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The Boussinesq approximation to the Fourier–Navier–Stokes
(F–N–S) flows under the electromagnetic field is considered. Such
a model is the so-called Maxwell–Boussinesq approximation. We pro-
pose a new approach to the problem. We prove the existence and
uniqueness of weak solutions to the variational formulation of the
model. Some further regularity in W 1,2+δ , δ > 0, is obtained for
the weak solutions. The shape sensitivity analysis by the bound-
ary variations technique is performed for the weak solutions. As
a result, the existence of the strong material derivatives for the
weak solutions of the problem is shown. The result can be used
to establish the shape differentiability for a broad class of shape
functionals for the models of Fourier–Navier–Stokes flows under
the electromagnetic field.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The magnetohydrodynamic flows have been studied in [1,18,19] for differential operators with
constant coefficients. We would like also to mention the work of Duvaut and Lions [8], Sermange and
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Temam [25], Gerbeau and Le Bris [14,15] on the existence of solutions. However, the temperature
dependent parameters seem to be more realistic in diverse situations. In what follows we deal with
the existence and uniqueness of weak solutions to the thermoelectromagnetic flow (Fourier–Maxwell–
Navier–Stokes) model with viscosity, as well as with electric and thermal conductivities and magnetic
permeability dependent not only on the temperature but also on the space variables. The present
model is provided for all magnetic fields H ∈ H1(Ω) such that ∇ · H = 0 in Ω and H · n = 0 on ∂Ω.

A different approach of the complete F–N–S system coupled with Maxwell equations can be found
in [4], where the shape sensitivity is analyzed under the assumption that the velocity field of the
perturbation of the domain is divergence free.

The shape derivatives of shape functionals governed by Navier–Stokes flow are investigated by
Boisgérault and Zolésio [2] in the framework of the speed method. The expression for the Navier–
Stokes equation transported to the fixed domain is given provided that the domain deformation
for the purposes of shape sensitivity analysis is induced by a smooth vector field. Under regular-
ity assumptions on the initial data and the forcing terms, and under a uniqueness assumption for
the solution of a linearized version of the Navier–Stokes equation, the implicit function theorem is
used to prove a regularity result for the solutions the Navier–Stokes equation transported to the fixed
domain. The latter result is extended to the case of nonhomogeneous boundary conditions and shape-
dependent forces in [3]. The shape sensitivity analysis of the Navier–Stokes system is investigated by
Dziri, Moubachir and Zolésio [11] with respect to the dynamical deformations of the fluid domain
boundary. The shape differentiability for the heat-conduction equation is considered in a work of Dziri
and Zolésio [9]. The existence of shapes for the Navier–Stokes flow with heat convection is studied by
Dziri and Zolésio [10]. The shape differentiability of solutions for compressible perturbations of Stokes
problem is performed in [24] in the framework of local theory. The shape gradients are recovered by
means of singular limits of the expressions obtained for the material derivatives, cf. [23].

In the present paper, the coefficients are assumed to be bounded and continuous, and there are
no restrictions imposed on the derivatives of coefficients. The presented here model can also include
the parameter dependent magnetic field if some boundedness and continuity properties of the model
coefficients are still available. However, for the simplicity of the presentation we avoid such depen-
dence.

The uniqueness of solutions is established under the smallness assumption on the data, related to
the coefficients characterizing the viscous stress (the kinematic viscosity), the induced electric current
(the electric conductivity) and the heat flux (the thermal conductivity). In the present setting some
assumptions in the form of Lipschitz-type conditions on the parameters are also required. The shape
analysis concerns the system with nonconstant coefficients as functions only on the temperature then
the final elliptic system characterizing the strong material derivatives is provided if the additional
C1-assumption on the coefficients is taken into account.

The outline of this work is as follows. In Section 2 the thermoelectromagnetoflow is formulated as
a Maxwell–Boussinesq approximation. In Section 3 we state the functional framework and the main
existence, regularity and uniqueness results. Section 4 is devoted to some auxiliary existence results
that will be needed in the proofs to the main theorems (Sections 5 and 6). In Section 7 we state
some useful results in order to analyze the shape sensitivity. We deal with the shape sensitivity of
the problem in Section 8. Applying the speed method introduced in the monograph by Sokolowski
and Zolésio the problem of nonconservation of solenoidality appears. To overcome this difficulty we
can use the test functions, which are not divergence free and to handle the estimate for pressure we
apply the Bogovskii operator. We have to show that Bogovskii operator is independent of the shape
perturbations parameter τ which governs small variations of the boundary ∂Ω . Another possibility is
to use the domain transformations built by the divergence free vector fields V of the speed method,
or to apply the Piola transform to recover the solenoidal vector fields.

2. Thermoelectromagnetoflow model

Let Ω be an open bounded subset of R
3 with the boundary ∂Ω of class C1,1 which is split into

two parts ∂Ω = Γ D ∪ Γ N , where ΓD is an open nonempty subset of ∂Ω and ΓN = ∂Ω \ Γ D . The
electromagnetic field is described by the Maxwell equations:
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∂B

∂t
+ ∇ × E = 0; (1)

∇ · B = 0; (2)

∂D

∂t
+ J = ∇ × H; (3)

∇ · D = ρ, (4)

where E and H are the electric and magnetic intensity fields, D and B are the electric and magnetic
induction fields and J is the current density. The constitutive laws are

D = εE, B = μH,

where ε is the permittivity and μ is the magnetic permeability. The Ohm law reads

J = J0 + σ(E + u × B),

where J0 denotes a given applied current, σ is the electric conductivity and u is the fluid velocity
vector.

It is known that:

• by (2) there is A such that B = ∇ × A;
• introducing A in (1), we obtain ∇ × ( ∂A

∂t + E) = 0;
• hence, there exists the potential φ, such that ∂A

∂t + E = −∇φ.

For the steady-state case, the latter equation is reduced to the well-known relation E = −∇φ.
The following coupled system of equations derived from the motion and energy equations models

the steady-state motion of F–N–S fluids in Ω:

−∇ · (ν(T )Du
) + (u · ∇)u + ∇p = μ(T ) rot H × H + f − G(T )T ; (5)

div u =
3∑

i=1

∂ui

∂xi
= 0; (6)

−∇ · (k(T )∇T
) + u · ∇T = f ; (7)

where T is the temperature, Du = (Dij) = (∂iu j + ∂ jui)/2 (i, j = 1,2,3) is the symmetrized gradient
of the velocity, ν is the viscosity, p denotes the pressure, k is the thermal conductivity, f and f denote
the external forces and heat sources, respectively. The buoyancy force as in the Boussinesq approxi-
mation is described by G(T ) = β(T )(0,0, g)� , where β denotes the coefficient of thermal dilatation
and g is the constant of gravity. The mass density is assumed to be constant, we set ρ = 1. The ex-
istence of two body forces in the fluid, the Lorentz force J × B = (∇ × H) × (μH) and the buoyancy
force, results from the presence of the magnetic field.

The thermoelectromagnetoflow problem under study has the following boundary conditions

u = g on ∂Ω, (8)

T = 0 on ΓD , k(T )
∂T

∂n
+ αT = h on ΓN , (9)

H · n = 0, E × n = 0 on ∂Ω, (10)
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where α represents the convective heat transfer coefficient. To simplify the presentation it is assumed
that g = 0. Indeed, under a convenient choice of a lift the general case is recovered.

For the steady-state, taking the divergence of Eq. (3) leads to

∇ · (σ(T )E
) = −∇ · (J0 + σ(T )μ(T )u × H

)
.

Let us consider the electric field E = −∇φ and the mixed boundary value problem for the potential φ

of the form

−∇ · (σ(T )∇φ
) = −∇ · (J0 + σ(T )μ(T )u × H

)
in Ω, (11)

φ = 0 on ΓD and
∂φ

∂n
= 0 on ΓN . (12)

3. Assumptions and main existence results

We need some assumptions on the model, which are listed below.
Let us assume that

(H1) ν,μ,σ ,k : Ω × R → R are Caratheodory functions such that

∃ν#, ν# > 0 : ν# � ν(·, ξ) � ν#, a.e. in Ω, ∀ξ ∈ R; (13)

∃μ#,μ# > 0 : μ# � μ(·, ξ) � μ#, a.e. in Ω, ∀ξ ∈ R; (14)

∃σ #,σ# > 0 : σ# � σ(·, ξ) � σ #, a.e. in Ω, ∀ξ ∈ R; (15)

∃k#,k# > 0 : k# � k(·, ξ) � k#, a.e. in Ω, ∀ξ ∈ R; (16)

(H2) G = (0,0, βT g) where βT is a real, continuous, and bounded function and g is a constant, we
denote G# = gβ#, where β# denotes the upper bound for the function βT ;

(H3) α ∈ L2+(ΓN ) = {α ∈ L2(ΓN ): α � 0};
(H4) And

f ∈ L2(Ω), J0 ∈ L2(Ω), f ∈ L2(Ω) and h ∈ L2(ΓN). (17)

(H5) In the variable domain setting (see Section 7), the function βT is given by the restriction to Ωτ

of a given H1-function defined in R
3.

(H6) In the variable domain setting, the elements

fτ ∈ L2(Ωτ ), Jτ0 ∈ L2(Ωτ ), f τ ∈ L2(Ωτ ) and hτ ∈ L2(Γ τ
N

)
,

stand for the data in boundary value problems in Ωτ , are simply given by restrictions to Ωτ of
some functions

f ∈ H1(
R

3), J0 ∈ H1(
R

3), f ∈ H1(
R

3) and h ∈ H1(
R

3), (18)

defined in all space. In this way the shape derivatives of all the data vanish, except for h, and
the material derivatives are just given by the scalar products of the gradients of the data with
respect to spatial variables with the velocity vector field, e.g., ḟ = ∇ f · V , provided that all data
are given in the Sobolev spaces H1(R3).
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In the framework of function spaces of the Lebesgue and Sobolev type, the norms are denoted
by the symbols ‖ · ‖,‖ · ‖1,‖ · ‖ΓN in spaces L2(Ω), H1(Ω), L2(ΓN ), respectively, and there scalar and
vector function spaces are not distinguished in our notations. Providing that the meaning remains
clear, the canonical norm in L p(Ω) for p �= 1,2 is denoted by ‖ · ‖p . We introduce the Hilbert spaces

V = {
v ∈ H1

0(Ω): div v = 0 in Ω
}
,

Z = {
ξ ∈ H1(Ω): ξ = 0 on ΓD

}
,

equipped with their standard scalar products. We recall that the norm ‖ · ‖Z is equivalent to the usual
seminorm ‖∇ · ‖ and also to the norm ‖ · ‖1 on space H1(Ω).

We state the main results of the paper considering a free magnetic field.

Theorem 3.1. Under the above assumptions (H1)–(H4), the problem (5)–(9), (11)–(12) has a weak solution in
the following sense:

For every magnetic field H ∈ H1(Ω) such that ∇ · H = 0 in Ω and H · n = 0 on ∂Ω , there is the triplet
(u, φ, T ) ∈ V × Z 2 which satisfies the following integral identities

∫
Ω

ν(T )Du : Dv dx +
∫
Ω

(v ⊗ u) : ∇u dx

=
∫
Ω

(
μ(T )(∇ × H) × H + f − G(T )T

) · v dx, ∀v ∈ V; (19)

∫
Ω

σ(T )∇φ · ∇ψ dx =
∫
Ω

(
J0 − σ(T )μ(T )H × u

) · ∇ψ dx, ∀ψ ∈ Z; (20)

∫
Ω

k(T )∇T · ∇ηdx +
∫
Ω

u · ∇Tηdx +
∫
ΓN

αTηds

=
∫
Ω

f ηdx +
∫
ΓN

hηds, ∀η ∈ Z . (21)

Theorem 3.2. Assume that f ∈ L2+δ1 (Ω) and H ∈ W1,2+δ1(Ω), where δ1 > 2/5, then the weak solution
obtained by Theorem 3.1 enjoys the additional regularity, actually (u, φ, T ) ∈ W1,2+δ(Ω) × W 1,2+ε(Ω) ×
W 1,2+ε(Ω) for some δ, ε , ε > 0. Furthermore, under the following Lipschitz-type continuity assumptions on
the temperature dependent function parameters of the model

∃ν > 0 : ∣∣ν(
T 2) − ν

(
T 1)∣∣ � ν

∣∣T 2 − T 1
∣∣3δ/(2+δ)

, (22)

∃μ > 0 : ∣∣μ(
T 2) − μ

(
T 1)∣∣ � μ

∣∣T 2 − T 1
∣∣, (23)

∃β > 0 : ∣∣β(
T 2) − β

(
T 1)∣∣ � β

∣∣T 2 − T 1
∣∣, G = gβ, (24)

∃σ > 0 : ∣∣σ (
T 2) − σ

(
T 1)∣∣ � σ

∣∣T 2 − T 1
∣∣3ε/(2+ε)

, (25)

∃k > 0 : ∣∣k(
T 2) − k

(
T 1)∣∣ � k

∣∣T 2 − T 1
∣∣3ε/(2+ε)

, ∀T 2, T 1 ∈ R, (26)

the weak solution is unique for small data.
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The existence of the pressure p in the space of distributions follows from the well-known results
by using the divergence-free test functions v ∈ C∞

0 (Ω) in (19). Moreover, the pressure is unique up to
a constant.

Finally, we recall the Tychonoff extension to weak topologies of the Schauder fixed point theo-
rem [7, pp. 453–456 and 470].

Theorem 3.3. Let K be a nonempty weakly sequentially compact convex subset of a locally convex linear
topological vector space V . Let L : K → K be a weakly sequentially continuous operator. Then L has at least
one fixed point.

4. Auxiliary results

In this section it is assumed that there are given elements w, ξ with the following properties. The
vector function w ∈ L4(Ω) is the solenoidal function, i.e., div w = 0 in the sense of the distributions,
and w · n = 0 on ∂Ω , furthermore ξ ∈ L1(Ω).

In order to apply the fixed point argument (cf. Theorem 3.3), let us introduce the nonlinear map-
ping

L : (w, ξ) �→ (u, T ), (27)

where T and u will be solutions to the variational problems (28) and (30), respectively. Note that
the potential φ can be determined provided that the pair (u, T ) is given. The existence of solutions
for the following elliptic boundary value problems is the straightforward application of the classical
existence theory, hence their proofs are omitted here.

Proposition 4.1. Assume that conditions (16), (H3) and (17) are fulfilled. Then there exists a unique T ∈ Z
such that ∫

Ω

k(ξ)∇T · ∇ηdx +
∫
Ω

w · ∇Tηdx +
∫
ΓN

αTηds

=
∫
Ω

f ηdx +
∫
ΓN

hηds, ∀η ∈ Z . (28)

Moreover, the energy estimate holds

k#‖T ‖1 � ‖ f ‖ + ‖h‖ΓN . (29)

Proposition 4.2. Assume that conditions (13), (H2) and (17) are fulfilled. Then there exists a unique u ∈ V
such that ∫

Ω

ν(ξ)Du : Dv dx +
∫
Ω

(v ⊗ w) : ∇u dx

=
∫
Ω

(
μ(ξ)(∇ × H) × H + f − G(T )T

) · v dx, ∀v ∈ V. (30)

Moreover, the energy estimate holds

ν#‖u‖1 � μ#‖∇ × H‖‖H‖L3 + ‖f‖ + G#‖T ‖L6/5 . (31)
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Proposition 4.3. Assume that conditions (14)–(15) and (17) are fulfilled. Then there exists a unique φ ∈ Z
satisfying (20). Moreover, the energy estimate holds

σ#‖φ‖1 � ‖J0‖ + μ#σ #‖H × u‖. (32)

We point out that in order to prove Theorem 3.1 by the fixed point argument, it suffices to estab-
lish the continuity result for the mapping L.

Lemma 4.4 (Weak continuity of L). Let {(wm, ξm)} be a sequence such that wm → w in L4(Ω) and ξm → ξ

in L1(Ω). Let {(um, Tm)} be the corresponding sequence of weak solutions given by Propositions 4.1 and 4.2.
Then there exists the weak solution (u, T ) for the limit functions (w, ξ) such that

um ⇀ u in V; Tm ⇀ T in Z .

Proof. Take wm → w in L4(Ω) and ξm → ξ in L1(Ω) and denote by (um, Tm) the corresponding
solutions to the integral identities (30) and (28), for m ∈ N. From the estimates (31) and (29), the
sequence (um, Tm) is bounded in V × Z , which implies the existence of a limit, (u, T ) ∈ V × Z such
that the weak convergence holds, possibly for a subsequence, still denoted by (um, Tm). In order to
show that the limit (u, T ) is a solution of the required problem (30) and (28), we pass to the limit
as m → +∞ in the integral identities (30) and (28), simply replacing w, ξ,u and T by the sequences
wm, ξm,um and Tm , respectively. Indeed, the passage to the limit can be justified due to the continuity
properties of the Nemytskii operators in the coefficients combined with the standard arguments. �
5. Proof of Theorem 3.1

Let L be the mapping defined by (27). In view of Propositions 4.1 and 4.2, the associated operator
L is well defined. Lemma 4.4 yields its weak continuity, since we have the compact embeddings

V ↪→↪→ {
w ∈ L4(Ω): ∇ · w = 0 in Ω, w · n = 0 on ∂Ω

}
,

Z ↪→↪→ L1(Ω).

Finally, L maps the ball K = {(w, ξ) ∈ V × Z : ‖w‖1 +‖ξ‖1 � R} into itself, and taking into account
(29) and (31) we set

R := 1

ν#

(
μ#‖∇ × H‖‖H‖L3 + ‖f‖) +

(
G#

ν#
+ 1

)
1

k#

(‖ f ‖ + ‖h‖ΓN

)
.

Therefore, Theorem 3.3 can be applied to the mapping L and in this way the existence of a weak
solution (u, T ) is established. Then, the complete solution is obtained in view of Proposition 4.3.

6. Proof of Theorem 3.2

For weak solutions, the property (u, φ, T ) ∈ W1,2+δ(Ω) × W 1,2+ε(Ω) × W 1,2+ε(Ω), for some δ, ε ,
ε > 0, is a consequence of the following regularity results.

Proposition 6.1. Assume that f ∈ L2+δ1 (Ω) and H ∈ W1,2+δ1 (Ω), for some δ1 > 2/5, then there exists a
constant δ > 0 such that the weak solution u ∈ V of (19) belongs to W1,2+δ(Ω), i.e.

‖∇u‖2+δ � K1,

with a constant K1 > 0 only dependent on the data.
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Proof. For every x0 ∈ Ω, 0 < r < R small enough, Ω(x0, R) := Ω ∩ B(x0, R), θ ∈ ]0,1[ and some
positive constants B1, B2, independent of u and T , we have the following reverse estimate (cf. [5,
Lemma 3.2])

( ∫
Ω(x0,r)

|∇u|2 dx

)1/2

� θ

( ∫
Ω(x0,R)

|∇u|2 dx

)1/2

+ B1

R − r

( ∫
Ω(x0,R)

|∇u|6/5 dx

)5/6

+ B2

R − r

( ∫
Ω(x0,R)

(|u ⊗ u|2 + |F|2 + 1
)

dx

)1/2

.

By the Sobolev embedding W1,2+δ1 (Ω) ↪→ L3(2+δ1)/(1−δ1)(Ω) it follows that rot H × H ∈
L3(2+δ1)/(4−δ1)(Ω). In view of 3(2 + δ1)/(4 − δ1) = 2 + � , where � > 0 since δ1 > 2/5, we get
F = f + μ(T ) rot H × H − G(T )T ∈ L2+�(Ω). Since u ⊗ u ∈ L3(Ω) then the Gehring inequality [13]
guarantees the higher integrability u ∈ W1,2+δ(Ω) for some 0 < δ < � < 1. �

For the regularity of the potential φ and the temperature T it will be sufficient to state the follow-
ing simplified version of the general result on the higher regularity for weak solutions to the mixed
boundary value problems (cf. [16, Theorem 1]).

Theorem 6.2. Let Ω be a bounded domain of class C1 and u ∈ Z be a solution to the second-order elliptic
differential equation Au = F ∈ Z ′ , and satisfy natural boundary conditions on ∂Ω \ Γ D . Set A : Z → Z ′ the
operator such that Au = −∇ · (a(·, u)∇u) where a : Ω × R → R is a Caratheodory function such that there
exist constants a# > a# > 0

a# � a(·, ξ) � a#, a.e. in Ω, ∀ξ ∈ R. (33)

Then A maps Z p = {v ∈ W 1,p(Ω): v = 0 on ΓD} onto Z ′
p for some p > 2.

Thus we can prove the following two results.

Proposition 6.3. If J0 ∈ L2(Ω) then there exists a constant ε > 0 such that the weak solution φ ∈ Z of (20)
belongs to W 1,2+ε(Ω), i.e.

‖∇φ‖2+ε � K2,

with a constant K2 > 0 only dependent on the data.

Proof. In order to apply Theorem 6.2, let u = φ be a weak solution verifying (20) and denote the
operator A by

〈Aφ,ψ〉 =
∫
Ω

σ(T )∇φ · ∇ψ dx.

The boundedness property (33) is fulfilled, considering that the assumption on σ (15) holds under
T ∈ L1(Ω). Since
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F = −∇ · (J0 − σ(T )μ(T )H × u
) ∈ Z ′ ↪→ Z ′

p, ∀p � 2,

then Theorem 6.2 guarantees that φ ∈ W 1,2+ε(Ω) for some ε > 0. �
Proposition 6.4. If f ∈ L2(Ω) and h ∈ L2(ΓN) then there exists a constant ε > 0 such that the weak solution
T ∈ Z of (21) belongs to W 1,2+ε(Ω), i.e.

‖∇T ‖2+ε � K3,

with a constant K3 > 0 only dependent on the data.

Proof. In order to apply Theorem 6.2, let u = T be a weak solution verifying (21) and denote the
operator A by

〈AT , η〉 =
∫
Ω

k(T )∇T · ∇ηdx.

The boundedness property (33) is fulfilled, considering that the assumption on k (16) holds. Since
u ∈ V, T ∈ H1(Ω) and (H3) holds, we have f − u · ∇T ,h − αT ∈ Z ′ ↪→ Z ′

p, for all p � 2, then Theo-

rem 6.2 guarantees that T ∈ W 1,2+ε(Ω) for some ε > 0. �
To show the uniqueness let us assume that (u1, φ1, T 1) and (u2, φ2, T 2) are two weak solutions

to problem (19)–(21). Thus, the differences u = u1 − u2, φ = φ1 − φ2 and T = T 1 − T 2 satisfy

∫
Ω

ν
(
T 1)|Du|2 dx =

∫
Ω

(
ν
(
T 2) − ν

(
T 1))Du2 : Du dx −

∫
Ω

(u ⊗ u) : ∇u2 dx

+
∫
Ω

(
μ

(
T 1) − μ

(
T 2))(∇ × H) × H · u dx −

∫
Ω

(
G
(
T 1)T 1 − G

(
T 2)T 2) · u dx;

∫
Ω

σ
(
T 1)|∇φ|2 dx =

∫
Ω

(
σ

(
T 2) − σ

(
T 1))∇φ2 · ∇φ dx

+
∫
Ω

(
μ

(
T 2)σ (

T 2)H × u2 − μ
(
T 1)σ (

T 1)H × u1) · ∇φ dx;

∫
Ω

k
(
T 1)|∇T |2 dx +

∫
ΓN

α|T |2 ds =
∫
Ω

(
k
(
T 2) − k

(
T 1))∇T 2 · ∇T dx

−
∫
Ω

u · ∇T 2T dx.

Using the assumptions (H3), (13)–(16), and applying Hölder and Young inequalities leads to

ν#

2
‖Du‖2 � 1

ν#

∥∥(
ν
(
T 2) − ν

(
T 1))Du2

∥∥2 + ∥∥|u|2∥∥∥∥∇u2
∥∥

+ C1 (∥∥(
μ

(
T 1) − μ

(
T 2))(∇ × H) × H

∥∥
6/5 + ∥∥G

(
T 1)T 1 − G

(
T 2)T 2

∥∥
6/5

)2
,

ν#
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σ#

2
‖∇φ‖2 � 1

σ#

∥∥(
σ

(
T 2) − σ

(
T 1))∇φ2

∥∥2

+ C1

σ#

∥∥μ(
T 2)σ (

T 2)H × u2 − μ
(
T 1)σ (

T 1)H × u1
∥∥2

,

k#

2
‖∇T ‖2 � 1

k#

∥∥(
k
(
T 2) − k

(
T 1))∇T 2

∥∥2 + C1

k#

∥∥u · ∇T 2
∥∥2

6/5,

where C1 is the Sobolev constant of the embedding H1(Ω) ↪→ L6(Ω). Furthermore, using this time
the Lipschitz continuity assumptions (22)–(26), and applying Hölder and Young inequalities result in

ν#

2
‖Du‖2 � ν

ν#
‖T ‖6δ/(2+δ)

6

∥∥Du2
∥∥2

2+δ
+ C2

2‖Du‖2
∥∥∇u2

∥∥
+ C1

ν#

(
μ‖T ‖6

∥∥(∇ × H) × H
∥∥

3/2 + G#‖T ‖6/5 + G‖T ‖6
∥∥T 2

∥∥
3/2

)2; (34)

σ#

2
‖∇φ‖2 � σ

σ#
‖T ‖6ε/(2+ε)

6

∥∥∇φ2
∥∥2

2+ε
+ C1

σ#

(
μ#σ #‖H‖4‖u‖4

+ μ#σ‖T ‖3ε/(2+ε)

6 ‖H‖2(2+ε)/(4−ε)

∥∥u2
∥∥

6 + μσ #‖T ‖6‖H‖6
∥∥u2

∥∥
6

)2; (35)

k#

2
‖∇T ‖2 � k

k#
‖T ‖6ε/(2+ε)

6

∥∥∇T 2
∥∥2

2+ε
+ C1

k#
‖u‖2

6

∥∥∇T 2
∥∥2

3/2, (36)

where C2 is the Sobolev constant of the embedding H1(Ω) ↪→ L4(Ω). In the sequel C stands for
different Sobolev constants. Let K1, K2 and K3 be the upper bounds derived in Propositions 6.1, 6.3
and 6.4, respectively, and K4 and K5 be the upper bounds in estimates (29) and (31), namely,

K5 = 1

ν#

(
μ#‖∇ × H‖‖H‖1 + ‖f‖ + G# K4

)
, K4 = 1

k#

(‖ f ‖ + ‖h‖ΓN

)
.

Now, summing up (34)–(36) we get

(
ν#

2
− C2 K5 − Cμ#σ #

σ#
‖H‖2

1 − C

k#
K 2

4

)
‖Du‖2 + σ#

2
‖∇φ‖2

+
(

k#

2
− Cν

ν#
K 2

1 − C

ν#

(
μ

∥∥(∇ × H) × H
∥∥

3/2 + G# + G K4
)2

− C

σ#

(
σ K 2

2 + (
μ#σ + μσ #)‖H‖2

1 K 2
5

) − Ck

k#
K 2

3

)
‖∇T ‖2 � 0,

and the uniqueness holds for small data. Note that the uniqueness of the potential φ ∈ Z is obtained
without any smallness assumption on the data.

7. Shape sensitivity preliminaries

We apply the framework established in [26] to the shape sensitivity analysis. A slightly different
approach to the stationary compressible flows is proposed in [22,24] (see also [6,20,21]). The main
outcome from the approach is the direct evaluation of the shape gradients by means of the appro-
priate singular limits of volume integrals. It seems that the approach is the only possibility to derive
the shape derivatives of solutions and of the functionals for the nonlinear boundary value problems
in fluid and gas flows.
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To investigate the sensitivity of solutions to the Boussinesq approximation (5)–(9) under the free
magnetic field problem (11)–(12) with respect to perturbations of the shape we use the speed method
developed, among others, by Sokolowski and Zolésio, all details can be found in [26]. We derive
the strong material derivatives for weak solutions of the model under study. Such shape sensitivity
results can be used, in particular, to obtain the form of the shape gradients for a broad class of shape
functionals governed by the Maxwell–Navier–Stokes model investigated in the paper.

The speed method is briefly described with our applications in mind. First, a family of mappings
Tτ : R

3 → R
3 associated with a given velocity field V (τ , x) is constructed. We define the family of

perturbations of a given initial configuration Ω by Ωτ = Tτ (Ω), each specific family parametrized
by τ is defined in the direction of a given vector field V . The evolution of geometrical domains, if the
vector field V is chosen, is governed by the real parameter τ , and the so-called variable domain Ωτ =
Tτ (Ω) depends on two parameters, a vector field V and the real variable τ , therefore, the variable τ
has the meaning of the time in our setting. The field V is compactly supported with respect to the
spatial variable x, i.e.,

V ∈ C
(−τ1, τ1; D2(Ω;R

3)), supp V ⊂ Ω,

for some positive constant τ1. The mapping is given by the system of differential equations

d

dτ
x(τ ) = V

(
τ , x(τ )

)
, x(0) = X, (37)

with the solution denoted by x(τ ) = x(τ , X), τ ∈ (−τ1, τ1), X ∈ R
3. Then the variable domains are

defined by the images of the mapping, and denoted by Ωτ = {x ∈ R
3 | x = x(τ , X), X ∈ Ω}.

In order to measure how the weak solutions depends on the geometrical domain, it is convenient
to define our model in the variable domain setting. However, the direct shape sensitivity analysis in
the variable domain setting, which results in the so-called shape derivatives, is usually difficult to
justify and requires some additional regularity of the weak solutions to the boundary value prob-
lem under study. Therefore, the shape differentiability is shown in the fixed domain setting, the
domain perturbations are transformed into the variable coefficients of the integral variational formu-
lations of the equations in question. In our setting all equations defined in variable domain Ωτ can
be transported to the reference domain which is also called the fixed domain Ω , using the inverse
transformation T −1

τ : Ωτ → Ω .

7.1. Properties of the mapping Tτ

We consider the general case of the domain transformations Tτ , for τ ∈ R. Let D be a domain
in R

N with the boundary ∂ D piecewise Ck for a given integer k � 0. Let Tτ be a one-to-one mapping
from D onto Tτ (D) such that

(A1) Tτ and T −1
τ belong to Ck(D) = Ck(D;R

N ) and Ck(Tτ (D)), respectively;
(A2) τ �→ Tτ (X), τ �→ T −1

τ (x) ∈ C(−τ1, τ1), ∀X ∈ D , x ∈ Tτ (D).

Thus (τ , X) �→ Tτ (X) ∈ C(−τ1, τ1;Ck(D)). For any X ∈ D , the point x(τ ) = Tτ (X) moves along the
trajectory x(·) with the velocity

d

dτ
x(τ ) = ∂

∂τ
Tτ (X). (38)

It is obvious that V (τ , x) takes the form

V (τ , x) =
(

∂

∂τ
Tτ

)
◦ T −1

τ (x). (39)
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Theorem 7.1 below fully characterizes the families of domains transformations and by the Nagumo
Theorem the transformations leave invariant, by construction, the hold-all-domain D . Such a construc-
tion serves for the investigations of shape differentiability of solutions to boundary value problems
as well as of the shape functionals. In particular, by the constructions, all admissible domains for a
specific problem of shape optimization are included in the sufficiently large hold-all-domain D .

By (38) and (39), the vector field V (τ ) defined as V (τ )(x) = V (τ , x) satisfies the relation

V ∈ C
(−τ1, τ1; Ck(D;R

N))
. (40)

If V is a vector field such that (40) holds, then the transformation Tτ , depending on V , and such that
conditions (38), (39) are satisfied, is defined by (37).

Theorem 7.1. Let D be a bounded domain in R
N with the piecewise smooth boundary ∂ D, and V ∈

C(−τ1, τ1; Ck(D;R
N )) be a given vector field which satisfies

V (τ , x) · n(x) = 0 for a.e. x ∈ ∂ D, (41)

and we set

V (τ , x) = 0 if n = n(x) is not defined as a singular point x ∈ ∂ D. (42)

Then there exists an interval I ⊂ (−τ1, τ1), 0 ∈ I , and the one-to-one transformation Tτ (V ) : R
N → R

N such
that Tτ (V ) maps D onto Tτ (V )(D). Furthermore Tτ (V ) satisfies the conditions (38), (39). In particular the
vector field V can be written in the form

V = ∂τ Tτ (V ) ◦ Tτ (V )−1. (43)

On the other hand, if Tτ = Tτ (V ) is a transformation of D, Tτ satisfies (38), (39) and Ṽ is defined by the
formula

Ṽ = ∂τ Tτ ◦ T −1
τ , (44)

then (41) and (42) hold for Ṽ . Furthermore, Ṽ ∈ C(−τ1, τ1; Ck(D;R
N )) and the transformation Tτ (X) =

x(τ , X) is defined as the local solution to the system of ordinary differential equations (37), that is, Tτ =
Tτ (V ).

Remark 7.2. There exists an interval I = (−δ, δ), 0 < δ � τ1 and a one-to-one transformation Tτ (V )

for each τ ∈ I which satisfies all properties of Theorem 7.1.

For the strong differentiability of composed mapping, we refer the reader to [26]. We recall here
some results required in our framework of boundary variations technique for the shape sensitivity
analysis. If D is the hold-all-domain, it means that by the Nagumo Theorem the boundary ∂ D is
invariant under the flow of admissible vector fields which satisfy conditions (41), (42). Given function
defined on D , or on R

3, we can obtain the explicit form of the material and shape derivatives of the
function in the direction of an admissible vector field V .

Proposition 7.3. Let f ∈ H1(D), V ∈ C(−τ1, τ1; Dk(RN+;R
N )), k � 1 is a given vector field such that condi-

tions (41), (42) are satisfied, then the mapping τ �→ f ◦ Tτ is strongly differentiable in the space L2(D), and
its derivative is ∇ f · V .
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For the proof see [26]. We recall here, that the above result is in fact equivalent to the shape
differentiability of the integral shape functional J (Ωτ ) = ∫

Ωτ
f (x)dx, where Ωτ ⊂ D for τ ∈ (−δ, δ).

It is clear, that the results established in our paper lead to the shape differentiability for a class of
shape functionals, however this subject is not developed here, we restrict ourselves to the strong
shape differentiability of solutions to the boundary value problems.

Very important is also the property of a weak differentiability of Tτ with respect to τ . We address
the question, if for a given domain D ⊂ R

N and a given function f in L2 the composed mapping
τ �→ f ◦ Tτ is strongly differentiable in H−1(D). The answer is negative, for a counterexample see [26],
however the differentiability in the weak topology of the space H−1(D) can be shown.

Proposition 7.4. Let f ∈ L2(D), V ∈ C(−τ1, τ1; Dk(RN+;R
N )) be given, k � 1, then the mapping τ �→ f ◦ Tτ

is weakly differentiable in the space H−1(D).

For the proof see [26].

Proposition 7.5. Let f ∈ L2(RN ), V ∈ C(−τ1, τ1; Dk(RN ;R
N )) be given, then the mapping τ → f ◦ Tτ is

strongly differentiable in the space H−2(RN ).

For the proof see [26].

7.2. Bogovskii operator

We need some elementary properties of the operator which defines, in an appropriate way, the in-
verse of the div differential operator, the so-called Bogovskii operator. Consider an auxiliary problem:

Given

g ∈ Lq(Ωτ ),

∫
Ωτ

g dxτ = 0, 1 < q < ∞, (45)

find a vector field v = Bτ [g] such that

v ∈ W1,q
0 (Ωτ ), div v = g a.a. in Ωτ and |v|1,q � c‖g‖q, (46)

where c = c(N,q,Ω).
We recall the following results and definition, for more details see Chapters II and III.3 in

Galdi [12].

Definition 7.6. The domain Ω is called star-shaped domain if there exist a point x ∈ Ω and a continu-
ous positive function h on the unit sphere such that

Ω =
{

x ∈ R
N : |x − x| < h

(
x − x

|x − x|
)}

.

Proposition 7.7. Let Ω be locally Lipschitzian. Then there exist m locally Lipschitzian domains G1, . . . , Gm

such that

(i) ∂Ω ⊂ ⋃m
i=1 Gi ;

(ii) the domains Ωi = Ω ∩ Gi , i = 1, . . . ,m are (locally Lipschitzian and) star-shaped with respect to every
point of a ball Bi with Bi ⊂ Ωi .
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Proposition 7.8. Let Ω ⊂ R
N , N � 2, be such that

Ω =
M⋃

k=1

Ωk, M � 1, (47)

where each Ωk is star-shaped domain with respect to some open ball Bk with Bk ⊂ Ωk, and let g ∈ Lq(Ω)

satisfy (45). Then, there exist M functions gk such that for all k = 1, . . . , M:

(i) gk ∈ Lq(Ω);
(ii) supp(gk) ⊂ Ωk;

(iii)
∫
Ωk

gk = 0;
(iv) ‖gk‖q � C‖g‖q, with

C =
(

1 + |Ωk|
|Ωk ∩ Dk|

) k−1∏
i=1

(
1 + |Fi|1/q−1|Di − Ωi|1−1/q), (48)

and where Di = ⋃M
s=i+1 Ωs and Fi = |Ωi ∩ Di |, i = 1, . . . , M − 1.

Theorem 7.9. Let Ω be a bounded domain of R
N , N � 2, such that (47) holds where each Ωk is star-shaped

with respect to some open ball Bk with Bk ⊂ Ωk. For instance Ω satisfies the cone condition. Then, given
f ∈ Lq(Ω) verifying

∫
Ω

f = 0, there exists at least one solution v to (46). Furthermore, the constant c entering
in inequality (46) admits the following estimate:

c � c0C

(
δ(Ω)

R0

)N(
1 + δ(Ω)

R0

)
, (49)

where R0 is the smallest radius of the balls Bk, c0 = c0(N,q), C is given as (48), and δ(Ω) is the diameter
of Ω ,

δ(Ω) = sup
x,y∈Ω

|x − y|.

Finally, if f is of compact support in Ω so is v.

Proposition 7.10. For each τ > 0 small enough there is a solution operator Bτ associated to problem (45)–
(46) such that

∥∥Bτ [g]∥∥
W1,q

0 (Ωτ )
� c(N,q, τ )‖g‖Lq(Ωτ ). (50)

Moreover, the norm of Bτ is independent of τ .

Proof. It is known that a domain Ω ⊂ R
N is Ck,1 if the boundary ∂Ω can be expressed as a graph of

a Ck,1 function

a : S ∩ R
N−1 × {0} → R

with an appropriate open set S ⊂ R
N and k ∈ N. We assume that Ω = ⋃M

i=1 Ωi and we know that
on every Ωi Bogovskii operator is valid. Now we transform from Ω to Ωτ and we know that this
transformation satisfies that (τ , X) �→ Tτ (X) ∈ C(−τ1, τ1;Ck(D)). It is known that if we introduce
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the transformation of R
N into itself then constant c in inequality (46) does not change in case of

homothetic transformation or rotation (see Galdi [12, Chapter III, Lemma 3.3.]). In our case it can be
seen that in our more general situation we can choose supremum over τ in δ(Ωτ ) to get independent
constant c on τ in the estimate for Bogovskii operator. �
8. Shape sensitivity analysis

We consider the model (5)–(9), (11)–(12), under the assumption that all coefficients ν , μ, k and σ
are continuous functions only on the temperature. We perform the shape sensitivity analysis of the
considered model (cf. Theorem 3.1).

8.1. Perturbed problem in variable domain

Definition 8.1. The following system of equations defined in Ωτ is called a perturbed problem to the
model (5)–(9), (11)–(12),

−∇ · (ν(
T τ

)
Duτ

) + (
uτ · ∇)

uτ + ∇pτ

= μ
(
T τ

)
rot Hτ × Hτ + fτ − G

(
T τ

)
T τ ; div uτ = 0; (51)

−∇ · (σ (
T τ

)∇φτ
) = −∇ · (Jτ0 + σ

(
T τ

)
μ

(
T τ

)
uτ × Hτ

); (52)

−∇ · (k
(
T τ

)∇T τ
) + uτ · ∇T τ = f τ , (53)

along with the boundary conditions:

uτ = 0 on ∂Ωτ ; (54)

T τ = φτ = 0 on Γ τ
D ; (55)

k
(
T τ

)∂T τ

∂nτ
+ ατ T τ = hτ and

∂φτ

∂nτ
= 0 on Γ τ

N . (56)

We introduce the Hilbert space

Zτ = {
ξ ∈ H1(Ωτ ): ξ = 0 on Γ τ

D

}
equipped with its standard inner product.

Theorem 8.2. Under the assumptions (H1)–(H6), the problem (51)–(56) has a weak solution in the following
sense:

For every magnetic field Hτ ∈ H1(Ωτ ) such that ∇ · Hτ = 0 in Ωτ and Hτ · nτ = 0 on ∂Ωτ , there exists
(uτ , φτ , T τ , pτ ) ∈ H1

0(Ωτ ) × (Zτ )2 × L2(Ωτ ) satisfying, for all vτ ∈ H1
0(Ωτ ) and ψτ ,ητ ∈ Zτ ,

∫
Ωτ

ν
(
T τ

)
Duτ : Dvτ dxτ +

∫
Ωτ

(
vτ ⊗ uτ

) : ∇uτ dxτ

=
∫

Ωτ

pτ ∇ · vτ dxτ +
∫

Ωτ

(
μ

(
T τ

)(∇ × Hτ
) × Hτ + fτ − G

(
T τ

)
T τ

) · vτ dxτ , (57)

∫
Ω

σ
(
T τ

)∇φτ · ∇ψτ dxτ =
∫

Ω

(
Jτ0 − σ

(
T τ

)
μ

(
T τ

)
Hτ × uτ

) · ∇ψτ dxτ , (58)
τ τ
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∫
Ωτ

k
(
T τ

)∇T τ · ∇ητ dxτ +
∫

Ωτ

uτ · ∇T τ ητ dxτ +
∫

Γ τ
N

ατ T τ ητ dsτ

=
∫

Ωτ

f τ ητ dxτ +
∫

Γ τ
N

hτ ητ dsτ . (59)

Proof. Only difference is in term with pressure. Indeed we can argue as in the proof of Theorem 3.1
and then apply the De Rham Theorem to obtain the existence of the pressure. To estimate the pressure
we use as a test function

vτ = Bτ

[
pτ − 1

|Ωτ |
∫

Ωτ

pτ dxτ

]

and we get

∥∥pτ
∥∥

2 � c. �
Theorem 8.3. Assume fτ ∈ L2+δ1 (Ωτ ) and Hτ ∈ W1,2+δ1 (Ωτ ), for some δ1 > 2/5, then the solution in ac-
cordance to Theorem 8.2 is for some δ, ε , ε > 0 such that (uτ , φτ , T τ ) ∈ W1,2+δ(Ωτ ) × W 1,2+ε(Ωτ ) ×
W 1,2+ε(Ωτ ) and it is unique under small data on (24).

Proof. See the proof of Theorem 3.2. �
8.2. Transported problem

The transported solution to the fixed domain is denoted by uτ = uτ ◦ Tτ , Hτ = Hτ ◦ Tτ , φτ =
φτ ◦ Tτ , Tτ = T τ ◦ Tτ with data fτ = fτ ◦ Tτ , Gτ = Gτ ◦ Tτ , J0τ = Jτ0 ◦ Tτ , ατ = ατ ◦ Tτ , fτ = f τ ◦ Tτ

and hτ = hτ ◦ Tτ .

Remark 8.4. The shape analysis for the Maxwell equations coupled with heat equation and an evo-
lution equation for the volume fraction of the high temperature phase in steel was investigated by
Hömberg and Sokolowski [17]. Here we deal with the more general situation: incompressible heat
conductive fluid with Maxwell equations.

We recall the following important results.

Proposition 8.5. Denote by J Tτ the Jacobian of Tτ and for any matrix B the transposed matrix is denoted
by ∗B. Then we have

(i) (grad w) ◦ Tτ = (∗ J T −1
τ ∇)(w ◦ Tτ ) for all w ∈ H1(Ω);

(ii) (div w) ◦ Tτ = ζ(τ )−1(ζ(τ ) J T −1
τ ∇) · (w ◦ Tτ ) for all w ∈ H1(Ω);

(iii) (curl w) ◦ Tτ = (∗ J T −1
τ ∇) × (w ◦ Tτ ) for all w ∈ H1(Ω).

Remark 8.6. From Proposition 8.5, it follows that functions which are divergence free on Ωτ gen-
erally loose this property when they are transported to the fixed domain. For more details see [17,
Remark 6.2].
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Proposition 8.7. (See [26, Proposition 2.47].) For any f ∈ L1(Γτ ),

∫
Γτ

f dsτ =
∫
Γ

f ◦ Tτ

∥∥M(Tτ ) · n
∥∥

R3 ds,

where M(Tτ ) = det( J Tτ )∗ J T −1
τ is the cofactor matrix of the Jacobian matrix J Tτ .

We introduce the following notations

ζ(τ ) = det( J Tτ ),

�(τ ) = ∗ J T −1
τ ,

A(τ ) = ζ(τ )∗�(τ )�(τ ),

B(τ ) = ζ(τ )�(τ ),

ω(τ ) = ∥∥M( J Tτ ) · n
∥∥

R3 ,

and we define the following forms

(F1) α0(τ ,u, T ,v) = ∫
Ω

ν(T )ζ(τ )(�(τ )Du) : (�(τ )Dv)dx = ∫
Ω

ν(T )A(τ ) : (DuDv)dx,

(F2) α1(τ ,u,v) = ∫
Ω

ζ(τ )(�(τ )∇u) : (v ⊗ u)dx = ∫
Ω

B(τ )∇u : (v ⊗ u)dx,

(F3) α2(τ ,H, T ,v) = ∫
Ω

μ(T )ζ(τ )(((�(τ )∇) × H) × H) · v dx,

(F4) α3(τ , f, T ,v) = ∫
Ω

ζ(τ )(f − G(T )T ) · v dx,

(F5) α4(τ , p,v) = ∫
Ω

ζ(τ )p(�(τ )∇) · v dx = ∫
Ω

pB(τ ) : ∇v dx,

(F6) β1(τ , T , φ,ψ) = ∫
Ω

σ(T )(�(τ )∇φ) · (�(τ )∇ψ)dx = ∫
Ω

σ(T )A(τ ) : (∇φ ⊗ ∇ψ)dx,

(F7) β2(τ , J0, T ,H,u,ψ) = ∫
Ω

B(τ ) : ((J0 − σ(T )μ(T )H × u) ⊗ ∇ψ)dx,

(F8) γ1(τ , T , η) = ∫
Ω

k(T )A(τ ) : (∇T ⊗ ∇η)dx,

(F9) γ2(τ ,u, T , η) = ∫
Ω

ζ(τ )u · (�(τ )∇)Tηdx = ∫
Ω

B(τ ) : (u ⊗ ∇T )ηdx,

(F10) γ3(τ ,α, T , η) = ∫
ΓN

αTηω(τ )ds,

(F11) γ4(τ , f , η) = ∫
Ω

f ηζ(τ )dx,

(F12) γ5(τ ,h, η) = ∫
ΓN

hηω(τ )ds.

In view of Propositions 8.5 and 8.7, the problem (57)–(59) in variable domains can be transported
to the fixed domain, and rewritten in the weak form as the following system of integral identities.

Definition 8.8. The following system of integral identities is called the transported problem to the
fixed domain

α0(τ ,uτ , Tτ ,v) + α1(τ ,uτ ,v) = α2(τ ,Hτ , Tτ ,v) + α3(τ , fτ , Tτ ,v) + α4(τ , pτ ,v),

β1(τ , Tτ ,φτ ,ψ) = β2(τ , J0τ , Tτ ,Hτ ,uτ ,ψ),

γ1(τ , Tτ ,η) + γ2(τ ,uτ , Tτ ,η) + γ3(τ ,ατ , Tτ ,η) = γ4(τ , fτ ,η) + γ5(τ ,hτ ,η),

for all v ∈ H1
0(Ω), ψ,η ∈ Z . Here
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Hτ · nτ = 0,(
div Hτ

) ◦ Tτ = 1

ζ(τ )
div

(
ζ(τ ) J T −1

τ Hτ

)
,

and

φτ = Tτ = 0 on ΓD and uτ = 0 on ∂Ω.

Remark 8.9. First, we prove the formula for the transport of the divergence operator (to be sure). We
have in the variable domain ∫

Ωτ

div vϕ dxτ = −
∫

Ωτ

v · ∇ϕ dxτ

then, the transport to the fixed domain leads to, denote ψ = ϕ ◦ Tτ ,∫
Ω

[
(div v) ◦ Tτ

]
ψζ(τ )dx = −

∫
Ω

[v ◦ Tτ ] · [(∇ϕ) ◦ Tτ

]
ζ(τ )dx

= −
∫
Ω

[v ◦ Tτ ] · (∗ J T −1
τ ∇ψ

)
ζ(τ )dx

which confirms the above formula.
For a given divergence free vector field vτ defined in the variable domain Ωτ it follows that the

transported divergence is given by the expression

(
div vτ

) ◦ Tτ = 1

ζ(τ )
div

(
ζ(τ ) J T −1

τ vτ

)
which shows the following equivalence for vτ = vτ ◦ Tτ

div vτ = 0 in Ω if and only if div
(
ζ(τ ) J T −1

τ vτ

) = 0 in Ωτ .

Therefore, if we introduce the new function vτ = ζ(τ ) J T −1
τ vτ defined in the fixed domain, then it

follows that

divvτ = div
(
ζ(τ ) J T −1

τ vτ

) = ζ(τ )
(
div vτ

) ◦ Tτ = 0

for the divergence free field vτ . In this way we have vτ = ζ−1(τ ) J Tτ vτ and vτ = ζ−1(τ ) J Tτ vτ .
Therefore, to keep divergence free the unknown velocity field we should replace in the transported
problem uτ by uτ = ζ−1(τ ) J Tτ uτ , and we have divuτ = 0 since div uτ = 0.

Lemma 8.10. Under our assumptions on the domain transformations the functions τ �→ ζ(τ ), A(τ ), B(τ ) are
differentiable at τ = 0. Furthermore, for |τ | � τ1 and τ1 small enough, the following Taylor expansions are
obtained

(i) ζ(τ ) = 1 + τζ ′(0) + o(τ ),

(ii) �(τ ) = I + τ�′(0) + O (τ ),

(iii) A(τ ) = I + τ A′(0) + O (τ ),
(iv) B(τ ) = I + τ B ′(0) + O (τ ),
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where the derivatives at τ = 0 are given by

(v) ζ ′(0) = div V (0),
(vi) �′(0) = −∗ J V (0),

(vii) A′(0) = div V (0)I − 2D(V (0)),
(viii) B ′(0) = div V (0)I − ∗ J V (0).

As in Section 2, D(V (0)) denotes the symmetrized part of J V (0), i.e. D(V (0)) = 1
2 ( J V (0) + ∗ J V (0)).

For the proof see Sokolowski and Zolésio [26, Section 2.13].

Theorem 8.11. Suppose that the assumptions (H1)–(H6) are fulfilled. For every magnetic field Hτ ∈ H1(Ω)

such that ∇ · Hτ = 0 in Ω and Hτ · nτ = 0 on ∂Ω , there exists a weak solution (̃u, φ̃, T̃ , p̃) ∈ H1
0(Ω) × Z 2 ×

L2(Ω) to the transported problem in accordance to Definition 8.8.

Proof. The existence of a solution is consequence of Theorem 3.1. Only difference is in term with
pressure. To estimate the pressure we use as a test function

vτ = B
[

pτ − 1

|Ω|
∫
Ω

pτ dx

]

and we get

‖pτ ‖2 � c. �
Theorem 8.12. Assume fτ ∈ L2+δ1 (Ω) and Hτ ∈ W1,2+δ1 (Ω), for some δ1 > 2/5, then the solution in ac-
cordance to Theorem 8.11 belongs to W1,2+δ(Ω) × W 1,2+ε(Ω) × W 1,2+ε(Ω) for some δ, ε , ε > 0 and the
solution is unique under small data on (24), that is,

(̃u, φ̃, T̃ , p̃) = (uτ ,φτ , Tτ , pτ ).

Proof. See the proof of Theorem 3.2. �
Consequence of Lemma 8.10 is the following corollary.

Corollary 8.13. Let |τ | � τ1 and τ1 be small enough, then there exist realvalued functions gi satisfying gi(τ ) =
o(τ ), i = 0, . . . ,11 and forms α̃i(τ , . . .), i = 0,1,2,3,4 and β̃(τ , . . .), i = 1,2, and γ̃ (τ , . . .), i = 1, . . . ,5,
such that the following statements are valid.

(B1) For all u,v ∈ H1
0(Ω) and T ∈ L1(Ω),

α0(τ ,u, T ,v) = α0
(
0,u, T ,v

) + τα0,τ

(
0,u, T ,v

) + α̃0
(
τ ,u, T ,v

)
,

α0,τ

(
0,u, T ,v

) =
∫
Ω

ν(T )A′(0) : (DuDv)dx,

α̃0
(
τ ,u, T ,v

)
� g0(τ )ν#‖u‖1‖v‖1.
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(B2) For all u,v ∈ H1
0(Ω),

α1
(
τ ,u,v

) = α1
(
0,u,v

) + τα1,τ

(
0,u,v

) + α̃1
(
τ ,u,v

)
,

α1,τ

(
0,u,v

) =
∫
Ω

B ′(0)∇u : (v ⊗ u)dx,

α̃1
(
τ ,u,v

)
� g1(τ )‖u‖2

1‖v‖1.

(B3) For all H ∈ H1(Ω), T ∈ L1(Ω) and v ∈ H1
0(Ω),

α2
(
τ ,H, T ,v

) = α2
(
0,H, T ,v

) + τα2,τ

(
0,H, T ,v

) + α̃2
(
τ ,H, T ,v

)
,

α2,τ

(
0,H, T ,v

) =
∫
Ω

μ(T )
(
ζ ′(0)(∇ × H) × H

+ ((
�′(0)∇) × H

) × H
) · v dx,

α̃2
(
τ ,H, T ,v

)
� g2(τ )μ#‖∇ × H‖‖H‖1‖v‖1.

(B4) For all f ∈ L2(Ω), T ∈ Z and v ∈ H1
0(Ω),

α3(τ , f, T ,v) = α3(0, f, T ,v) + τα3,τ (0, f, T ,v) + α̃3(τ , f, T ,v),

α3,τ (0, f, T ,v) =
∫
Ω

ζ ′(0)
(
f − G(T )T

) · v dx,

α̃3(τ , f, T ,v) � g3(τ )
(‖f‖ + G#‖T ‖)‖v‖.

(B5) For all p ∈ L2(Ω) and v ∈ H1
0(Ω),

α4(τ , p,v) = α4(0, p,v) + τα4,τ (0, p,v) + α̃4(τ , p,v),

α4,τ (0, p,v) =
∫
Ω

pB ′(0) : ∇v dx,

α̃4(τ , p,v) � g4(τ )‖p‖‖v‖1.

(B6) For all T ∈ L1(Ω) and φ,ψ ∈ Z ,

β1(τ , T , φ,ψ) = β1(0, T , φ,ψ) + τβ1,τ (0, T , φ,ψ) + β̃1(τ , T , φ,ψ),

β1,τ (0, T , φ,ψ) =
∫
Ω

σ(T )A′(0) : (∇φ ⊗ ∇ψ)dx,

β̃1(τ , T , φ,ψ) � g5(τ )σ #‖φ‖1‖ψ‖1.
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(B7) For all J0 ∈ L2(Ω), T ∈ L1(Ω), H ∈ H1(Ω), u ∈ H1
0(Ω) and ψ ∈ Z ,

β2(τ , J0, T ,H,u,ψ) = β2(0, J0, T ,H,u,ψ) + τβ2,τ (0, J0, T ,H,u,ψ)

+ β̃2(τ , J0, T ,H,u,ψ),

β2,τ (0, J0, T ,H,u,ψ) =
∫
Ω

B ′(0) : ((J0 − σ(T )μ(T )H × u
) ⊗ ∇ψ

)
dx,

β̃2(τ , J0, T ,H,u,ψ) � g6(τ )
(‖J0‖ + σ #μ#‖H‖1‖u‖1

)‖ψ‖1.

(B8) For all T , η ∈ Z ,

γ1(τ , T , η) = γ1(0, T , η) + τγ1,τ (0, T , η) + γ̃1(τ , T , η),

γ1,τ (0, T , η) =
∫
Ω

k(T )A′(0) : (∇T ⊗ ∇η)dx,

γ̃1(τ , T , η) � g7(τ )k#‖T ‖1‖η‖1.

(B9) For all u ∈ H1
0(Ω) and T , η ∈ Z ,

γ2(τ ,u, T , η) = γ2(0,u, T , η) + τγ2,τ (0,u, T , η) + γ̃2(τ ,u, T , η),

γ2,τ (0,u, T , η) =
∫
Ω

B ′(0) : (u ⊗ ∇T )ηdx,

γ̃2(τ ,u, T , η) � g8(τ )‖u‖1‖T ‖1‖η‖1.

(B10) For all α ∈ L2(ΓN ) and T , η ∈ Z ,

γ3(τ ,α, T , η) = γ3(0,α, T , η) + τγ3,τ (0,α, T , η) + γ̃3(τ ,α, T , η),

γ3,τ (0,α, T , η) =
∫
ΓN

αTηω′(0)ds,

γ̃3(τ ,α, T , η) � g9(τ )‖α‖ΓN ‖T ‖1‖η‖1.

(B11) For all f ∈ L2(Ω) and η ∈ Z ,

γ4(τ , f , η) = γ4(0, f , η) + τγ4,τ (0, f , η) + γ̃4(τ , f , η),

γ4,τ (0, f , η) =
∫
Ω

f ηζ ′(0)dx,

γ̃4(τ , f , η) � g10(τ )‖ f ‖‖η‖.
(B12) For all h ∈ L2(ΓN) and η ∈ Z ,

γ5(τ ,h, η) = γ5(0,h, η) + τγ5,τ (0,h, η) + γ̃5(τ ,h, η),

γ5,τ (0,h, η) =
∫
ΓN

hηω′(0)ds,

γ̃5(τ ,h, η) � g11(τ )‖h‖ΓN ‖η‖1.
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Applying Taylor polynomials of degree one (cf. Lemma 8.10) we can prove the stability result.

Proposition 8.14. Under the assumptions of Theorem 8.12, if (uτ , φτ , Tτ ) is a transported solution which
converges to (u, φ, T ) with τ → 0, and in addition the following assumptions on the continuity of the data are
fulfilled:

(M1) ‖Hτ − H‖1 � C |τ |,
(M2) ‖fτ − f‖ � C |τ |,
(M3) ‖G(Tτ )Tτ − G(T )T ‖6/5 � C |τ |,
(M4) ‖J0τ − J0‖ � C |τ |,
(M5) ‖ατ − α‖ΓN � C |τ |,
(M6) ‖hτ − h‖ΓN � C |τ |,
(M7) ‖ fτ − f ‖ � C |τ |,

then we have

‖uτ − u‖1 � C |τ |; (60)

‖φτ − φ‖1 � C |τ |; (61)

‖Tτ − T ‖1 � C |τ |; (62)

‖pτ − p‖ � C |τ |, (63)

where C stands for a generic constant.

Proof. For τ small enough and ξi ∈ [0, τ ], i = 0, . . . ,4, we can write

ζ(τ ) = 1 + τζ ′(ξ0),

�(τ ) = I + τ�′(ξ1),

A(τ ) = I + τ A′(ξ2),

B(τ ) = I + τ B ′(ξ3),

ω(τ ) = 1 + τω′(ξ4),

where ζ(τ ) � cτ1 > 0 for |τ | � τ1 and A, B,� are positive definite for |τ | � τ1.
Observing that α4 is linear with respect to the second argument, we write

α4(τ , pτ ,v) − α4(0, p,v) = α4(0, pτ − p,v) + τ

∫
Ω

pτ B ′(ξ3) : ∇v dx. (64)

Observe that αi (i = 0,1,2,3) is no more linear with respect to its arguments, thus we write

α0(τ ,uτ , Tτ ,v) − α0(0,u, T ,v)

= α0(0,uτ , Tτ ,v) − α0(0,u, T ,v) + τ

∫
ν(Tτ )A′(ξ2) : (Duτ Dv)dx; (65)
Ω
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α1(τ ,uτ ,v) − α1(0,u,v)

= α1(0,uτ ,v)−α1(0,u,v) + τ

∫
Ω

B ′(ξ3)∇uτ : (v ⊗ uτ )dx; (66)

α2(τ ,Hτ , Tτ ,v) − α2(0,H, T ,v)

= α2(0,Hτ , Tτ ,v)−α2(0,H, T ,v)

+ τ

∫
Ω

μ(Tτ )
(
ζ ′(ξ0)(∇ × Hτ ) × Hτ + ((

�′(ξ1)∇
) × Hτ

) × Hτ

) · v dx; (67)

α3(τ , fτ , Tτ ,v) − α3(0, f, T ,v)

= α3(0, fτ , Tτ ,v) − α3(0, f, T ,v) + τ

∫
Ω

ζ ′(ξ0)
(
fτ − G(Tτ )Tτ

) · v dx. (68)

Considering that u is the particular case (τ = 0) to the perturbed uτ it follows that

RHS of (65) + RHS of (66) = RHS of (67) + RHS of (68) + RHS of (64).

Next, we write

(N1) β1(τ , Tτ , φτ ,ψ) − β1(0, T , φ,ψ) = β1(0, Tτ , φτ ,ψ) − β1(0, T , φ,ψ) + τ
∫
Ω

σ(Tτ )A′(ξ2) : (∇φτ ⊗
∇ψ)dx;

(N2) β2(τ , J0τ , Tτ ,Hτ ,uτ ,ψ) − β2(0, J0, T ,H,u,ψ) = β2(0, J0τ , Tτ ,Hτ ,uτ ,ψ) − β2(0, J0, T ,H,u,ψ) +
τ

∫
Ω

B ′(ξ3) : ((J0τ − σ(Tτ )μ(Tτ )Hτ × uτ ) ⊗ ∇ψ)dx;
(N3) γ1(τ , Tτ , η) − γ1(0, T , η) = γ1(0, Tτ , η) − γ1(0, T , η) + τ

∫
Ω

k(Tτ )A′(ξ2) : (∇Tτ ⊗ ∇η)dx;
(N4) γ2(τ ,uτ , Tτ , η) − γ2(0,u, T , η) = γ2(0,uτ , Tτ , η) − γ2(0,u, T , η) + τ

∫
Ω

B ′(ξ3) : (uτ ⊗ ∇Tτ )ηdx;

(N5) γ3(τ ,ατ , Tτ , η) − γ3(0,α, T , η) = γ3(0,ατ , Tτ , η) − γ3(0,α, T , η) + τ
∫
ΓN

ατ Tτ ηω′(ξ4)ds;
(N6) γ4(τ , fτ , η) − γ4(0, f , η) = γ4(0, fτ − f , η) + τ

∫
Ω

fτ ηζ ′(ξ0)dx;
(N7) γ5(τ ,hτ , η) − γ5(0,h, η) = γ5(0,hτ − h, η) + τ

∫
ΓN

hτ ηω′(ξ4)ds.

Considering that φ and T are the particular case (τ = 0) to the perturbed φτ , and Tτ , respectively,
we can argue as in the proof of Theorem 3.2, setting v = uτ − u, ψ = φτ − φ and η = Tτ − T to get
the following estimate

(
ν# − C2 K5 − Cμ#σ #

σ#
‖H‖2

1 − C

k#
K 2

4

)
‖uτ − u‖2

1 + σ#‖φτ − φ‖2
1

+
(

k# − Cν

ν#
K 2

1 − C

ν#

(
μ

∥∥(∇ × H) × H
∥∥

3/2 + G# + G K4
)2

− C

σ#

(
σ K 2

2 + (
μ#σ + μσ #)‖H‖2

1 K 2
5

) − Ck

k#
K 2

3

)
‖Tτ − T ‖2

1

� C

ν#

(
μ#

∥∥(∇ × Hτ ) × Hτ − (∇ × H) × H
∥∥

6/5 + ‖fτ − f‖ + ‖pτ − p‖ + |τ |)2

+ C

σ#

(‖J0τ − J0‖ + μ#σ #‖Hτ − H‖1 + |τ |)2

+ C (‖ατ − α‖ΓN + ‖ fτ − f ‖ + ‖hτ − h‖ΓN + |τ |)2
.

k#



L. Consiglieri et al. / J. Differential Equations 249 (2010) 3052–3080 3075
Under the smallness condition on the data, we argue as in Theorem 8.11 and from assumptions (M1)–
(M7), and we get (60)–(63). �
8.3. Material derivative

Definition 8.15. The following limit in the function space norm H

ḟ = lim
τ→0

f (τ ) − f (0)

τ

is called the strong material derivative ḟ of f in H.

Definition 8.16. The shape derivative u′ of u(τ ) in the direction of the vector field V is defined by
the formula

u′ = u̇ − ∇u · V

provided that there exists the material derivative u̇.

We recall that A(0) = B(0) = �(0) = I , ζ(0) = ω(0) = 1, �̇ = �′(0), Ȧ = A′(0), Ḃ = B ′(0), ζ̇ = ζ ′(0)

and ω̇ = ω′(0), and we state the following result on the existence of material derivatives.

Theorem 8.17. Under the assumptions ḟ ∈ L2(Ω), J̇ ∈ L2(Ω), ḟ ∈ L2(Ω), α̇, ḣ ∈ L2(ΓN ), for every magnetic
field Ḣ ∈ H1(Ω) such that ∇ ·Ḣ = 0 in Ω , Ḣ · ṅ = 0 on ∂Ω and ν , μ, σ , k ∈ C1(Ω) the triple (u̇, φ̇, Ṫ ) ∈ V× Z 2

and it satisfies:
Momentum equations:

∫
Ω

ν(T )( Ȧ Du + Du̇) : Dv dx +
∫
Ω

ν ′(T )Ṫ Du : Dv dx

+
∫
Ω

(Ḃ∇u + ∇u̇) : (v ⊗ u)dx +
∫
Ω

∇u : (v ⊗ u̇)dx

+
∫
Ω

{
(ζ̇ p + ṗ)∇ · v + p(�̇∇) · v

}
dx

=
∫
Ω

μ(T )ζ̇
(
(∇ × H) × H

) · v dx +
∫
Ω

μ(T )
((

(�̇∇) × H
) × H

) · v dx

+
∫
Ω

μ(T )
(
(∇ × Ḣ) × H + (∇ × H) × Ḣ

) · v dx

+
∫
Ω

(
μ′(T )Ṫ (∇ × H) × H

) · v dx

+
∫ (

ḟ − Ġ(T )T − G(T )Ṫ + (
f − G(T )T

)
ζ̇
) · v dx, ∀v ∈ H1

0(Ω); (69)
Ω
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Equation for the electric field:

∫
Ω

σ(T )( Ȧ∇φ + ∇φ̇) · ∇ψ dx +
∫
Ω

σ ′(T )Ṫ ∇φ · ∇ψ dx

=
∫
Ω

Ḃ : (J0 − σ(T )μ(T )H × u
) ⊗ ∇ψ dx

+
∫
Ω

(
J̇0 − σ(T )μ(T )Ḣ × u − σ(T )μ(T )H × u̇

) · ∇ψ dx

+
∫
Ω

((
σ ′(T )Ṫμ(T ) + σ(T )μ′(T )Ṫ

)
H × u

) · ∇ψ dx, ∀ψ ∈ Z; (70)

Energy equation:

∫
Ω

k(T )( Ȧ∇T + ∇ Ṫ ) · ∇ηdx +
∫
Ω

k′(T )Ṫ ∇T · ∇ηdx

+
∫
Ω

(Ḃ : u ⊗ ∇T + u̇ · ∇T + u · ∇ Ṫ )ηdx

+
∫
ΓN

α(Ṫ + T ω̇)ηds +
∫
ΓN

α̇Tηds

=
∫
Ω

( ḟ + f ζ̇ )ηdx +
∫
ΓN

(ḣ + hω̇)ηds, ∀η ∈ Z; (71)

and the following estimate

‖Ṫ ‖1 + ‖u̇‖1 + ‖φ̇‖1 � C
((

1 + ‖u‖1 + ‖α̇‖ΓN + ‖α‖ΓN

)‖T ‖1

+ (
1 + ‖u‖1

)‖u‖1 + ‖φ‖1 + ‖ ḟ ‖ + ‖ f ‖ + ‖ḣ‖ΓN + ‖h‖ΓN

+ (‖Ḣ‖1 + ‖H‖1
)‖H‖1 + ‖ḟ‖ + ‖f‖ + (

Ġ# + G#)‖T ‖1

+ ‖Ḣ × u‖ + ‖H × u̇‖ + ‖H × u‖ + ‖J̇0‖ + ‖J0‖
)
, (72)

where C denotes a positive constant depending on the upper and lower bounds of ν , μ, σ , k and its derivatives.

Proof. The estimate (72) we get as before, namely from (69), (70) and (71) using the uniqueness
argument of Theorem 3.2. Now, it remains to prove that they are material derivative.

The transported solution given by Theorem 8.12 verifies, for all v ∈ H1
0(Ω) and ψ,η ∈ Z ,

∫
Ω

ν(Tτ )A(τ ) : (Duτ Dv) +
∫
Ω

B(τ )∇uτ : (v ⊗ uτ )

=
∫

pτ B(τ ) : Dv + ζ(τ )
(
μ(Tτ )

((
�(τ )∇) × Hτ

) × Hτ + fτ − G(Tτ )Tτ

) · v dx; (73)
Ω
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∫
Ω

σ(Tτ )A(τ ) : (∇φτ ⊗ ∇ψ)dx

=
∫
Ω

B(τ ) : ((J0τ − σ(Tτ )μ(Tτ )Hτ × uτ

) ⊗ ∇ψ
)

dx; (74)

∫
Ω

k(Tτ )A(τ ) : (∇Tτ ⊗ ∇η)dx +
∫
Ω

B(τ ) : (uτ ⊗ ∇Tτ )ηdx +
∫
ΓN

ατ Tτ ηω(τ )ds

=
∫
Ω

fτ ηζ(τ )dx +
∫
ΓN

hτ ηω(τ )ds. (75)

The solution given by Theorem 3.2 verifies (20)–(21), and applying the De Rham Theorem, also

∫
Ω

ν(T )Du : Dv dx +
∫
Ω

Du : (u ⊗ v)dx

=
∫
Ω

p∇ · v dx +
∫
Ω

(
μ(T )(∇ × H) × H + f − G(T )T

) · v dx, ∀v ∈ H1
0(Ω). (76)

Let

zτ = 1

τ
(uτ − u); Υτ = 1

τ
(Tτ − T ); Φτ = 1

τ
(φτ − φ); πτ = 1

τ
(pτ − p).

From Proposition 8.14 we find the following results (as τ → 0):

(i) zτ → u̇ weakly in H1
0(Ω), uτ → u strongly in H1

0(Ω);
(ii) Υτ → Ṫ weakly in Z , Tτ → T strongly in Z ;

(iii) Φτ → φ̇ weakly in Z , φτ → φ strongly in Z ;
(iv) πτ → ṗ weakly in L2(Ω), pτ → p strongly in L2(Ω).

Applying the Sobolev–Kondrachov compact embedding to (i)–(iii), the sequences zτ , Υτ and Φτ are
strongly convergent in Lq(Ω) for any 1 � q < 6 and, in particular, it follows uτ → u, Tτ → T and
φτ → φ strongly in L6(Ω), L6(Ω) and L6(Ω), respectively. Thus, considering the relation

1

τ

(
ν(Tτ ) − ν(T )

) = ν ′(Tν)Υτ , for some Tν between Tτ and T ,

applying (22) and the continuity of ν ′ we obtain

(v) ν(Tτ )−ν(T )
τ → ν ′(T )Ṫ weakly in L2(2+δ)/δ(Ω) and strongly in Lq(2+δ)/(3δ)(Ω).

Recalling that Du ∈ L2+δ(Ω) it results from (v) that Du(ν(Tτ ) − ν(T ))/τ → ν ′(T )Ṫ Du weakly
in L2(Ω).

Analogously we have

(vi) μ(Tτ )−μ(T )
τ → μ′(T )Ṫ weakly in L6(Ω) and strongly in Lq(Ω);

(vii) σ(Tτ )−σ(T )
τ → σ ′(T )Ṫ weakly in L2(2+ε)/ε(Ω) and strongly in Lq(2+ε)/(3ε)(Ω);

(viii) k(Tτ )−k(T )
τ → k′(T )Ṫ weakly in L2(2+ε)/ε(Ω) and strongly in Lq(2+ε)/(3ε)(Ω).
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Subtracting (73), (74) and (75) by (76), (20) and (21), respectively, dividing by τ �= 0 we get:
Momentum equations:

∫
Ω

ν(Tτ )

(
1

τ

(
A(τ ) − I

) : DuDv + A(τ ) : Dzτ Dv
)

dx

+
∫
Ω

1

τ

(
ν(Tτ ) − ν(T )

)
Du : Dv dx

+
∫
Ω

B(τ )∇zτ : v ⊗ uτ dx +
∫
Ω

B(τ )Du : v ⊗ zτ dx

+
∫
Ω

1

τ

(
B(τ ) − I

)∇u : (v ⊗ u)dx

+
∫
Ω

(
pτ B(τ ) + p

(
1

τ

(
B(τ ) − I

)))
: Dv dx

=
∫
Ω

μ(Tτ )ζ(τ )

((
�(τ )∇) × Hτ − H

τ

)
× Hτ · v dx

+
∫
Ω

μ(Tτ )ζ(τ )
((

�(τ )∇) × Hτ

) × 1

τ
(Hτ − H) · v dx

+
∫
Ω

μ(Tτ )ζ(τ )

(((
1

τ

(
�(τ ) − I

)∇)
× Hτ

)
× Hτ

)
· v dx

+
∫
Ω

1

τ

(
μ(Tτ ) − μ(T )

)
ζ(τ )

(((
ρ(τ )∇) × H

) × H
) · v dx

+
∫
Ω

(
1

τ

(
ζ(τ ) − I

))(
μ(T )

((
�(τ )∇) × H

) × H + f − G(T )T
) · v dx

+
∫
Ω

ζ(τ )

(
1

τ
(fτ − f) −

(
1

τ

(
G(Tτ ) − G(T )

))
Tτ + 1

τ
(Tτ − T )G(T )

)
· v dx,

∀v ∈ H1
0(Ω);

Electric equation:

∫
Ω

σ(Tτ )A(τ ) : (∇Φτ ⊗ ∇ψ)dx +
∫
Ω

σ(Tτ )

(
1

τ

(
A(τ ) − I

)) : (∇φ ⊗ ∇ψ)dx

+
∫
Ω

1

τ

(
σ(Tτ ) − σ(T )

)∇φ · ∇ψ dx

=
∫

B(τ ) :
(

1

τ
(J0τ − J0) − σ(Tτ )μ(Tτ )

(
Hτ − H

τ
× u + Hτ × zτ

))
⊗ ∇ψ dx
Ω
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+
∫
Ω

B(τ ) :
(

1

τ

((
σ(Tτ ) − σ(T )

)
μ(T ) + σ(T )

(
μ(Tτ ) − μ(T )

))
H × u

)
⊗ ∇ψ dx

+
∫
Ω

(
1

τ

(
B(τ ) − I

)) : ((J0τ − σ(T )μ(T )Hτ × uτ

) ⊗ ∇ψ
)

dx, ∀ψ ∈ Z;

Energy equation:

∫
Ω

k(Tτ )A(τ ) : (∇Υτ ⊗ ∇η)dx +
∫
Ω

k(Tτ )

{
1

τ

(
A(τ ) − I

)} : (∇T ⊗ ∇η)dx

+
∫
Ω

1

τ

(
k(Tτ ) − k(T )

)∇T · ∇ηdx

+
∫
Ω

({
1

τ

(
B(τ ) − I

)}
u · ∇T + B(τ )zτ · ∇Tτ + B(τ )u · ∇Υτ

)
ηdx

+
∫
ΓN

ατ Υτηω(τ )ds +
∫
ΓN

ατ Tη

(
1

τ

(
ω(τ) − I

))
ds +

∫
ΓN

(
1

τ
(ατ − α)

)
Tηds

=
∫
Ω

(
1

τ
( fτ − f )

)
ηζ(τ )dx +

∫
Ω

fτ η

(
1

τ

(
ζ(τ ) − I

))
dx

+
∫
ΓN

(
1

τ
(hτ − h)

)
ηω(τ )ds +

∫
ΓN

hτ η

(
1

τ

(
ω(τ) − I

))
ds, ∀η ∈ Z .

Therefore passing to the limit in the momentum, electric and energy equations as τ tends to
zero, applying the convergences (i)–(viii), Lemma 8.10 and Corollary 8.13 we conclude (69), (70)
and (71). �
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