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Abstract 

The paper considers water solidification in porous materials. Mathematical model describing heat and water transport in deformable 
porous materials considering the kinetics of water phase change was proposed. The crystallization pressure was determine using 
the volume averaged Everett’s equation. The ice-induced destruction of concrete was modeled by means of the delayed damage 
approach. The numerical code was developed using finite element, finite difference and Newton-Raphson methods. 
© 2015 The Authors. Published by Elsevier Ltd. 
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1. Introduction

Cyclic freezing of water in porous building materials is one of the most destructive phenomena strongly influencing
the building structures durability. The main reason of frost damage is the increase of molar volume of ice when 
compared to the one of water. Ice growth induces additional pressure acting on the material skeleton but it also 
increases liquid water pressure, what is even more severe for the material durability. 

A mathematical model of coupled heat and moisture transfer and frost deterioration in a fully water saturated porous 
material, exposed to freezing/thawing cycles, is formulated by means of mechanics of multiphase porous media. The 
mathematical model of coupled heat and water transfer in deformable porous media, considers water freezing/melting 
and crystallization pressure exerted by the processes, causing material deterioration. The kinetics of phase 
transformation was modelled by means of non-equilibrium approach, which was previously applied for salt 
crystallization [1, 2] and leaching of calcium in cementitious materials [3]. The frost deterioration was modelled by 

* Corresponding author. Tel.: +48 42 6513556; fax: +48 42 6513556. 
E-mail address: marcin.koniorczyk@p.lodz.pl 

Available online at www.sciencedirect.com

© 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the CENTRO CONGRESSI INTERNAZIONALE SRL

http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2015.11.269&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2015.11.269&domain=pdf


 Marcin Koniorczyk et al.  /  Energy Procedia   78  ( 2015 )  1702 – 1707 1703

means of isotropic nonlocal damage theory of Mazars [4-7]. Here a rate formulation of the damage model was used, 
see e.g. [8, 9]. The model equations were solved numerically by means of the research computer code. 

Nomenclature 

b Biot number 
d damage coefficient 
T temperature 
pC, pL crystallization-, liquid- pressure 
KS, KL, KC skeleton-, liquid-, ice- bulk modulus 
φ porosity 
ρC, ρL ice-, liquid- density 
ηC, ηL relative content of ice, liquid in the pore system 
vLS velocity of liquid relative to the skeleton 
vS velocity of the skeleton 

2. Mathematical model

Porous material is modeled as a multiphase deformable medium. It is assumed that the voids are filled with water
or when temperature is below the water freezing point, partly with ice and partly with yet unfrozen water. The 
mathematical model consists of three balance equation: mass balance of water molecules, energy balance and linear 
momentum balance. Therefore, three following state variables are chosen: liquid pressure, pL, temperature, T and 
displacement vector, u. The mathematical model must be complemented with ice crystals evolution law, which is 
defined by means of degree of pore saturation with ice, Cη . 
Applying the equation defining the material derivative of porosity, the state equation of water and ice and introducing 
the definition of the pressure exerted by the phases occupying pores on the solid skeleton as: S L C

L Cp p pη η= + =

( )L C L
Cp p pη= + − , one can derived the final form of matter mass balance equation as follows:
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The energy conservation equation written for the multiphase domain, considering the kinetics of water/ice phase 
change and the energy sink/source related to that transformation, and neglecting the convective term, reads: 

( ) ( )
SS

C
ef Cef

DD T
C T H

Dt Dt

ηρ λ ρ= ∇ ⋅ ∇ + Δ (2) 

where (ρCp)ef  and λef  are the effective values of thermal capacity and thermal conductivity of the multiphase material 
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and ΔH is the volumetric latent heat of water solidification, equal to 333 J/g. The momentum balance equation reads: 

( )total (1 ) 0S L C
L Cφ ρ φη ρ φη ρ∇ ⋅ + − + + =t g (3) 

Considering the mechanical behavior of porous material it is necessary to take into account both the effects of an 
external load and the pressure exerted on the skeleton by phases occupying its voids (water and ice pressure). Hence, 

the total stress tensor totalt  acting in a point of the porous medium may be split into the effective stress S
et , and a part, 

which accounts for the pressure exerted by the pore fluids, pS: 

total S S
e b p= −t t I (4) 

where the effective stress is given by the formula: 

( ) ( )1S
e tot Td= −t D εε ε (5) 

To describe the rapture of material, we chose the delayed damage model proposed by [10, 11] which was 
successfully applied for dynamic problems [8, 9], and which reads: 

( )( )1
1 exp

c

d a g dκ
τ

= − − − (6) 

where the damage law might be given by the relations [6]: 

( ) 0 0
01 exp

f

g for
ε κ εκ κ ε
κ ε

−
= − − ≥ (7) 

where 0ε  is the elastic strain limit, fε  is the parameter controlling the post-peak slope of stress-strain curve, 

( ) ( )max
t

t
τ

κ ε τ
≤

= (8) 

The ice content depends on the temperature but also on the radius of the pores where the crystals currently grow. Ice 
does not appear suddenly in the pore space but it is a process consisting of two parts. The rate of ice growing might 
calculated by the equation proposed by Bronfenbrener and Korin [12], which was adopted for the proposed 
formulation: 

EQ
C C

C

η ηη
τ
−

= (9) 

where ηC
EQ is the ice content calculated for the equilibrium condition at the temperature T. 

The average crystallization pressure exerted by ice on the material skeleton, C
C pη , considering its cumulative pore 

size distribution curve, ( )V r , was calculated by means of the theory developed by Monteiro and Coussy [13],
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( )2 2R
C CL

C

dV r
p dr

R r dr

γη
φ ∞

= − , (10) 

where CLγ means the surface tension of water – ice interface. The effect of damage on the crystallization pressure (10)

was considered by means of the pore size distribution curves measured with MIP for frost-deteriorated material. 

3. Numerical solution

The mathematical model, eq. (1-3), consists of three coupled PDEs, which were solved using appropriate numerical
method. Galerkin approximation was applied to the weak form of governing PDEs. Space integration is carried out 
using the Finite Element Method [14]. The isoparametric formulation was aliped so, the same interpolation function 
were used to determine the elements geometry as were used to calculate the primary variable field. The weak form of 
the model equations after applying Stokes Theorem, integration by parts and assuming that the skeleton velocity is 
negligible small, reads: 
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LL LT L LL L L
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L T
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C C T K T f
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+ =
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(11) 

Assuming the vector of unknowns [ , , ]L=x p T u , the set of governing equations might be written in the compact form: 

( ) ( ) ( )
t

∂ + =
∂
x

C x K x x f x (12) 

Most of material properties depends on the current state of the system, therefore (12) represents the nonlinear set of 
ordinary differential equations. The time integration was done by means of fully implicit Finite Difference Method 
(backward Euler algorithm): 

1
1 1 1 1 1( ) ( ) ( ) ( ) 0i n n

n ij n ij n n i nt
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+ + + + +
−

= + − =
Δ

x x
x C x K x x f x (13) 

where i,j = L,T,u, n is time step number and Δt is time step length. The set of differential, non-linear equations (13) 
is solved by means of a monolithic Newton-Raphson type iterative procedure [14]: 
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where l is iteration index. 

4. Modeling frost-induced damage of a concrete wall

The problem concerns frost damage of a concrete wall exposed to the two-sided cyclic variation of temperature.
The 20-cm wall, initially fully saturated with water, was considered. Due to the symmetry of boundary condition, only 
half of the wall was analyzed, assuming zero fluxes on the axis of symmetry. The analyzed domain was divided into 
100 tetragonal finite elements of equal size. The following material parameters were assumed in simulation: porosity 
φ = 6%, thermal conductivity λ = 1.5 W/(m·K), intrinsic permeability k = 3·10-21 m2, Young modulus E = 25 GPa,
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compressive strength fct = 3.0 MPa. The convective (Robin) boundary conditions were assumed for heat transport with 
the heat transfer coefficient h = 8 W/(m2K). The ambient temperature variation is described by the formula: 
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Fig. 1. The simulation results concerning evolution of: (a) temperature; (b) liquid water pressure; in two points of a concrete wall. 

Fig. 2. The simulation results concerning evolution of: (a) temperature in two points of a concrete wall; (b) strain – stress performance. 

The total simulation time was equal to 200 h thus it comprised the 10 temperature cycles. The computed time 
evolutions of temperature and liquid water in two points of the wall, on its surface and 7 cm from it (marked as “in 
center”), are presented in Figure 1. As can be observed in Fig. 1a, after the first cycle the temperature changes were 
periodically repeated with the same amplitude. The temperatures on the wall surface and in the whole wall were very 
similar, and no distinct effects of water phase transitions were observed due to their spreading over a range of 

a b

a b
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temperatures. On the contrary to temperature, the amplitude of water pressure oscillations was gradually decreasing 
due to frost damage increasing after every freezing/thawing cycle, having slightly higher value inside the wall, see 
Fig. 2a. During every cycle, the water pressure was initially increasing due to water freezing and related increase of 
water molar volume. Then it was decreasing due to ice melting and related decrease of its volume, up to the moment 
when the phase change was completed and further changes of water pressure were caused by different thermal 
dilatation of water and skeleton. Since the skeleton strength properties were gradually degrading (Fig. 2b), due to 
progressing frost induced material damage, to a more extent inside the wall ( Fig. 2a), the water pressure amplitude 
was lower inside the wall. The frost induced material damage is caused mainly by high value of crystallization pressure 
exerted by ice on the material skeleton. Since damage (material cracking) changes a material pore size distribution, 
causing an increase of larger pores volume, the crystallization pressure accordingly increases, see eq. (10) causing 
further progress of frost damage. The process is more pronounced inside the wall. In practice, surface layers of a 
building envelope are more exposed to very high moisture content (even to fully saturated conditions), associated by 
low temperatures (below pore water freezing temperature), hence surface layer is more jeopardized by frost damage, 
causing spalling of thin material flakes. 

5. Conclusions and final remarks

A mathematical model allowing for analysis of frost damage of porous building materials, the pores of which are fully 
saturated with water, was presented. The model equations were numerically solved and the research code was 
developed. The presented simulation results allow for better understanding of physical mechanisms of frost damage 
of porous building materials. Further developments of the model and its experimental validation are in progress. 
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