is not in LS(9) when M is the class of all zero rings (associative).

Let A4 be the subset of all matrices in R which have zeros in the first column
and let Z be the subset of all matrices in 4 which have nonzero entries only
in the top row. Now Z2 = 0 and thus Z is in M. Also Z is an ideal of 4 and A
is a left ideal of R. We will show that every nonzero homomorphic image
of A contains a zero subring which is onesided accessible. This will prove that
Ris in V(M) and give us the strict inclusion we seek.

First we note that A/Z consists of classes represented by matrices in R with
zeros in the first row and first column. Then it is clear that 4/Z ~ R, for
if M is any matrix in R then we associate the class in 4/Z represented by

0 000 -+ 0 ---
!
: M

and this map is a homomorphism. Since R is simple, 4/Z =~ R. Thus Z is
a maximal ideal in 4.

Let Q be any nonzero ideal in 4. If Q € Z then there is a matrix N in Q
with a nonzero entry x;; in the 7jth position with 7 > 1, j > 1. Let C be the
matrix (in 4) with 1 in the first row, 7th column and zeros elsewhere. Then

CN — (0 Xpg Xig o0 x50 )
0 .

Let D be the matrix (in 4) with &7} in the jth row, kth column (any & > 1)
and zeros elsewhere. Then CND has a | in the first row kth column, and zeros
elsewhere. This is possible for any 2 > 1 and all the CND are in Q. Thus O
contains all of Z and if Q * Z then Q = A. Thus if Q is a proper ideal of A4,
OCZ

Now let us consider any nonzero homomorphic image of A. It is either
A|Z ~ R which has a onesided accessible subring in R or it is 4/Q which
contains Z/Q as an ideal and this ideal is in R. Therefore R is in V(N).

We must therefore find a characterization of LS(R) in a different way.
To this end we make the following definitions:

A path of a ring R is a sequence (R =Ry, R, , R, ,..., R;, R, ,...) where
each R;,, is either a nonzero proper homomorphic image of R;, or is a
nonzero proper onesided ideal of R, , with the proviso that for any 7, R; and
R, are not both homomorphic images (R; of R, ; and R, of R)).

In general, paths are infinite sequences, but if R; has no proper nonzero
onesided ideals, then the path is finite.

Two paths are said to be similar if the first place where they differ is a place
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where the entries are different onesided ideals of the previous entry, i.e. if
P, =(Ry,Ry,.,R,,I,..) and P, = (Ry, Ry ,...., R, J,...) where I # ],
both onesided ideals of R, .

A clan of R is a class of paths of R, no two of which are similar, and such
that every path of R is similar to at least one path in the class.

If M is any nonempty class of rings, a clan of a ring R will be said to meet M
if every path in the clan meets M after a finite number of steps, i.e. for every
path P = (Ry, R, ,..., R, ,...) there exists an integer ¢ such that R, is in M.

Now let 9t be any nonempty homomorphically closed class of rings (asso-
ciative) and define

Z(M) .==. {R: there exists a clan of R which meets N}.

TueoreM 5. LS(R) = Z(N).

Proof. 1t is clear that | C Z(MN) for if R is in N then every path of R
begins with R = R, in R and thus meets N immediately. Thus any clan of
R will do.

To see that Z(R) is homomorphically closed, take R in Z(N) and let R’
be any nonzero homomorphic image of R. Take a clan W for R that meets 0
and take all paths in W that begin with (R, R',...}. If we remove the first R
from these paths we obtain a class C of paths for R'. Clearly no two paths in C
are similar. Furthermore if P is any path of R, P = (R, §,...) where S is
a onesided ideal of R’, then the extended path (R, R', S,...) is a path for R
and thus must be similar to a path in W. Since similar paths cannot differ at
a homomorphic step, the path in W must begin with (R, R',...). Dropping
the first R we thus get a path for R" which is in C and which is similar to
P = (R, S,...). If on the other hand P = (R’, S,...) where S is 2 homomorphic
image of R, then (R, S,...) is a path for R. It must be similar to a path in W
and since S is a homomorphic image of R, the path in W must begin with
(R, S,...). Replacing R by R' we get a path (R, S,...} of R’ which is similar
to P. If we adjoin, to C, all such paths of R’ obtained by replacing R’ by R,
picking a similar path in W and replacing R by R’, we then obtain a clan W’
for R'. This clan meets 9t for W meets R, and paths in ¥’ are the same as
paths in W from the second entry on. If a path in W meets 9 in the first
entry, then R is in 9% and then R’ is in N.

To see that Z(N) is a strong radical property, suppose that every nonzero
homomorphic image 7" of a ring 7, has a nonzero onesided ideal I’ in Z(R).
We will show that T is in Z() by constructing a clan for 7 that meets Z(R).

For every T" # 0, with onesided ideal I’ £ 0 in Z(R), take a clan B for I
that meets 9%. Extend each path in B of the form (I',[,,1,,..) to
(, 1,1 1, ,1,...) when T'# T and to (T,1',1,,1,,..) when T =T".
Let V be the class of all such extended paths. Clearly no two are similar. Let
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P=(T,T,,T,,..) be any path for T. If T, is a onesided ideal of T then P
is similar to some one of the paths (T, 1', I, ,...). If however, T, is a homo-
morphic image of T then T, must be a onesided ideal of T; and P is similar
to some one of the (T, 77, I’,...) where 7" = T, . Therefore I 1s a clan for 7.
Also V meets N. Therefore T is in Z(MN) and by Theorem 1, Z(N) is a strong
radical. Therefore LS(M) C Z(N).

To see that Z(N) CLS(N) take R not in LS(I). Then there exists a non-
zero homomorphic image R’ of R, which is LS(9) semi-simple. Thus R has
no nonzero onesided ideals in LS(N). Take any one, say I, . Then I is not in
LS(M) and it has a nonzero homomorphic image ;" which is LS(NR) semi-
simple. Continuing in this way we obtain a path (R, R, I,,I,',1,,1,,...)
where the I, are nonzero onesided ideals of the previous entry and the I, are
nonzero homomorphic images of the corresponding I,’s and these I,,” are all
LS(MN) semi-simple (they are of course obtained by factoring out the LS(9N)
radical of I,)). By choosing all possible I;’s and for each 1, , all possible I,’s
etc. we obtain a class of such paths and it is clear that none of them meet 2.
We propose to show that for any clan C of R, C must contain at least one of
these paths that does not meet M. Then C does not meet R and R is not
in Z(N).

Assume then that we are given a clan C of R. Every path of R is similar
to some path in C. Thus there must exist paths in C that begin with R, R’
Since no two distinct paths in C are similar, all paths in C that begin with R,
R’ must continue with the same one-sided ideal J; of R'. Thus they all start
with R, R, J; . We take J,’ to be J; modulo its LS(R) radical. Then there
must exist paths in C which are similar to R, R', J;, J,’,... - However, any
path in C that is so similar must in fact begin with the same four first evtries
because similar paths can differ at first only at a one-sided ideal step, that is
from R’ to J; . But all paths in C that begin R, R’ continue on to J; .

We continue this construction, at each stage choosing the one-sided
ideal J,., of ], which appears in every path of C that begins with
R, R, ]\, J\'ses Jns Ju's and then observing that for J,.; equal to [,
modulo its LS(R) radical, there must exist a path in C which is similar to
R R, ], J\' v Jnss» Jns1 »-- and identical with it up to that point. In
this way we obtain a path in C which does not meet N.

Therefore R cannot have a clan that meets i, R is not in Z(M) and there-
fore LS(M) = Z(N).

Remarks. It is clear that Example 5 does not have a clan that meets the
class of zerorings.

This clan approach should also give us a representation of L(R), using
of course, two sided ideals.

We return now to our analysis of the construction of LS(9) = {J. N,,
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where 9 is 2 nonempty homomorphically closed class of associative rings.

LemMa 4. If R has a nonzero onesided ideal in W, then R has a nonzero
ideal in N, .

Proof. The same as Lemma 2, together with the fact that %, is homo-
morphically closed (Proposition 1).

CoroLLary 1. If Risin R, then every nonzero homomorphic image of R
has a nonzero ideal in W,, , n finite.

CorOLLARY 2. If R has a nonzero left (right) ideal in R, , n finite, then it
has a nonzero right (left) ideal in R, .

THEOREM 6. If M is a nonempty homomorphically closed subclass of the

class of all associative rings, and if M is hereditary and contains all zero rings
then LS(M) = N,, .

Proof. Let M = U, tinite Nn - We will show that M satisfies the four
conditions of Theorem 3. Then LS(N) =LS(M) = M, =R, . It is clear
that M contains all zero rings. If R has a onesided ideal I in M then [ is in 90,
for some z. By Corollary 2, Lemma 4, R has a onesided ideal of the other side
in N,,.; € M. This is condition 3. Next, if R/I is in M and I? = 0, then we
show that R is in M. Since R/Iisin M, itis in N,, for some finite n. The ideal 1
of course is in N; . Then Risin R, . To prove this let R/K be any nonzero
homomorphic image of R. If I{ K then R/K contains the nonzero ideal
(+ K)K=I[InK)in %, CR, . If however I C K then R/I[K|I o~ R|K.
Now R/I is in 9, and this is homomorphically closed (Proposition 1) and
therefore R/K is itself in M, . Thus every nonzero homomorphic image of
R contains a nonzero ideal in N, and therefore R is in N, ; C M. This is
condition 4.

Finally, to show that M is hereditary, we proceed by induction. Assume
that for every m <, if R is in M,, and 7 is an ideal of R, then I isin N,, .
Take R in 9N, , I an ideal of R, and let I/] be any nonzero homomorphic
image of I. Let ] be the ideal of R generated by J. If ]2 ] then [8, page 107,
Lemma 61], (J/J)® = 0. If (J2 + J)/J # 0 it is a zero ring and thus in N, .
If j2C J then J/] is a zero ring. In either case then, I/] has a nonzero
onesided ideal in R, .

If however [ = ] then we consider R/]J. It is in 9, and thus has a nonzero
onesided ideal O/ J in R,, for some m < n. If (I N Q)/] £ 0, then it is in R,,
since it is an ideal of O/ J. It is also a onesided ideal of I/ J.

If however I N Q = ] then we consider Q, the ideal of R generated by Q.

481/17/3-6
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If Q = R, suppose that Q is a left ideal of R. Then J = Q + QR = R. Also
I0CINQ =]. Then IR=IQ +IQRC J+ JRC J. Thus IIC ] and
(Z/J)* = 0. Thus I/ ] is itself in ¢, . Similarly if Q is a right ideal of R we get
IIJinHh,; .

If however Q C R, we consider O N I. This contains J. If O N I2 ] then
(O N 1)/] is a nonzero ideal of I/]. Suppose Q is a left ideal of R. Then
IQCINQCJ. Also Q=Q +QR. Thus IQ =1Q +IQRC J+ JRC ].
Therefore (QNI)- (O NI)CIQC J. Thus (Q N1I)/] is a zero ring and is
in M, . Similarly if Q is a right ideal of R we get (Q N I)/Jin R, .

If however Q N I = ], we consider all ideals of R which contain Q, and
which intersect 7 in J. This set is not vacuous for it contains Q. By Zorn’s
lemma, choose K to be maximal in this set. Then K is an ideal of R, it contains
both Q and O, and K NI = J. And K is maximal of this type. We consider
R/K. 1t is nonzero and it is in N,, . Then it has a nonzero onesided ideal P/K
in R, with m <. If (PN 1I)/] # 0 then

PnlI __ Pnl (Pl +K
J] ~ PnInK— K

and this is in N,, since it is an ideal of P/K. Also it is a onesided ideal of I} J.

If however P N I = ], we consider P. As for Q, if P = R, then I/ ] is a zero
ring and is in N, . If however P R, then at last we can be certain that
P NI ] because K is maximal of this type. Then (P N I)/] is a nonzero
ideal of I/]. It is a zero ring because (PN I) - (PNI)CIPC ]. Thus itis
nMR\,.

Therefore in every case, I/ ] has a nonzero onesided ideal which is either
in M, or in R, . Therefore I is N, . This completes the induction and
proves the theorem.

Remark. We have actually proved that if a class R, is hereditary and
contains all zero rings, then M,, is hereditary for every positive integer .

If 9 is not hereditary or if M does not contain all zero rings, or if 9 lacks
both of these conditions, then it is unclear when the lower strong radical
construction stops. For this general case we can prove:

THEOREM 7. R, s a radical class. (R is an arbitrary nonempty homo-
morphically closed class of associative rings.)

Remarks. 'The subscript here denotes the strong radical construction.
In general it seems that 9, is not all of LS(9). What we can prove is that
it is at least an ordinary radical property. Then of course we have

% C L) C N, CLSN).
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Proof. M, is homomorphically closed. Furthermore, if every nonzero
homomorphic image R of R’ contains a nonzero ideal I in ER% , then we shall
prove that R" is in R,, . Since [ is in 9N, it must have a nonzero onesided
ideal in M,, and therefore a nonzero two sided ideal J in R,,,; (Corollary 2,
Lemma 4). Consider [ -+ JR.1tisin R,,,, since every nonzero homomorphic
image (J + JR)/K has a nonzero one-sided ideal in R, . To see this one can
use the argument of Lemma 2 (simplified to the associative case) or see [5].
Thus every nonzero homomorphic image of R’ has a nonzero right ideal in
N,sz , and therefore R is in N, .

Remark. A similar argument proves that i, is a radical class, for every
limit ordinal o

2. UrpPer RapicAL PROPERTIES

Let & be a nonempty universal class of not necessarily associative rings.
Let M be a nonempty subclass of K.
We shall say that

M is regular if every nonzero ideal of a ring in M can be homomorphi-
cally mapped onto a nonzero ring in IR.

M is onesided regular if every nonzero onesided ideal of a ring in M can
be homomorphically mapped onto a nonzero ring in 9.

Usn is defined as the class of all rings in & which cannot be homomorphi-
cally mapped onto a nonzero ring in IR.

Then the following theorem is well known {8];

THeoreM 8. If I is regular then Jyy is the upper radical property deter-
mined by M.

If | contains only alternative rings we have

THEOREM 9. If MM is onesided regular then Joy is the upper strong radical
property determined by I, i.c. it is the largest strong radical property for which
all rings in MM are semi-simple.

Proof. 'To prove Jqy is strong we shall use Theorem 1. It is clear the gy,
is homomorphically closed. To establish the other condition of Theorem 1,
take R not in (Jgz . Then R can be mapped onto a nonzero ring R’ in IN.
Then R’ has no nonzero onesided ideals in (Jy, since 9% is onesided regular.
This proves that if every nonzero homomorphic image of R has a nonzero
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onesided ideal in (Jy then R is itself in (Jg . Thus by Theorem 1, gy, is
a strong radical property.

Since M is also regular, by the previous theorem we have that (Jgy is the
upper radical re M and therefore it is the upper strong radical re M.

Continuing with an alternative universal class &, we define:

A radical property & to be semi-simple hereditary or s.s. hereditary, if every
ideal of an & semi-simple ring is also & semi-simple. It is known [4, Corollary
2, page 602] that for alternative rings every radical property is s.s. hereditary.

A radical property & is onesided s.s. hereditary if every onesided ideal of an
& semi-simple ring is also S semi-simple.

TreOREM 10. If a radical property & is onesided s.s. hereditary then it is
a strong radical.

Proof. Let I be a nonzero onesidedS-ideal of a ring R. Let S(R) be the &
radical of R. Then consider (I + S(R)/S(R) == I/(I N S(R)).

If I is not in S(R) then I/I N S(R) is nonzero and is in &. Then the &
semi-simple ring R/S(R) has a nonzero onesided S-ideal. This contradicts
the onesided s.s. hereditary assumption. Thus I C S(R) and € is a strong
radical.

Remark. The converse of this theorem is false because the Baer Lower
radical is a strong radical, yet Example 4 shows it is not onesided s.s. heredi-
tary.

Not every gy , with IR regular, is a strong radical.

ExampLE 6. Let & be the class of all finite dimensional algebras over an
algebraically closed field ¢. Then the only nontrivial simple algebras in &
are the matrix algebras ¢,, , for n = 1, 2, 3,... . Let I be a nonempty set of
some (or all) of these ¢,’s. Then M is regular and gy is a radical property.
However not all such (Jgy’s are strong radicals. To see this let I = {¢,}.
Now ¢, is |Jgy semi-simple, and it contains the onesided ideal I = {({2)}.
But I cannot be mapped onto ¢, and thus I is a a nonzero onesided | gy ideal
of ¢, . Thus (Jyy is not strong.

What we can say in connection with this example is:

TuEOREM 11. gy is a strong radical if and only if ¢, € M — ¢, € M for
every m such that 1 <. m < n.

Proof. First we observe that any { Jq; semi-simple algebra in K is a finite
direct sum of simple algebras from IM[8, Theorem 46, page 121].

Suppose now that ¢, € MM — ¢, € M for all m such that 1 < m < n Let
R be Yy semi-simple and 7 a nonzero onesided ideal of R with I in { ) . We
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know that R = Zf @ R;, where the R,e I, 7 = 1,..., k Let h;: R— R,
be the natural homomorphism from R onto R;. Then there must exist a j
such that h; : I —1I' £ 0, else I C (), kernels #; = 0. Then I" is a nonzero
onesided ideal of R; = ¢,, . Let ¥ be the classical nilpotent radical in K. It is
known that W is a strong radical. Now ¢, is W semi-simple and therefore I’
cannot be a W-ring. Then I'/W(I’) is nonzero and is a finite direct sum of
matrix algebras each of degree < n. Thus I' and therefore I, can be mapped
onto some ¢,,, with 1 <{ m <{ n. By our condition this ¢,, is in 9t and therefore
I can be mapped onto a ring in IR. However this contradicts the assumption
that I is in | Jgy . Therefore gy, is a strong radical.

Conversely suppose that (Jgy is a strong radical property. Take ¢, in M
and let m be any integer such that 1 <C m < n. Define

I, .=. all matrices 4 = (a;;) in ¢, such that o, = 0 for all7 and all &
such that m < 2 < n.

Then I, is a left ideal of ¢,, . Define

P,, .=. all matrices 4 = («y;) in I,, such that «;; = 0 for any ¢ << m.

Then P,, is a two sided ideal of I,,, . Pictorially

R N

Define a mapping & from I,, to ¢, which sends
* [0 .
4= (?i'o") in I, to (%),

the top left hand corner of 4. Thus k: 4 = (o) in I,, > () in ¢, , where
tand j=1,2,..,m.

This map 4 is onto ¢,, and it clearly preserves addition. To see that it also
preserves multiplication, take 4 = (o;;) and B = (B;;) inZ,, . Then AB = (y;;)
where y;; = Yy %xBri» since oy =0 for & > m. Therefore hA(AB) =
h(A) - h(B).

The kernel of & is precisely P, . Thus I,,/P,, ~¢,, . Now P,? =0 and
thus P, is in gy . If ¢, is not an M ring then since it is simple, it must be
in Uy . Since gy is a radical property, P, and I,/P,, in | )y implies I, in
Uar - This is impossible since the (Jy, semi-simple ring ¢, cannot contain
a nonzero left (Jg, ideal. Therefore ¢,, is in M, and the theorem is finished.
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