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Summary

Paroxysmal kinesigenic choreoathetosis (PKC), the most
frequently described type of paroxysmal dyskinesia, is
characterized by recurrent, brief attacks of involuntary
movements induced by sudden voluntary movements.
Some patients with PKC have a history of infantile afe-
brile convulsions with a favorable outcome. To localize
the PKC locus, we performed genomewide linkage anal-
ysis on eight Japanese families with autosomal dominant
PKC. Two-point linkage analysis provided a maximum
LOD score of 10.27 (recombination fraction [v] = .00;
penetrance [p] = .7) at marker D16S3081, and a max-
imum multipoint LOD score for a subset of markers was
calculated to be 11.51 (p = 0.8) at D16S3080. Haplotype
analysis defined the disease locus within a region of
∼12.4 cM between D16S3093 and D16S416. P1-derived
artificial chromosome clones containing loci D16S3093
and D16S416 were mapped, by use of FISH, to 16p11.2
and 16q12.1, respectively. Thus, in the eight families
studied, the chromosomal localization of the PKC crit-
ical region (PKCR) is 16p11.2-q12.1. The PKCR over-
laps with a region responsible for “infantile convulsions
and paroxysmal choreoathetosis” (MIM 602066), a re-
cently recognized clinical entity with benign infantile
convulsions and nonkinesigenic paroxysmal dyskinesias.
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Introduction

Paroxysmal kinesigenic choreoathetosis (PKC [MIM
128200]) is a heritable neurological disorder char-
acterized by recurrent and brief attacks of unilateral
or bilateral involuntary movement that are usually
induced by sudden voluntary movements or, some-
times, by startles. PKC attacks consist of any com-
binations of dystonic, choreoathetotic, and ballistic
components; often occur daily and, frequently, more
than once within a day; and usually last seconds to
minutes but not 15 min. Consciousness never alters
during attacks. The onset of PKC is usually in child-
hood or in early adolescence, and the frequency and
severity generally diminish with age. PKC responds to
treatment with anticonvulsants such as phenytoin and
carbamazepine. Results of neurological examinations,
including electroencephalography and computed to-
mography (CT) of the brain, have been normal, except
in a few patients (Kertesz 1967; Lance 1977; Good-
enough et al. 1978; Fahn 1994; Marsden 1996). It
has been reported that 40%–70% of PKC cases are
familial, and the remaining cases are sporadic. In most
reported families with PKC, the disease is inherited in
an autosomal dominant fashion with incomplete pen-
etrance (Kertesz 1967; Lance 1977; Goodenough et
al. 1978; Fahn 1994; Marsden 1996). Familial cases
of PKC may be more common in the Japanese and in
the Chinese (Fahn 1994). More males tend to be af-
fected than females, with the male : female ratio being
from 3 : 1 to 4 : 1 (Kertesz 1967; Lance 1977; Good-
enough et al. 1978; Fahn 1994; Marsden 1996). It
has been reported that some PKC patients or their
family members have a history of epilepsy (Jung et al.



Table 1

Clinical Findings in Eight Families with PKC

FAMILY AND

INDIVIDUAL

NO. (SEX)a

PATIENT AGE

(years) CHARACTERISTICS OF PKC

At
Present

At
Onset

At
Cessation Triggerb

Duration of
Attacksc

Involuntary
Movementd

Response to
Anticonvulsantse

History of IC
(mo)

1:
II-1 (M) Dead 14 18–19 SM/S FS-M A/D None
II-3 (F) 82 17 19 SM/S FS-M A/D None
II-4 (M) 79 14 20 SM/S FS-M A/D None
II-11 (F) 68 15 16 SM FS-M A None
III-6 (F) 53 10 Current SM/S FS-M A/D � (CBZ) None
III-8 (F) 50 10 Current SM/S FS-M A/D � (CBZ) 6 (Febrile)
III-11 (M) 40 10 30 SM FS-M A/D � (CBZ) None
III-14 (M) 50 11 Current SM FS-M A/D � (PHT) 0–24
III-18 (F) 43 13 15 SM FS-M A None
III-20 (M) 39 10 20 SM FS-M A/D None
III-21 (F) 36 10 12 SM FS-M A/D 0–12
IV-3 (F) 27 10 15 SM FS-M A/D � (CBZ) 5–24
IV-6 (M) 10 5 Current SM FS A � (CBZ) None
IV-7 (M) 24 13 15 SM FS-M A 6–12
IV-8 (M) 22 13 15 SM FS-M A 7–12
IV-9 (M) 21 ) ) ) ) ) 7–12

2:
I-2 (F) 72 Childhood 35 SM FS C 0–12
II-3 (M) 48 12 15 EX FS C None
II-7 (F) 43 9 Current SM ) C Infancy
III-3 (M) 22 11 Current SM FS-M C � (PHT/VPA) 9–18
III-7 (M) 17 7 Current SM FS C �(PB/VPA) 6–9

3:
I-2 (F) 37 11 22 SM FS A None
II-1 (F) 14 5 Current SM/S FS-M A � (PHT) None
II-2 (M) 12 10 11 SM/S FS A None

4:
I-1 (M) 85 11 25 SM FS-M C None
II-2 (M) 49 6 20 SM FS-M C None
III-1 (M) 12 8 Current SM FS-M C � (CBZ) None
III-2(M) 8 6 Current SM FS-M C � (CBZ) 5

5:
I-1 (M) 53 Childhood ? SM FS-M C None
II-1 (M) 24 10 Current SM FS-M C � (CBZ) 10
II-2 (M) 13 5 11 SM FS-M C � (CBZ) 10

6:
I-3 (M) 40 9 27 SM FS-M C � (CBZ) None
II-1 (M) 16 13 Current SM FS-M C � (CBZ) 4
II-2 (M) 14 8 Current SM FS-M C � (CBZ) 3

7:
I-1 (M) 71 Childhood 20 SM FS-M C None
II-1 (M) 45 9 30s SM FS-M C None
II-4 (F) 43 9 30s SM FS-M C None
III-1 (M) 17 7 12 SM FS-M C � (CBZ) None
III-2 (M) 15 10 14 SM FS-M C � (CBZ) 5
III-3 (F) 12 ) ) ) ) ) 11
III-5 (F) 18 11 16 SM FS-M C � (CBZ) 2

8:
I-1 (M) 67 10 25 SM FS-M C None
II-2 (F) 42 8 26 SM FS-M C None
II-4 (M) 31 7 25 SM FS-M C � (PHT) None
III-1 (M) 13 9 Current SM FS-M C � (CBZ) None

a M = male; F = female.
b SM = sudden movements, S = startles, and EX = exertion.
c FS-M = a few seconds to 1 min.
d A = athetoid, D = dystonic, and C = choreoathetotic.
e A plus sign (�) denotes effective, and a minus sign (�) denotes not effective; CBZ = carbamazepine, PHT =

phenytoin, VPA = valproate, and PB = phenobarbital.





Figure 1 Pedigrees of eight families with PKC. The blackened squares and circles and the letters “IC” denote individuals affected with PKC and those with infantile convulsion, respectively.
The numbers in boxes and the numbers in parentheses represent putative disease haplotypes and haplotypes estimated (deduced from data in sibs and/or children), respectively, in family members.
Heavy short lines indicate definite recombination sites, and heavy brackets indicate recombination sites that could have occurred on either side of the corresponding marker(s).



Table 2

Two-Point LOD Scores of PKC and/or IC with Various Values of Penetrance (p)

LOCUS AND

p VALUE

LOD SCORE AT (v) =

.0 .001 .05 .1 .15 .2 .3 .4

D16S403:
.9 �4.816 �4.675 .806 2.031 2.517 2.635 2.215 1.207
.8 �3.396 �3.324 1.221 2.214 2.561 2.593 2.102 1.115
.7 �2.776 �2.729 1.333 2.226 2.508 2.501 1.985 1.032
.6 �2.458 �2.424 1.315 2.158 2.409 2.384 1.870 .958

D16S3131:
.9 �6.756 �4.314 1.975 3.097 3.479 3.485 2.822 1.534
.8 �5.182 �2.815 2.654 3.467 3.661 3.549 2.770 1.470
.7 �4.476 �2.161 2.938 3.614 3.714 3.540 2.703 1.412
.6 �4.096 � 1.836 3.044 3.648 3.699 3.493 2.630 1.358

D16S3093:
.9 �1.370 �1.290 1.356 1.815 1.920 1.849 1.412 .758
.8 �.519 �.481 1.669 1.991 2.010 1.886 1.396 .735
.7 �.121 �.097 1.805 2.066 2.044 1.891 1.374 .713
.6 .107 .123 1.865 2.093 2.048 1.880 1.350 .692

D16S517:
.9 2.171 2.168 1.994 1.798 1.588 1.367 .895 .415
.8 2.155 2.152 1.957 1.749 1.534 1.312 .850 .392
.7 2.125 2.121 1.915 1.702 1.484 1.263 .812 .372
.6 2.092 2.088 1.875 1.658 1.440 1.220 .778 .354

D16S3081:
.9 9.615 9.612 9.270 8.656 7.867 6.942 4.773 2.281
.8 10.218 10.205 9.505 8.685 7.775 6.783 4.580 2.154
.7 10.269 10.253 9.442 8.550 7.596 6.583 4.391 2.040
.6 10.126 10.109 9.259 8.343 7.378 6.367 4.211 1.939

D16S3105:
.9 4.802 4.795 4.425 3.989 3.513 3.007 1.948 .905
.8 4.791 4.782 4.355 3.893 3.409 2.906 1.874 .871
.7 4.690 4.681 4.245 3.782 3.302 2.810 1.808 .842
.6 4.566 4.557 4.125 3.669 3.200 2.720 1.749 .817

D16S3044:
.9 3.385 3.383 3.200 2.935 2.617 2.258 1.462 .656
.8 3.335 3.331 3.082 2.786 2.458 2.103 1.343 .597
.7 3.207 3.202 2.934 2.631 2.305 1.960 1.238 .547
.6 3.063 3.057 2.782 2.481 2.162 1.830 1.146 .503

D16S3080:
.9 6.935 6.925 6.398 5.802 5.163 4.488 3.055 1.553
.8 6.655 6.644 6.097 5.503 4.877 4.225 2.860 1.446
.7 6.357 6.346 5.802 5.220 4.613 3.986 2.686 1.353
.6 6.062 6.051 5.519 4.954 4.370 3.769 2.531 1.272

D16S411:
.9 3.745 3.747 3.715 3.534 3.260 2.923 2.112 1.145
.8 4.338 4.334 4.069 3.745 3.381 2.985 2.109 1.125
.7 4.585 4.578 4.227 3.841 3.433 3.005 2.096 1.105
.6 4.698 4.691 4.296 3.878 3.446 3.002 2.076 1.086

D16S3136:
.9 3.535 3.535 3.448 3.228 2.926 2.569 1.752 .867
.8 3.951 3.946 3.688 3.364 2.997 2.598 1.740 .849
.7 4.147 4.140 3.806 3.429 3.027 2.604 1.722 .832
.6 4.254 4.247 3.867 3.459 3.034 2.597 1.702 .817

D16S416:
.9 �3.216 �.261 1.401 1.557 1.520 1.382 .940 .424
.8 �2.322 .018 1.530 1.600 1.511 1.344 .885 .389
.7 �1.894 .082 1.541 1.577 1.467 1.288 .831 .358
.6 �1.644 .071 1.504 1.525 1.407 1.226 .779 .331

D16S419:
.9 �7.579 �3.116 .590 1.241 1.472 1.486 1.146 .575
.8 �5.717 �1.994 1.253 1.631 1.689 1.590 1.136 .544
.7 �4.793 �1.556 1.526 1.790 1.768 1.614 1.106 .514
.6 �4.222 �1.372 1.627 1.837 1.776 1.595 1.066 .484

D16S415:
.9 �2.665 .098 1.837 2.022 1.987 1.837 1.342 .706
.8 �1.420 .822 2.299 2.322 2.181 1.958 1.380 .710
.7 �.753 1.159 2.533 2.483 2.288 2.027 1.401 .711
.6 �.324 1.341 2.661 2.572 2.348 2.065 1.412 .711
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Figure 2 Multipoint LOD scores with various values of pene-
trance (p), calculated with use of the VITTESE program (O’Connell
and Weeks 1995). Intermarker distances and marker order are ac-
cording to Dib et al. (1996). PKC denotes family members affected
with PKC; PKC and/or IC denotes inclusion of those affected with
PKC and/or IC.

Figure 3 Disease map of paroxysmal dyskinesias on chromo-
some 16. PKCR is deduced from data from the present study, ICCA
is deduced from data from Szepetowski et al. (1997), and RE-PED-
WC is deduced from data from Guerrini et al. (1999).

1973; Goodenough et al. 1978; Tan et al. 1998), al-
though a causal relationship between the two abnor-
malities remains controversial. The frequent occur-
rence of afebrile infantile convulsions (IC) in patients
with PKC or in their relatives has been well recognized
in previous reports (Lishman et al. 1962; Hudgins and
Corbin 1966; Fukuyama and Okada 1968; Hamada
et al. 1998; Sadamatsu et al. 1999). According to a
multicenter survey in Japan (Nagamitsu et al. 1999),
of 100 patients with PKC who were examined, 17%
developed IC with favorable outcome at age !12 mo.

PKC has been described as a form of paroxysmal
dyskinesia. Paroxysmal dyskinesias are genetically
and clinically heterogeneous, and there are at least
seven different forms: (1) PKC; (2) paroxysmal dys-
tonic (nonkinesigenic) choreoathetosis (PDC [MIM
118800]); (3) paroxysmal exertion-induced dyskine-
sia (PED); (4) nocturnal (hypnogenic) paroxysmal dy-
skinesia (NPD); (5) paroxysmal choreoathetosis and
spasticity (CSE [MIM 601042]); (6) infantile convul-
sions and paroxysmal choreoathetosis (ICCA [MIM

602066]); and (7) Rolandic epilepsy, paroxysmal ex-
ercise-induced dystonia, and writer’s cramp (RE-PED-
WC). These forms are probably distinct from one an-
other because of the different frequency and duration
of attacks, the different triggers or precipitating fac-
tors, the different effectiveness of anticonvulsants, and
the presence or absence of additional manifestations.
Attacks of PDC occur during rest without any trig-
gers, and they last for 2 min to 4 h. PED is charac-
terized by attacks precipitated by prolonged exercise
and lasting 5–30 min (Lance 1977; Goodenough et
al. 1978; Fahn 1994; Marsden 1996). Attacks of NPD
occur during sleep. Most cases of NPD are now re-
garded as nocturnal frontal-lobe epilepsy (ENFL)
(Marsden 1996). CSE and ICCA share a clinical man-
ifestation as a combination of PDC with additional
symptoms, constant spastic paraplegia, and benign in-
fantile afebrile convulsions (Auburger et al. 1996; Sze-
petowski et al. 1997). All but one of the forms are
inherited in an autosomal dominant manner, whereas
RE-PED-WC is an autosomal recessive condition
(Guerrini et al. 1999). Four loci of paroxysmal dy-
skinesias have been mapped: PDC maps to chromo-
some 2q33-q35 (Fink et al. 1996; Fouad et al. 1996),
CSE to chromosome 1p (Auburger et al. 1996), ICCA
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to chromosome 16p12-q12 (Szepetowski et al. 1997),
and RE-PED-WC to chromosome 16p12-p11.2
(Guerrini et al. 1999). Nocturnal frontal-lobe epilepsy
is genetically heterogeneous, and two loci—ENFL1
(MIM 600513) and ENFL2 (MIM 603204)—have
been mapped to 20q13.2 (Phillips et al. 1995) and
15q24 (Phillips et al. 1998), respectively. Here we re-
port the results of a genomewide linkage analysis of
eight Japanese families with PKC.

Subjects and Methods

Families and Patients

We collected eight Japanese families that include
two or more individuals affected with PKC. A total
of 84 members in the eight families (families 1–8)
participated in the present study and provided written
informed consent. PKC was diagnosed in 43 of the
84 participants (table 1; fig. 1). Detailed clinical man-
ifestations for family 2 and for families 4–8 were re-
ported elsewhere (Nagamitsu et al. 1999; Sadamatsu
et al. 1999). Among the 43 patients, mean age at the
onset of the disease was 10.0 years (range 5–17 years,
with SD score of 2.7 years). Attacks were usually pre-
cipitated by sudden voluntary movements and, rarely,
by startles, but they never occurred without provo-
cation. The duration of the entire attack ranged from
a few seconds to 1 min. Treatment with anticonvul-
sants completely controlled the attacks in most pa-
tients. The attacks in most patients ceased sponta-
neously in adulthood. Eighteen patients (41.9%) also
had afebrile, general convulsions in infancy. The PKC
manifestations were not different between patients
with and without IC. Two individuals (IV-9 in family
1 and III-3 in family 7) were affected with IC but had
no evidence of PKC (table 1).

Direct and vertical transmissions of PKC were ob-
served in all eight families. There was one instance
(II-2 in family 2) of an individual in whom disease
transmission was skipped, although both the individ-
ual’s mother (I-2 in family 2) and her son (III-3 in
family 2) are both unequivocally affected with PKC.
The male : female ratio of the patients in the eight
families was 2 : 1. These findings indicate that PKC
in the families is inherited in an autosomal dominant
fashion with incomplete penetrance.

Genotyping and Linkage Analysis

Genomic DNA was extracted from peripheral blood
leukocytes drawn from the 84 participants. We de-
termined genotypes of the participants by using a total
of 354 Généthon microsatellite markers distributed in
a 5–20-cM interval across the genome (Dib et al.
1996) and a DNA sequencer–assisted method (Mans-

field et al. 1994). In brief, DNA was amplified by PCR
with primers labeled with fluorescence dye Cy5 (Phar-
macia Biotech). Fluorescent PCR products were elec-
trophoresed in an automated DNA sequencer (AL-
Fexpress DNA sequencer) (Pharmacia Biotech). The
resulting data were analyzed with software (Fragment
ManagerTM, version 1.2; Pharmacia Biotech) to de-
termine genotypes.

Two-point LOD scores were calculated by MLINK of
the FASTLINK software, version 4.0P (Lathrop et al.
1984; Cottingham et al. 1993; Schaffer et al. 1994), with
assumptions that, in the eight families, PKC is inherited
in an autosomal dominant mode with incomplete pen-
etrance, that the frequency of the mutant allele is .0001,
and that each allele frequency of each marker locus is
equal. Multipoint LOD scores were calculated by use of
the VITTESE program (O’Connell and Weeks 1995).
Genetic distances between the marker loci examined
were determined on the basis of the Généthon linkage
map (Dib et al. 1996). Genetic heterogeneity was tested
by use of the HOMOG program (Ott 1991).

FISH

To determine the chromosomal localization of micro-
satellite markers used for anchors, their corresponding
PAC clones were isolated by PCR-based screening of a
human PAC library (Roswell Park Cancer Institute-1,3),
as described elsewhere (Matsumoto et al. 1997), and
were used for FISH to normal metaphase chromosomes,
as described elsewhere (Wakui et al. 1999).

Results

We first undertook a genomewide search for the PKC
locus. Because PKC and IC are possibly associated with
each other, we classified family members who had either
form, or both forms, as being “clinically affected.” As
a result, a high two-point LOD score ( ,Z = 6.94 v =max

) was obtained at D16S3080, when p was assumed.00
to be .9 (table 2). We chose additional markers located
near D16S3080 and analyzed the eight families with
these markers. The highest two-point LOD score was
calculated to be 10.27 ( ) for D16S3081, when pv = .00
was assumed to be .7 (table 2). A maximum multipoint
LOD score for a subset of markers was 11.51 ( )p = .8
at D16S3080 (fig. 2). Homogeneity was not rejected in
a HOMOG test (data not shown).

To confirm the linkage of PKC under more-definite
clinical diagnosis, two-point and multipoint LOD scores
were calculated again, when two individuals (IV-9 in
family 1 and III-3 in family 7) who had IC only but who
did not have any episodes of PKC attacks were excluded
from the category of “PKC patient.” A maximum two-
point LOD score of 9.00 was observed at D16S3081
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( ). We also confirmed a tight linkage by multipointp = .7
analysis (fig. 2).

Haplotype analysis of the eight families revealed that
all patients with PKC in each family share alleles for loci
between D16S517 and D16S3136. Recombinations oc-
curred between D16S3093 and D16S3081 in individuals
II-4 and II-11 in family 1 and between D16S3131 and
D16S517 in individual II-3 in family 2 and individual
II-4 in family 8. Recombinations were also observed be-
tween D16S3080 and D16S416 in individual II-1 in
family 1 and between D16S3136 and D16S419 in in-
dividual III-3 in family 2 (fig. 1). These results, along
with the high two-point LOD score, indicate that the
putative PKC gene is localized to a segment between
D16S3093 and D16S416 (figs.1 and 3).

We isolated three PAC clones (104-G-3, 158-O-8, and
83-D-21) that correspond to the D16S3093, D16S517,
and D16S416 loci, respectively. FISH analysis, with use
of these three clones as probes, gave fluorescence signals
at 16p11.2, 16q12.1, and 16q12.1, respectively. Thus,
in the eight families examined, PKC maps to 16p11.2-
q12.1 and, most likely, to 16q12.1.

Discussion

We have assigned the putative PKC gene to 16p11.2-
p12.1 and have confined it to a segment between the
D16S3093 and D16S416 loci, which encompasses the
centromere. Since the pericentromeric region of chro-
mosome 16 contains the secondary constriction com-
posed of constitutive heterochromatin and since there
were no other polymorphic markers available in this
region, we could no longer narrow the PKCR.

The male : female ratio of this disorder has been re-
ported to be from 3 : 1 to 4 : 1 (Kertesz 1967; Lance
1977; Goodenough et al. 1978; Fahn 1994; Marsden
1996). Our study also demonstrated the male predom-
inance. Penetrance of PKC varies between sexes in the
eight families studied (.74 for females, .94 for males,
and .86 on average), indicating that a mutated allele
transmitted to males may show sensitivity 1.27 times
higher than the sensitivity of that transmitted to females.
This may implicate that there must be a sex-dependent
modulating factor to effect the sensitivity to PKC gene
mutations, although the association between sex and
penetrance is not statistically significant (the two-point
P value of Fisher’s exact test is .087).

The relationship of the PKCR to the localizations of
other forms of paroxysmal dyskinesias merits comment.
As shown in figure 3, all the markers that were linked
to PKC are located to 16q12.1, and one end of the PKCR
is centromeric to D16S3093 at 16p11.2, whereas all the
markers that were linked to ICCA are located to 16p,
and one end of an ICCA critical region is centromeric
to D16S517 at 16q12.1 (Szepetowski et al. 1997).

Therefore, a 5.4-cM segment between D16S3093 and
D16S517, which encompasses the centromere, is over-
lapped between the two critical regions for the disease
(fig. 3). Since both forms of paroxysmal dyskinesias
sometimes include IC, it remains to be seen whether they
are allelic. If allelic, their common putative gene would
be located within the 5.4-cM region. Lee et al. (1998)
presented the results of a linkage study of a family that
included nine individuals described to be affected with
ICCA and to share a haplotype between D16S420 and
D16S416. The nine patients had attacks that were trig-
gered not only by excitement and by stresses but also
by sudden movements; the attacks lasted only a few
seconds. In addition, a low dose of phenytoin was ef-
fective in the patients. These characteristics may favor
PKC rather than ICCA, and their map data may support
the PKCR mapped by us (fig. 3).

The RE-PED-WC locus has been assigned to a 4.1-
cM segment between D16S3133 and D16S3131 (fig. 3).
This segment lies within the ICCA critical region but
does not overlap with the PKCR, suggesting that RE-
PED-WC may be allelic to ICCA but that it is not allelic
to PKC. PDC has been mapped to 2q33-q35 (Fink et
al. 1996; Fouad et al. 1996); ENFL1, to 20q13.2 (Phil-
lips et al. 1995); ENFL2, to 15q24 (Phillips et al. 1998);
and CSE, to 1p (Auburger et al. 1996); indicating that
the four regions are definitely excluded from the PKC
locus. Episodic ataxia type 1, which is caused by mu-
tations of the potassium-channel gene KCNA1 (Browne
et al. 1994), was suggested to be associated with PKC
(Gancher and Nutt 1986; Brunt and Van Weerden
1990). However, the localization of KCNA1 to 12p13
(Litt et al. 1994) rules out such an association.

Several disorders representing paroxysmal neurolog-
ical manifestations and/or idiopathic age-dependent
seizures have been known to be caused by mutations
in ion-channel–related genes (Doyle and Stubbs 1998).
In addition, proteins that are associated with cell sig-
naling and neuronal transduction may also play a role
in paroxysmal neurological disorders. Some candidate
genes that have been mapped either between D16S3093
and D16S416 or to a chromosomal region between
16p11.2 and 16q12.1 include the interleukin-4–recep-
tor a-chain gene (IL4R [MIM 147781]), located be-
tween D16S3093 and D16S409 (Human Genome Re-
sources); the adenylate cyclase-7 gene (ADCY7 [MIM
600385]), located between D16S411 and D16S416
(Human Genome Resources); the protein phospha-
tase–4 catalytic subunit gene (PPP4C [MIM 602035]),
located at 16p12-p11; and the monoamine-preferring
sulfotransferase gene (STM [MIM 600641]), located at
16p11.2. Interleukin-4 can modulate neuronal excita-
bility by potentiating the g-aminobutyric-acid type-A-
receptor–mediated inward currents (Rózsa et al. 1997),
and STM-protein is responsible for the sulfate conju-
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gation of monoamine neurotransmitters such as do-
pamine. It remains to be seen whether these genes are
causally related to PKC.
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Généthon, http://www.genethon.fr/ (for microsatellite markers
and genetic distances between the marker loci)

Human Genome Resources, http://www.ncbi.nlm.nih.gov
/genome/guide/ (for radiation hybrid mapping information
of ILR4 and ADCY7)

Online Mendelian Inheritance in Man (OMIM), http://www
.ncbi.nlm.nih.gov/Omim/ for PKC [MIM 128200], infan-
tile convulsions and paroxysmal choreoathetosis [MIM
602066], PDC [MIM 118800], CSE [MIM 601042],
ICCA [MIM 602066], ENFL1 [MIM 600513], ENFL2
[MIM 603204], IL4R [MIM 147781], ADCY7 [MIM
600385], PPP4C [MIM 602035], and STM [MIM
600641])

References

Auburger G, Ratzlaff T, Lunkes A, Nelles HW, Leube B, Bin-
kofski F, Kugel H, et al (1996) A gene for autosomal dom-
inant paroxysmal choreoathetosis/spasticity (CSE) maps to
the vicinity of a potassium channel gene cluster on chro-
mosome 1p, probably within 2 cM between D1S443 and
D1S197. Genomics 31:90–94

Browne DL, Gancher ST, Nutt JG, Brunt ERP, Smith EA, Kra-
mer P, et al (1994) Episodic ataxia/myokymia syndrome is
associated with point mutations in the human potassium
channel gene, KCNA1. Nat Genet 8:136–140

Brunt ER, van Weerden TW (1990) Familial paroxysmal ki-
nesigenic ataxia and continuous myokymia. Brain 113:
1361–1382

Cottingham RW Jr, Idury RM, Schäffer AA (1993) Faster se-
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