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Abstract

The austenitic stainless steel 316 is of current interest as structural material for the future Gen IV nuclear power plants
operating at high temperatures. Although 316 steel grades have been studied for the service conditions of current nuclear
and other conventional applications, improved data and models for the long term high temperature properties are needed,
especially regarding the primary to tertiary creep strain and creep-fatigue response. The Gen IV technology will need an
update for predicting safe life to given strain and rupture in the temperature range of 500-750°C, and to facilitate FEA for
complex product forms. Modelling the stress dependence of creep strain and strain rate is particularly challenging due to the
need for long term extrapolation and limited (public domain) data. Large variation in mechanical propertiessuch as high
temperature yield strength between casts and product forms also need to be addressed for design and life prediction. In the
present work, new creep models have been established for predicting creep strain and rupture of 316L and316L(N), using
the Wilshire equations and logistic creep strain modelling for improved accuracy. The models have been extended to creep-
fatigue and applied to characterize the steels 316FR and 316L in terms of the linear life fraction rule.
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1. Introduction

Creep is an important limiting damage mechanism for high temperature service, and must be accounted for
in design. Creep strength of steels is typically measured from isothermal constant load tests under tension, to
provide data such as creep curves (strain vs. time), time to failure and strain to failure. Standards do not
however cover new material variants and do not include behaviour at smaller or variable strains encountered in
real service. In contrast, the growth rate of fatigue damage is independent of time and the loading frequency.
With increasing time spent in the cycle, the damage growth rate will increase with decreasing frequency due to
creep. The combined creep-fatigue (C-F) damage is often described by the linear life fraction (Robinson-
Miner) rule.

In this work 316 stainless steels (17% Cr—11% Ni—2% Mo) are assessed for creep and creep-fatigue
modelling. The grades of interest are 316H, 316L, 316L(N) and 316FR.
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2. Predicting creep rupture and creep strain

The creep rupture models for the steels were assessed according to ECCC recommendations for sub-sized
data sets [1] and corresponding creep strain models by utilizing the logistic creep strain prediction methodology
(LCSP, [2]). The data sources used for the assessment are given in Table 1. Initial creep rupture models were
attained using the DESA software [3] and Wilshire equations (WE, [4]), and complementary creep models
suitable for creep fatigue. The 600°C stress rupture predictions for the WE models of the steels are shown in
Fig la. Creep strain as a function of time, stress and temperature was also successfully modeled with LCSP
focusing on the strain rates in the beginning of primary creep for later use in relaxation modeling. The LCSP
strain at specified time ¢, is defined as:
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Where 1, is the time to rupture and xy, p and C are fitting factors. The factor x, and p can be described by a
multi-linear function of temperature and stress. The measured versus predicted strains of the ECCC 316L(N)
data set is shown in Fig.1b.
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Fig. 1. (a) Creep rupture strength at 600 °C for 316FR, 316H and 316L using Wilshire model. (b) LCSP predicted creep strain for 316L(N)
steel against measured strains of a large multi-heat data set. Note that the initial (instant) strain at loading has been removed.

Table 1. Data used in the assessments

Material Creep Creep strain Creep-Fatigue Note

316L(N) ECCC data [10,11] ECCC data [10,11] - Shape parameters for
strain models

316FR Takahashi [7] - Takahashi [6] Creep-fatigue interaction
model

316H NIMS [12] NIMS [12] - Creep and creep strain
models

316L EN-10216-5[13] - In-house data Preliminary CF

interaction model

3. Predicting creep-fatigue life from creep properties and cyclic peak stresses

Creep-fatigue tests were conducted on 316L stainless steel at 600°C. The creep fatigue test results
correspond well with the results of [5] as shown in Fig. 2. The strengthening and softening phases a creep
fatigue test is shown in Fig.3. The relaxation ratio (Gyelaxed/Opear) 18 Tapidly stabilizing to a value of about 0.92.
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Fig. 2. Creep fatigue and high temperature low cycle fatigue results for 316L at 600°C.

400 - e

300

Stress (MPa)
Stress (MPa)

= Average of lsops 43.47

3 ==

-300—+ Average of loops 8-12 — Avarage of loops 214-218
— = Average of loops 43-4T | = = Average of loops 437.441
-400—- : ~400—
Strain (%) Strain (%)

Fig. 3. Stress-strain plot of the (a) hardening phase and (b) softening phase of the test at 600°C / 0.5% total strain range, 10 min hold in
both tension and compression (R=-1).

For the 316FR steel [6] it can be shown that the stress to rupture for the creep fatigue cyclic peak stress
(stress rupture curves determined from data in [7]) is closely related to the stress G, to cause rupture at the sum
of hold times (at a specific strain range in tension hold). In Fig 4, the required correction factor SCF= Gpeqi/Cret
is shown as a function of the sum of hold times (>_th) showing the nearly log-linear trend of increasing SCF at
constant strain range. Plotting SCF against the cyclic peak stress and a time-temperature parameter (Larson-
Miller) calculated with the test hold time (not the sum), a function can be extracted to predict the SCF as a
function of peak stress (or strain range), hold time and temperature.

Fig. 4. 316FR creep fatigue data (tension hold) presented in a form where the SCF is plotted against (a) sum of hold times (th) and b) as a
function of peak stress and PLM.
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The SCF is defined as:

O peak (A&, T)

SCF = ————
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(2)

where g(Ag,t,,T) is defined by the time-temperature parameter fit. The sum of hold times leading to creep-
fatigue end criterion with the WE creep rupture is defined as follows:
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where k and u are constants obtained by fitting to the test data, O, is the apparent activation energy and Gyrs is
the tensile strength at the specified temperature.
The predicted cycles to end criterion is:

t..(Ag,t,,T)
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Using the above methodology the predicted versus measured >t;, at 600°C is presented for 316FR in Fig. 5a.
The corresponding predictions for 316L (also at 600°C) using the SCF function optimized for 316FR is also
shown. Predictions for 316FR can be made within a factor of 2 in comparison to measured time or number of
cycles. For 316L it can be shown that directly using the SCF model (316FR behaviour) can lead to overly
conservative prediction by up to a factor of 4. This indicates that the SCF function for 316FR steel cannot be
directly transferred to represent the behaviour of 316L. This is though expected since the 316FR has much
higher creep strength and differs in relaxation behaviour.

4. Implications of the new creep-fatigue model

The approach to creep-fatigue assessment proposed in this paper is related to an approach by [8] relating a
hold time reduction factor N¢/Ny, with the cycles to failure. Together with this factor and the strain range
partitioning method [9] it was shown for P22 steel that the impact of hold time could be predicted. The
proposed new methodology is introducing a SCF function to incorporate the impact of cycling on the stress
required to produce creep-fatigue failure in a time defined by the sum of hold times. The methodology appears
to be robust when the stress range is within the limits of the creep data. The creep-fatigue testing at high strain
ranges results in peak stresses that need creep models for shorter term properties than what are usually targeted
in conventional creep modeling. A classical presentation of the creep-fatigue response by a linear life fraction
diagram is shown in Fig. 5b for 316FR and 316L. The proposed creep-fatigue model has the advantage that it is
does not need detailed separation of creep and fatigue components. The simple functions defining N; enable
summation of different type of cycles to any predefined damage limit, for instance as in the Miner rule
2[Ni(Ag,th,T)/2Nf(Ag,th,T )] =D. This feature should be further validated for larger data sets and mixed cycle
creep-fatigue. This would allow for optimised SCF functions to incorporate all desired variables.
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Fig. 5. a) 316FR creep fatigue data (hold in tension) presented as observed vs. predicted life. The 316 FR results show very good
agreement whereas 316L life can be predicted within a factor of two for low strain range (0.5%) but may be conservative for the higher
strain ranges (0.6% & 0.8%). Note that 316L data has both tension and compression hold; b) the creep-fatigue performance presented in

terms of the linear life fraction rule.
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