
i

ELSEVIE; Theoretical Computer Science 153 (1996) 211-244

Theoretical
Computer Science

Petri nets and bisimulation

Mogens Nielsen *, Glynn Winskel

BRICS’, Department of Computer Science, University of Aarhus, Ny Munkegade, Bldg. 540,
DK-8000 Aarhus, Denmark

Abstract

Several categorical relationships (adjunctions) between models for concurrency have been
established, allowing the translation of concepts and properties from one model to another.
A central example is a coreflection between Petri nets and asynchronous transition Systems.
The purpose of the present Paper is to illustrate the use of such relationships by transferring to
Petri nets a general concept of bisimulation.

0. Introduction

Category theory has been used to structure the seemingly confusing world of
models for concurrency - see [27] for a Survey. The general idea is to formalize that
one model is more expressive than another in terms of an “embedding”, most often
taking the form of a coreflection, i.e. an adjunction in which the unit is an isomor-
phism. The models are equipped with behaviour preserving morphisms, to be thought
of as kinds of simulations. Besides providing an abstract language for expressing
relationships between seemingly very different models, category theory also allows the
translation of constructions and properties between models via adjunctions. For
instance, most process algebra constructs, like parallel and nondeterministic composi-
tion, may be understood in terms of universal constructions, like product and
coproduct. The preservation properties of adjoints are helpful in showing, and
explaining why, semantics is respected in moving from one model to another. A coref-
lection central to this Paper is that embedding asynchronous transition Systems, in the
sense of Bednarczyk [l] and Shields [22], in Petri nets.

The purpose of this Paper is to illustrate the translation of concepts between
models, focussing here on the transference of the concept of bisimulation to Petri nets

* Corresponding author.
’ Centre of the Danish National Research Foundation.

0304-3975/96/%09.50 @ 199cElsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00122-0

212 M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244

from other models. The notion of bisimulation was defined categorically in [8] in
a form directly applicable to a wide range of models equipped with a notion of path.
This general definition takes the form of an existente of a span of open maps. In [S] it
was shown that in the special case of Standard labelled transition Systems with
sequential paths, the definition agrees with the strong bisimulation of Milner [12],
and in the case of event structures with nonsequential paths in the form of pomsets,
the definition yielded an interesting strengthening of the the history-preserving bi-
Simulation introduced by Rabinovich and Trakhtenbrot [20]. Here we show how the
coreflection from other models to nets combined with abstract properties of the
general definition of bisimulation from [8], provides a notion of bisimulation on nets
which automatically inherits a number of important properties.

The main message of this Paper is that the categorical view of models for concur-
rency, like Petri nets, provides guidelines for definitions of concepts like behavioural
equivalences, consistent across a range of models. We illustrate how a notion of
bisimulation tan be read off for nets, and that this Comes automatically equipped
with a number of essential properties. The categorical approach here contrasts
with the more common alternative of searching for a sensible candidate for bisimula-
tion on nets and, having found one then checking it possesses these essential proper-
ties.

A word on our choice of morphisms, which might otherwise seem rather arbitrary.
Objects of our categories will represent processes. Morphisms will represent a rela-
tionship between one process and another. Following [27], the morphisms we focus
on here arise in relating the behaviours of processes and their components in
languages like CCS. In CSS, communication is based on the Synchronisation of
atomic actions. Because of this we tan restritt attention to morphisms which respect
the granularity of actions, in the sense that an action may only he sent to atmost .one
action, and not to a computation consisting.of several actions. As is shown in [27], the
resulting definitions of morphisms are sufficient to express via morphisms the rela-
tionship between a constructed process and its components built up using the
operations of CCS. Conversely, the choice of morphisms also produces universal
constructions which form the basis of a process description language. This language is
a little richer than that of CCS and CSP in the sense that their operations are
straightforwardly definable within it.

1. Models - a coreflection

In this section we introduce the models of Petri nets and asynchronous transition
Systems, and present a coreflection between them. The purpose is mainly to set the
Scene for the main results in the next section, and hence the presentation here focusses
on central definitions and constructions. For further details and all missing proofs we
refer to [27].

M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244 213

1.1. Traktion Systems

Transition Systems are a frequently used model of parallel processes. They consist of
a set of states, with an initial state, together with transitions between states which are
labelled to specify the kind of events they represent.

Definition. A transition System is a structure

(S, i, L, tran)

where
??S is a set of states with initial state i,
??L is a set of labels,
?? tran c S x L x S is the transition relation. As usual, a transition (s, a, s’) is drawn as

s = SI.

It is convenient to introduce idle transitions, associated with any state. This has to
do with our representation of partial functions. We view a partial function from a set
LtoasetL’asa(total)functionA.:Lu{*}~L’u{*}suchthatf(*)=*,where
* is a distinguished element standing for “undefined”. This representation is reflected
in our notation A. : L -+* L’ for a partial function A. from L to L’. It assumes that * does
not appear in the sets L and L’, and more generally we shall assume that the reserved
element * does not occur in any of the sets of the structures we consider. The expected
composition of partial functions is obtained by composing their representations. We
shall identify total functions on a set L with partial functions never yielding * on L.

Definition. Let T = (S, i, L, tran) be a transition System. An idle transition of T typi-
cally consists of (s, *, s), where s E S. Define

tran, = tran u {(s, *, s) 1 s E S}.

Idle transitions help give a simple definition of morphism between transition
Systems.

Definition. Let

T,, = (S,, iO, LO, tranO) and TI = (SI, iI, L1, tranI)

be transition Systems. A morphism f: T,, + TI is a pair f= (cr, A), where

?? a:S,-, -+ Sr, a function between sets of states,
??A: LO +* L1, a partial function between sets of labels, are such that o(iO) = iI and

(s, a, s’) E tranO 3 (a(s), A(a), o(s’)) E traq,.

214 M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244

The intention behind the definition of morphism is that the effect of a transition
with label a in T0 leads to inaction in Tl precisely when 1(a) is undefined. In our
definition of morphism, idle transitions represent this inaction, so we avoid the fuss of
considering whether or not n(a) is defined. With the introduction of idle transitions,
morphisms on transition Systems tan be described as preserving transitions and the
initial state. It is stressed that an idle transition (s, *, s) represents inaction, and is to be
distinguished from the action expressed by a transition (s, a, s’) for a label a.

Transition Systems with morphisms form a category T in which the composition of
two morphisms f= (o,A):To + Tl and g = (a’, A’):T, + Tz is gef= (o’oo,I’o1):
T,, + T, and the identity morphism for a transition System T has the form (ls, lL)
where ls is the identity function on states and lL is the identity function on the
labelling set of T. (Here composition on the left of a pair is that of total functions while
that on the right is of partial functions).

1.2. Petri nets

A Petri net may be Seen as a transition System with an explicit representation of
(global) states as sets of (local) states (usually called conditions). The specific Version
adopted here was introduced in [lO].

Definition. A Petri net consists of (B, MO, E, pre,post), where
B is a set of conditions, with initial marking MO a nonempty subset of B,
E is a set of events, and
pre: E + Bow(B) is the precondition map such that pre(e) is nonempty for all e E E,
pest: E + 9ow(B) is the postcondition map such that Post(e) is nonempty for all

e E E.

A Petri net Comes with an initial marking consisting of a subset of conditions which
are imagined to hold initially. Generally, a marking, a subset of conditions, formalizes
a notion of global state by specifying those conditions which hold. Markings tan
Change as events occurs, precisely how being expressed by the transitions

M = M’

events e determine between markings M, M’. In defin’ing this notion it is convenient to
extend events by an “idling event”.

Definition. Let N = (B, MO, E, pre, Post) be a Petri net with events E.
DefineE,=Eu{*}.
We extend the pre- and postcondition maps to * by taking

pre(*) = 0, pest(*) = 0.

Notation. Whenever it does not Cause confusion we write ??e for the preconditions
pre(e) and e’ for the postconditions, Post(e), of e E E,. We write ‘e’ for ??e u e* .

M. Nielsen, G. Winskell Theoreticd Computer Science 153 (1996) 211-244 215

Definition. Let N = (B, M,,, E, pre, post) be a net. For M, M’ E B and e E E,, define

M 5 M’ iff ??e c M &e’c M’&M\‘e= M’\e’.

Say eo, er E E, are independent iff ‘ei n ‘e; = 0.
A marking M of N is said to be reachable when there is a sequence of events,

possibly empty, eI, e2 . . . e, such that
e, =2 e.

Mo + M1 + ..+ + M, = M

in N. There is contact at a marking M when for some event e, all its preconditions are
marked at M and yet e cannot occur at M:

.e TZ M&e’n(M\‘e)#(b.

A net is said to be Safe when contact never occurs at any reachable marking.

Example. The following is an example of a Standard graphical representation of a safe
net with six events and nine conditions. Notice in particular that events eo and el are
independent, whereas e3 and e4 are not. One of the essential properties of nets is this
possibility of specifying independence amongst events in terms of pre- and post-
conditions.

As morphisms on nets we take:

Definition. Let N = (B, Mo, E, pre, Post) and N’ = (B’, Mb, E’, pre’, Post’) be nets.
A morphism (b, q): N -+ N’ consists of a relation /? c B x B’, such that its opposite
relation /30p c B’ x B is a partial function from B’ to B, and a partial function
q: E -+* E’ such that

ßMo = 6,

ß’e = ‘q(e)

and

ße’ = q(e)‘.

216 M. Nielsen, G. Winskell Theoretical Computer Science 153 (1996) 211-244

Thus morphisms on nets preserve initial markings and events when defined.
A morphism (p, q):N + N’ expresses how occurrences of events and conditions in
N induce occurrences in N’. Morphisms on nets preserve behaviour:

Proposition 1. Let N = (B, M,,, E, pre, Post), N’ = (B’, Mb, E’, pre, Post’) be nets. Sup-
pose (ß, q): N + N’ is a morphism of net.
??Zf M 4 M’ in N then ßM %ßM’ in N’.
??Zf ??e; n 'e; = 0 in N then ‘q(eI)’ n ‘q(ez)’ = 0 in N’.

Proof. By definition,

‘v] (e) = ß’e and q(e)’ = ße’

for e an event of N. Observe too that because ß“P is a partial function, ß in addition
preserves intersections and set differentes. These observations mean that ßM tl(e), ßM
in N’ follows from the assumption that M 5 M’ in N, and that independence is
preserved. 0

Proposition 2. Nets and their morphisms form a category in which the composition of
two morphisms (ß,,, q,,): N,, -) NI and (ßl, ql): NI + N, is (ßl oßO, q1 07~): NO + N2
(composition in the leji component being that of relations and in the right that of partial
functions).

Definition. Let N be the category of nets described above.

Remark. The r-ich structure of conditions on nets leaves room for Variation, and
another definition of morphism gives sensible results on the subclass of “Safe” nets.
A limitation with the above definition of morphism on nets is that it does not permit

. . 66.. . . . all toldmg” morphisms of the kind iliustrated in the exampie beiow.

el

e0

The folding sends each event eo, el , . . . to the common event e, and each condition
bo, bl, . . . to the condition b. By restricting attention to safe nets we tan relax the

M. Nielsen, G. Winskeli Theoretical Computer Science 153 (1996) 211-244 217

definition of morphisms on nets to include foldings, as in [2.5,26], and still parallel the
results of this Paper - see [27] and the remark following Corollary 21.

1.3. Asynchronous transition Systems

Following tradition, the behaviour of a net may be described via its reachable case
graph, i.e. a transition System in which the states are the reachable markings and the
transitions are triples

M = M’

as defined above. The case graph of our previous net example will be as follows:

ez

Notice how the event pairs (eo, er) and (e3, e4) give rise to the same kind of
diamonds in the underlying transition System. Hence, in Order to get a representation
of the important distinction between the pairs in terms of independence, we need to
add some structure to the notion of case graph, here indicated by the Z in the
independent diamond. This is exactly the motivation behind asynchronous transition
Systems, as introduced independently by Bednarczyk [l] and Shields [22]. The idea
on which they are based is simple enough: extend transition Systems by, in addition,
specifying which transitions are independent of each other. More accurately,
transitions are to be thought of as occurrences of events which bear a relation of
independence.

Definition. An asynchronous transition System consists of (S, i, E, I, tran), where
(S, i, E, tran) is a transition System, Z c E ‘, the independence relation is an irreflexive,
symmetric relation on the set E of euents such that

(1) e E E =z- 3s, s’ E S. (s, e, s’) E tran,
(2) (s, e, s’) E tran & (s, e, s”) E tran = s’ = s”,
(3) elZe2dz(s, el, sl) E tran&(sl, e2, u)E tran

==- 3s2. (s, e2, s2) E tran & (s2, e, , u) E tran.
Say an asynchronous transition System is coherent if it also satisfies

(4) elZe2&(q el, sl) E tran&(s, e2, s2)E tran
* 5. (sl, e2, u) E tran&(s2, el, u) E tran.

218 M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244

Axiom (1) says every event appears as a transition, and axiom (2) that the occurrence
of an event at a state leads to a unique state. Axioms (3) and (4) express properties of
independence: if two independent events tan occur one immediately after the other
then they should be able to occur with their Order interchanged (3); if two events tan
occur independently from a common state then they tan occur together and in so
doing resch a common state (4). Both situations lead to an “independence Square”
associated with the independence eIlez:

7-\
-\; ??s2

e2

Morphisms between asynchronous transition Systems are morphisms between their
underlying transition Systems which preserve the additional relations of indepen-
dence.

Definition. Let T = (S, i, E, Z, tran) and T’ = (s’, i’, E’, 1’, tran’) be asynchronous
transition Systems. A morphism T + T’ is a morphism of transition Systems

(a, q):(S, i, E, tran) + (S’, i’, E’, tran’)

such that

eIZel &q(er), q(ez) both defined * r(eI)l’q(ez).

Morphisms of asynchronous transition Systems compose as morphisms between their
underlying transition Systems, and are readily seen to form a category.

Definition. Let A be the category of asynchronous transition Systems.

1.4. Asynchronous transition Systems and nets

1.4.1. An adjunction
There is an adjunction between the categories A and N.’ First, we note there is an

obvious functor from nets to asynchronous transition Systems, that associated with
the case graph of a net.

‘The adjunction between coherent asynchronous transition Systems and nets is shown in detail in [27]; to
which the reader tan refer for missing details (including missing proofs) in this section - the argument is
virtually unaffected when working with the broader category of all asynchronous transition Systems.

M. Nielsen, G. Winskel/ ‘I’heoretical Computer Science 153 (1996) 211-244 219

Definition. Let N = (B, Mo, E, ‘(), ()‘) b e a net. Define na(N) = (S, i, E, Z, tran), where

S = Bow(B) with i = MO,

e, Ie, 0 ‘e; n ‘e; = 0,

(M, e, M) E tran o M = M’ in N, for M, M’ E Bow(B).

Let (8, q): N + N’ be a morphism of nets. Define

where a(M) = /IM, for any M E Bow(B).
It may be shown [27] that na is indeed a functor, and that the construction na(N),

for a net N, yields a coherent asynchronous transition System.
As a preparation for the definition of a functor from asynchronous transition

Systems to nets we examine how a condition of a net N tan be viewed as a subset of
states and transitions of the asynchronous transition System na(N). Intuitively, the
extent I.b(of a condition b of a net is to consist of those markings and transitions at
which b holds uninterruptedly. In fact, for simplicity, the extent 1 b 1 of a condition b is
taken to be a subset of tran,, the transitions (M, e, M’) and idle transitions (M, *, M) of
na(N); the idle transitions (M, *, M) play the role of markings M.

Definition. Let b be a condition of a net N. Let tran be the transition relation of na(N).
Define the extent of b to be

Jbl= {(M,e, M’)Etran,(bEM&bEM’&b$‘e’}.

Not all subsets of transitions tran, of a net N are extents of conditions of N. For
example, if (M, e, M’) # (b 1 and (M’, *, M’) E) b 1 for a transition M 3 M’ in N this
means the transition Starts the holding of b. But then b E e* so any other transition
P 3 P’ must also Start the holding of b. Of course, a condition cannot be started or
ended by two independent events because, by definition, they tan have no pre- or
postcondition in common. These considerations motivate the following definition of
condition of a general asynchronous transition System. The definition is a generaliz-
ation of the notion of regions for transition Systems introduced by Ehrenfeucht and
Rozenberg [17].

Definition. Let T = (S, i, E, Z, tran) be an asynchronous transition System. Its condi-
tions are nonempty subsets b c tran, such that

(1) (s, e, s’) E b * (s, *, s) E b &(s’, *, s’) E b
(2) (i) (s, e, s’) ??‘b &(u, e, u’) c tran * (u, e, u’) ~*b

(ii) (s, e, s’) E b’ & (u, e, u’) E tran =z. (u, e, u) E b
where for (s, e, s’) E tran we define

ayt?la~,~~o ,q ~UEJJO qsuogrpuo~~o~ aJaqm(k‘~) = (~‘o)uvauyaa.suIa3s6suo!l!su~~)
snouoJyXIAsE JO uIsyl.Iom '1! aq ,J tJ:(h‘D) Ja? .J U! ??a =(a)wXf put! a,= (a)ard

'a.! ‘J u! suogmado WpuodsarJog ay$ 6q ua@ sdmu uoypuowod put! -ald IJI!M

‘(1)~ = 0~ 2~0 suo~~~puo3~o las aql aq 01 g%.rgtz~ Aq(~Sod‘ard‘~‘"~‘~)=(~)~u

auyaa *uxa~.sLs uoysuaq snouo.ymh ut? aq (uvr?‘~‘g‘~‘~)=~ Ia? woppyaa

4 9 3 (LG ‘W ‘W I *UV11 3 (,s ‘a ‘s)} = qr_(L ‘D)

auyap ‘~24~ 5 q 10~ f,uv.u ‘,~‘,g ‘,! ‘,s) = ,J pue (uvri ‘1 'y'? ‘s) =J mal

-sh uoysue.~~ snouo.~yxrAse uaamaq uyqdlow e aq ,J c J : (& ‘D) Ja? wop!oyaa

S! I

(,W349.~.3q)~o(,N3q??N~q) *

,N3qT(.~.$q78,~3q2?~3q)~ *

lql3(r~‘*‘rY\I)~lql~(,~“a‘~) * l4l.~(,kt!“a‘Jv)
:(.nqp!s s! (II)JO Joold ayl) (1) aAo.Id aM yooJd

‘N Uz ,m f m .lt%li%4a~M

‘3.3 4 * .lql 3 (,w ‘a 34) 01)
.~~q*lql.~(,Jv‘~‘tv~ (1)

‘raaoa.io~
‘(N)VU j0 UOfl?pUO3 V Sj 141 1242lXiY SI1 ‘q UO~l!pUO2 D Y1?4 F’U 27 aq N 1~97 ‘C WUIIIa~

‘{q 3 (s ‘* ‘s)lg 3 q} = (s)yu auyap ‘s 3 s 10~ ‘layyng

('0 = .*. wyl a1ohI)

'.a n a, = -2.

‘{.q 3(,S ‘8 ‘S)',S‘SE)fJ 3 q} = a,

‘(qV3(,S‘2 ‘S)',S‘SE)8 3 q} = .a

auyap ‘*g3a JOB *J JO suop~puo3~o las ayj aq 8 Ia?

-Zamba L-z= -4.3 (,n ‘Za ‘n)Yg ??q,3 (,s ‘1, ‘S) (6)

72 n 4. = .4.

M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244 221

It may be shown that an as defined is indeed a functor, [27]. Let us illustrate here how
a net is produced from an asynchronous transition System.

Example. Consider the following asynchronous transition System T with two inde-
pendent events, 1 and 2:

It has these conditions, where those transitions in the condition are represented by
solid arrows:

Consequently, the asynchronous transition System T yields this net an(T):

Theorem 4. The jiunctors an : A + N and na : N + A ferm an adjunction with an left
adjoint to na.

1.4.2. A corejlection
Neither A nor N embeds fully and faithfully in the other category via the functors of

the adjunction. This accompanies the facts that neither unit nor counit is an isomor-
phism (see [9, p. 883); in passing from a net N to an 0 na(N) extra conditions are most

222 M. Nielsen, G. Winskel/ Theoretical Computer Science 1.53 (1996) 211-244

often introduced; the net an 0 na(N) is always safe even though N is not, as we will see.
While passing from an asynchronous transition System T to na 0 an(T) tan, not only
blow-up the number of states, but also collapse states which cannot be separated by
conditions; in addition, the asynchronous transition System na 0 an(T) is always
coherent even though T is not.

A (full) coreflection between asynchronous transition Systems and nets tan be
obtained at the tost of adding three axioms. Let Ao be the full subcategory of
asynchronous transition Systems T = (S, i, E, Z, trun) satisfying the following.

Axiom 1. Every state is reachable from the initial state, i.e. for every s E S there is
a chain of events er, e,, possibly empty, for which i ” “‘en+ s, where i is the initial
state.

Axiom2. M(u)=M(s)du=s,foralls,uES.

Axiom 3. ??e c M(s) =a 3s’.(s, e, s’) E trun, for all s E S, e E E.

There is a close similarity to the regional axioms characterizing the case graphs of
elementary net Systems in terms of the regional axioms of Ehrenfeucht and Rozenberg,
as presented in [17]. Axioms 2 and 3 enforce two Separation properties. The con-
traposition of Axiom 2 says

U # s * M(u) # M(s),

i.e. that if two states are distinct then there is a condition of T holding at one and not
the other.

Asynchronous transition Systems satisfying Axiom 3 are necessarily coherent.

Proposition 5. If an usynchronous transition System T sutisfies Axiom 3 then T is
coherent.

Proof. Suppose eIZez and (s, eI , sr), (s, e,, s2) are transitions in T. Let b be a condition
of T which e2 exits, so, in particular, (s, *, s) E b and (s, ez, s2) $ b. As er Iez, the
condition b must contain (s, eI, sl) and so (sr, *, sl). Thus ??e2 E M(s,). Axiom 3 now
provides a transition (sr, e2, u). Property (3) in the definition of asynchronous
transition Systems together with property (1) (determinacy) now ensure coherence.

??

Because the conditions of an asynchronous transition System support an Operation
of complementation (explained in [27]), Axioms 2 and 3 hold for any asynchronous
transition System na(N) got from a net N, but obviously Axiom 1 does not - we need
further to make all states reachable. But here we note that the subcategory of
asynchronous transition Systems in which all states are reachable is coreflective in A.
The right adjoint to the inclusion functor, W, defined below, restricts to reachable

M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244 223

states. Its composition with na yields the right adjoint of the coreflection between Ao
and N.

Definition. Let AR be the full subcategory of A consisting of asynchronous transition
Systems (S, i, E, Z, trun) satisfyinfg Axiom 1, i.e. so that all states s are reachable.

Let W act on an asynchronous transition System T = (S, i, E, Z, tran) as follows:

B(T) = (S’, i’, E’, Z’, tran’),

where

S’ consists of all reachable states of T,

E’ = {e E E 13, s’ E S’. (s, e, s’) E tran},

Z’ = Z n {E’ x E’),

tran’ = trun n (S’ x E’ x S’).

For a morphism (cr, q): T + T’ of asynchronous transition Systems, define
B(a, 9) = (cr’, q’) where (r’ and q’ are the restrictions of cr and q to the states,
respectively events, of W(T).

We need the notion of reuchuble extent of a condition. This consists essentially of
the reachable markings and transitions at which b holds uninterruptedly.

Definition. Let N be a net. Let trun, be the transitions and idle transitions of
W 0 na(N). Define

IblR = Ib(n trun,.

And finally we tan state the main result of this section, quoted from [27].

Theorem 6. DeJining na0 = 9 0 na, the composition of fimctors, yields u jiinctor
na, :N -+ Ao which is right udjoint to uno: Ao + N, the restriction of un to Ao.

The unit at T = (S, i, E, Z, trun) E Ao is an isomorphism

(o, 1,): T -) nuOOunO(T),

where a(s) = M(s) for s E S, muking the udjunction u coreflection.
The counit at a net N is

(fl, l,):uno~nuo + N,

where

cßb iflO#c=lblR

between conditions c of nuo(N) und b of N.

One consequence of the coreflection is that any net N tan be converted to a safe net
an0 0 na0 (N) with the same behaviour, in the sense that there is an isomorphism

224 M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244

between the reachable asynchronous transition Systems the two nets induce under
nao, for details see [27]. Another is that Ao has products and coproducts given by the
same constructions as those of A.

The coreflection Ao + N cuts down to an equivalence of categories by restricting to
the appropriate full subcategory of nets.

Definition. Let No be the full subcategory of saturated nets, i.e. nets such that

b H [b(R

is a bijection between conditions of N and those of na,(N).

The nets in No are saturated with conditions in the sense that they have as many
conditions as is allowed by their reachable behaviour and independence (regarded as
an asynchronous transition System), see [27].

Theorem 7. The finctor an restricts to a jiunctor ano: Ao -+ No. The jiinctor 90 na
restricts to a jiinctor nao: No + Ao. The functors ano, na0 form an equivalence of
categories.

1.5. Unfolding

There is a well-known Operation of unfolding a transition System to a tree whose
branches consist of sequences of occurrence of transitions that tan be performed
starting from the initial state. The Operation in fact arises automatically as a right
adjoint, part of a coreflection, between categories of synchronisation trees and
transition Systems. In more detail, define S, the category of synchronisation trees, to be
the full subcategory of transition Systems whose objects satisfy:
?? every state is reachable.
?? the transitive closure of the transition relation is acyclic, and
??s’ 3 S&S” 5 s = a = b&s’ = s”.
The inclusion functor st:S L) T has as right adjoint the functor ts:T -) S which on
objects T = (S, i, L, tran), a transition System, yields the synchronisation tree
ts(T) = (S’, i’, L, tran’) where:
??The set S’ consists of all finite, possibly empty, sequences of transitions

(t lz*.*, tj, tj+l,-.., tn-l)

such that tj = (Sj_ 1, Uj, Sj) and tj+ 1 = (Sj, aj+ 1, sj+ 1) whenever 1 < j < n. The
element i’ = (), the empty sequence.

??The set tran’ consists of all triples (u, a, v) where u, v E S’ and u = (ui, . . ., uJ,
u = (Ul, . ..) uk, (s, a, s’)), obtained by appending an a transition to u.

The transition System T unfolds to a synchronisation tree whose states and arcs
represent occurrences of states and transitions.

M. Nielsen, G. Winskell Theoretical Computer Science 153 (1996) 211-244 225

What is the analogue of unfolding for models like Petri nets and asynchronous
transition Systems? This time the notion of occurrence should take account of the
independence present in these more detailed models. Several answers have been
proposed, Mazurkiewicz trace languages [lO], occurrence nets [16] and event struc-
tures [161, though they are all closely related. Here we focus on one, event structures.

The events of an event structure are to be thought of as representing individual
occurrences of actions of a System. The structural Parts of an event structure are
intended to Capture the causa1 and nondeterministic aspects of such computations:

Definition. Define an event structure to be a structure (E, <, Con) consisting of a set
E, of events which are partially ordered by Q, the causa1 dependency relation, and
a consistency relation Con consisting of finite subsets of events, which satisfy

{e’) e’ d e> is finite,

{e} E Con,

Y E XECon 3 YECon.

XECon&e<e’EX*Xu{e}ECon,

for all events e, e’ and their subsets X, Y.
We say two events e, e’ E E are concurrent, and write e CO e’, iff

(e Q e’ & e’ 6 e & (e, e’} E Con).

The finiteness assumption restricts attention to discrete processes where an event
occurrence depends only on finitely many previous occurrences. The axioms on the
consistency relation express that all singletons of events are consistent, and that the
relation is closed under subsets and downwards with respect to the causa1 dependency
relation.

Say an event structure E = (E, <, Con) is coherent if the consistency relation Con is
determined by consistency on pairs of events, or alternatively if there is a, necessarily
unique, binary conflict relation # on events such that

X E Con 0 VeI, e2 EX. 7el # e2.

We tan describe coherent event structures by a triple (E, <, #) where, as before, E is
a set of events partially ordered by a causa1 dependency relation <, and #, the
conjlict relation, is a binary, symmetric, irreflexive relation on events, which satisfy

{e’ 1 e’ Q e> is finite,

e # e’ < e” * e # e”

for all e, e’, e” E E. The property of #, that two events causally dependent on
conflicting events are themselves in conflict, follows from those of Con. We shall take
the liberty of identifying (E, <, #), presenting a coherent event structure, with the

226 M. Nielsen, G. Winskell Theoretical Computer Science 153 (1996) 211-244

associated event structure (E, <, Gon); in other words, (E, <, #) should be under-
stood as referring to the event structure (E, G, Con) it determines.

To understand the “dynamics” of an event structure (E, < , Gon) we show how an
event structure determines an asynchronous transition System (S, i, E, Z, tran). Guided
by our interpretation we tan formulate a notion of computation state of an event
structure (E, 6, Con). Taking a computation state of a process to be represented by
the set x of events which have occurred in the computation, we expect that

e’Ex&e<e’*eEx

- if an event has occurred then all events on which it causally depends have occurred
too - and also that

vx E”“x.XECon

- all finite subsets of events in the same computation are consistent. Let C(E, <, #)
denote the subsets of events satisfying these two conditions, traditionally called the
conjgurutions of the event structure. We let S be the set of finite configurations and
i the empty configuration.

Events manifest themselves as atomic jumps from one configuration to another.
For configurations x, x’ and event e, define

(x,e,x’)Etran 0 e$x&x’=xu{e}.

We take two events to be independent in the asynchronous transition System iff
they are concurrent in the event structure, i.e.

eile2 0 elcoe2.

It is easy to see that this indeed defines an asynchronous transition System,
T = (S, i, E, Z, tran) from the event structure E = (E, <, Con). Furthermore, a coher-
ent event structure gives rise to a coherent asynchronous transition System. The
construction, which we cal1 ea, identifying an event structure with an asynchronous
transition System, extends to a functor with the following definition of morphisms for
event structures:

Definition. Let E = (E, <, Con) and E’ = (E’, <‘, Con’) be event structures. A mor-
phism from E to E’ consists of a total function v:E + E’ on events which satisfies

if x E C(E) then qx E C(E’) & Veo, el E x.q(e,) = q(el) * eo = el .

Write E for the category of event structures; composition is the usual composition
of partial functions. Write Eo for the subcategory of coherent event structures.

The construction eu extends to a full and faithful functor:
Let q: E + E’ be a morphism of event structures; it determines a morphism

eu(q) = (a, q):eu(E) + eu(E’)

M. Nielsen, G. Winskel/ Theoreticnl Computer Science 153 (1996) 211-244 221

in which o(x) = qx, simply the direct image of a configuration x under 4. The
“inclusion” functor ea:E + A has a right adjoint ae:A -) E unfolding an asyn-
chronous transition System to an event structure, forming a coreflection. We shall not
go into the details of the construction of a right adjoint here, referring the reader to
[27]; there it is shown how an asynchronous transition System determines a Mazur-
kiewicz trace language (easy) from which an event structure is obtained (harder).3 The
coreflection cuts down to one between the subcategory of coherent event structures
and the subcategory of coherent asynchronous transition Systems. In fact, the coref-
lection also cuts down to one, eao:Eo -+ Ao, aeo : Ao -) Eo. This is because it is easy
to construct a net from a coherent event structure so that both induce the
same asynchronous transition System (see [16,27]); hence, images of Eo under ea lie
in Ao.

2. Labelled models and bisimulation

The coreflections of the previous sections enable us to place Petri nets within
a broader picture of models for concurrency - [27] gives a fuller view. They allow us
to apply to nets a general notion of bisimulation, obtained from a span of open maps,
proposed in [8].

2.1. Labelled models and their relationship

Like most models for concurrency, nets [18] and asynchronous transition Systems
[14], or more precisely their labelled Versions, have been used as models for process
languages like CCS, [12]. As an illustration, following [lS], the CCS expression
a.nill b.nil is represented by the labelled net:

3 In truth, this is only shown in detail for coherent structures in [27], though the slight generalisation, when
coherence is not assumed. is also indicated there.

228 M. Nielsen, G. Winskell Theoretical Computer Science 153 (1996) 211-244

In contrast the (strongly bisimilar) expression a.b.nil + b.a.nil is represented by

b

There is a general way of introducing labels to models in such a way that one may
carry over adjunctions between unlabelled models to their labelled counterparts. Here
we Sketch the idea, applicable to the categories of nets, asynchronous transition
Systems and event structures. We assume a category X of structures each of which
possesses a distinguished set of events and where morphisms have as a component
a partial function between sets of events.

(i) Add to structures X an extra component of a (total) labelling function 1: E + L
from the structure’s set of events E to a set of labels L; we obtain labelled structures as
pairs (X, 1).

(ii) We assume morphisms f: X + X’ of unlabelled structures include a component
q between sets of events. A morphism of labelled structures (X, 1) + (X’, 1’) is a pair
(f, n) where f:X -) X’ is a morphism on the underlying unlabelled structures and
A: L -+* L’ is a partial function on the label sets such that A. 0 I = l’ 0 q. Composition of
morphisms is done coordinatewise.

Morphisms between labelled structures are of this generality in Order to obtain
operations of process calculi as universal constructions. However, for our purpose of
studying bisimulation, it suffices to work with subcategories of structures having
a common set of labels L, and restritt to morphisms as above, but with the extra
condition that the component A is the identity on L - this implies that the event
component r] is total. We cal1 the resulting category XL; this subcategory is the fibre
over L with respect to the obvious functor projecting labelled structures to their label
Sets. For emphasis:
??The objects of XL consist of structures (X, 1) where X is an Object of X, and 1: E + L

is a (total) labelling function from E the events of X to the labelling set L
??The morphisms of XL from (X, 1) to (X’, r’) correspond to morphisms f :X + X’ of

X of which the event component q preserves labels, i.e. 1’ 0 n = 1.
Correspondingly, for a set of labels L, we denote the fibres over L in the labelled

Versions of our categories of nets, asynchronous transition Systems and event struc-
tures by NL, AL, AE and EE respectively. Similarly the category of transition Systems
over label set L, with morphisms having the identity as label component, will be
denoted TL, and its full subcategory of Synchronisation trees SL. We remark that
synchronisation trees tan be identified with those event structures having empty
co-relation.

M. Niefsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244 229

It follows for general reasons [27] (and is easy to See) that the adjunction and
coreflection between nets and asynchronous transition Systems lifts to a coreflection
between the labelled Versions. The modified adjoints are essentially the adjoints
presented in the previous sections, simply carrying the label Parts across from one
model to the other. Furthermore, this coreflection is part of a collection of coreflec-
tions as in the diagram below.

SI. -% T,

Se 1

These are accompanied by the coreflection ea:EL -) AL between labelled event
structures and asynchronous transition Systems in general. When specifying a functor
of one of the coreflections above, we adopt a convention; for example, the left adjoint
from SL to TL is denoted st while its right adjoint is ts. The left adjoints, drawn above,
embed one model in another. We have deliberately overloaded notation, and, for
instance, used an0 also for the labelled version of the embedding of AZ into NL. For
details of the other coreflections we refer to [27]. The composition of right adjoints
ne = aeo 0 na0 yields the unfolding of nets into event structures, familiar from [16]
(though the functor adds an extra marked isolated condition). Coreflections compose so
the composition of left adjoints en = an o 0 eao forms a coreflection with right adjoint ne.
For readers familiar with net theory, we mention that for a net N, en0 ne(N) is simply
the saturated version of the net unfolding of N as defined in [16]. Irritatingly, there are
not coreflections from transition Systems TL to the categories of labelled nets NL or
asynchronous transition Systems AL or Ai. This is simply because, unlike transition
Systems, both labelled nets and labelled asynchronous transition Systems allow more
than one transition with the same label between two states. This Stops the natura1
bijection required for the “inclusion” of transition Systems to be a left adjoint.

2.2. Path-l$ting morphisms

In this section we briefly present some of the main ideas, definitions and results from
[S], providing a general notion of bisimulation applicable to a wide range of models.
For the missing proofs we refer to [SI.

Informally, a computation path should represent a particular run or history of
a process. For transition Systems, a computation path is reasonably taken to be
a sequence of transitions. Let us suppose the sequence is finite. For a labelling set L,
define the category of branches Brao, to be the full subcategory of transition Systems,
with labelling set L, with objects those finite Synchronisation trees with one maximal
branch; so the objects of Bram_. are essentially strings over alphabet L. A computation
path in a transition System T, with labelling set L, tan then be represented by
a morphism

p:P-+ T

230 M. Nielsen, G. Winskell Theoretical Computer Science 153 (1996) 211-244

in TL from an Object P of BranL. How should we represent a computation path of a net
or an event structure? To take into account the explicit concurrency exhibited by an
event structure, it is reasonable to represent a computation path as a morphism from
a partial Order of labelled events, that is from a pomset. Note that Pratt’s pomsets, with
labels in L, tan be identified with special kinds of labelled event structures in EL, those
with consistency relation consisting of all finite subsets of events. Define the category
of pomsets PomL, with respect to a labelling set L, to be the full subcategory of
EL whose objects consist exclusively of finite pomsets. A computation path in an event
structure E, with labelling set L, is a morphism

p:P-, E

in EL from an Object P of Pom,. What about computation paths in nets? The left
adjoint an0 0 eao of the coreflection EL -) NL embeds labelled event structures, and so
pomsets, in labelled nets. This enables us to identify pomsets P in PomL with their
images an0 0 eao (P) as labelled saturated nets in NL. Now, we tan take a computation
path in a net N, with labelling set L, to be a morphism

p:P+ N

in NL from a pomset P, with labelling set L - where the pomset P is understood as the
corresponding labelled saturated net in NL. In future, when discussing nets, we will
deliberately confuse pomsets with their image in N, under the embedding.

Generally, assume a category of models M (this tan be any of the categories of
labelled structures we are considering) and a choice of path category, a subcategory
P ~f M consisting of path objects (these could be branches, or pomsets) together with
morphisms expressing how they tan be extended. Define a computation path in an
Object X of M to be a morphism

p:P + x,

in M, where P is an Object in P. A morphism f:X + Y in M takes such a path p in
X to the path fo p: P -) Y in Y. The morphism f expresses the sense in which
Y simulates X; any computation path in X is matched by the computation path f 0 p
in Y.

We might demand a stronger condition of a morphism f :X + Y expressed suc-
cinctly in the following path-lifting condition:

Whenever, for m: P + Q a morphism in P, in a “Square”

P p.X

ml Ir
Q 4’Y

M. Niefsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244 231

in M commutes, i.e. 4 0 m = f 0 p, meaning the path fo p in Y tan be extended via m to
a path q in Y, then there is a morphism p’ such that in the diagram

the two “triangles” commute, i.e. p’ 0 m = p and fo p’ = q, meaning the path p tan be
extended via m to a path p’ in X which matches q. When the morphism f satisfies this
condition we shall say it is P-open.

It is easily checked that P-open morphisms include all the identity morphisms (in
fact, all isomorphisms) of M and are closed under composition there; in other words
they form a subcategory of M.

For the well-known model of transition Systems open morphisms are already
familiar:

Proposition 8. With respect to a labelling set L, the Braq-open morphisms of TL are the
“zig-zag morphisms” of [23], the “p-morphism” of [21], the “abstraction homomor-
phisms” of [3], and the “pure morphisms” of [2], i.e. those label-preserving morphisms
(a, 1,): T + T’ on transition Systems over labelling set L with the property that for all
reachable states s of T

if o(s) z s’ in T’ then s 5 u in T and o(u) = SI, for some state u of T.

Let us return to the general set-up, assuming a path category P in a category of
models M. Say two objects X1, Xz of M are P-bisimlar iff there is a span of P-open
morphisms fi , fi :

For the interleaving models of transition Systems and synchronisation trees with
path category P taken to be branches, P-bisimulation coincides with Milner’s strong
bisimulation:

Theorem 9. Two transition Systems (and so synchronisation trees), over the Same
labelling set L, are Bran,-bisimilar ifs they are strongly bisimilar in the sense of [12].

Clearly, in general, the relation of P-bisimilarity between objects is reflexive (identi-
ties are P-open) and symmetric (in the nature of spans). It is also transitive provided
M has pullbacks, and so an equivalence relation on objects, by virtue of the following
fact.

Proposition 10. Pullbacks of P-open morphisms are P-open.

232 M. Nielsen, G. Winskell Theoretical Computer Science 153 (1996) 211-244

Transitivity of P-bisimilarity is clear for M with pullbacks; two spans of open
morphisms combine to form a span by pulling back from their vertices, as we tan do
for all the models we consider:

Proposition 11. The categories TL, SL, N,, Ai, A,, and EL haue pullbacks.

Proof. We show that NL has pullbacks. There are coreflections from all categories
SL, EL, AE into Nr_. Using the fact that right adjoints preserve limits, and pullbacks in
particular, we obtain pullbacks in any of SL,. EL, AE as images under the right
adjoints of the pullback in NL of diagrams transported into NL by the left adjoints.
Because there are not coreflections from the categories TL and AL into nets, they
require separate (though simple) treatments (or see [SI).

We construct pullbacks in N L explicitly in the following way. Suppose
fi = (aI, rlr):Nr -) NO and _/z = (oz, rlz):Nz -t NO are morphisms in NL, where

Ni = (Bi, Miy Ei, prei, postiy li), i = 0, 1, 2.

We want to construct a pullback N = (B, M, E, pre, pest, l), zl, q:

N 112 N2

=1 1 Ir2
NI fl No

The construction of the events of N, E, is based on pullbacks in the category of Sets:

E = {(el,e2)E& xE2lvlh) = v2@2)).

The construction of the conditions of N, B is based on pushouts in the category of sets
with partial functions. Let R denote the equivalence relation on BI u Bz generated by
Ro, where

b, Robz iff there exists b. in B. such that /?r (b,) = bl and p2(b0) = bz.

We define

B = the equivalence classes, c, of R, satisfying B?(c) = /31p(c).

And with these events and conditions of N we let

M = (CEBJC c M1 u Mz},

post((el,e2)= {cEBlc G postl(el)upost2(e2)},

Qh,e2)) = 463) (=/2@2)).

M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244 233

And finally we define the components rc i = (Fr, Vi) and xz = (Bz, f2) of the pullback
as follows:

Bi&) = the R-equivalence class of bi if this belongs to B, undefined otherwise.

We leave it to the reader to check that these constructions indeed define a pullback in
N, as required. All the required properties follow by simple calculations. 0

Corollary 12. For all the model categories mentioned in previous proposition, and for all
path categories, PL, the relation of PL-bisimilarity is an equivalence.

Finally, we present a few general facts from [S] about how open morphisms and
bisimilarity are preserved and reflected by functors, especially when part of a coreflec-
tion. For notational simplicity we shall assume the left adjoints of the coreflections are
inclusions. It follows that for the coreflections of Section 2.1 in which the two
categories of models share the same choice of path category, open morphisms and
bisimilarity are preserved in both directions of the adjunction.

Proposition 13. Let M be a jiull subcategory of N, and P a subcategory of M.
A morphism f of M is P-open in M iff f is P-open in N.

Lemma 14. Let M be a coreJlective subcategory of N with R right adjoint to the
inclusion function MLI N and P a subcategory of M. Then:

(i) A morphism f of M is P-open in M ifl f is P-open in N.
(ii) The components of the counit of the adjunction Er: R(X) + X are P-open in M.

(iii) A morphism f is P-open in N ifs R(f) is P-open in M.

Corollary 15. Let M be a corefiective subcategory of N with R right adjoint to the
inclusion function MC-I N and P a subcategory of M. Then:

(i) M,, M2 are P-bisimilar in M ifs M1, M2 are P-bisimilar in N.
(ii) N,, N2 are P-bisimilar in N iff R(N,), R(N,) are P-bisimilar in M.

Proof. (i) Directly from (i) of Lemma 14.
(ii) “only if”: By Lemma 14(iii), a span of open morphisms in N has, as image under

R, a span of open morphisms in M. Thus P-bisimilarity of Nr, Nz in N implies
P-bisimilarity of R(N,), R(N2) in M.

“ij? Suppose R(N,), R(N,) in M are P-bisimilar in M via a span of open
morphisms fi: M + R(N,), fi: M + R(N,) in M. By Lemma 14(i), fi, f2 form a span
of open morphisms in N. The components of the counits of the coreflection
Er : R(N,) + NI and Er: R(N,) + N2 are open by Lemma 14(ii). Hence the composi-
tions s1 0 fi , c2 0 fi form a span of open morphisms in N showing the P-bisimilarity of
N1,NzinN. 0

234 M. Nielsen, G. Winskel/ Theoretical Computer Science I.53 (1996) 211-244

2.3. PomL-bisimulation for nets

We have already seen (Lemma 8, Theorem 9) that for the well-known model of
transition Systems, the general definition of P-open morphism and P-bisimilarity
coincide with familiar notions; in particular, we recover the equivalence of strong
bisimilarity central to Milner’s work. Here we explore how the general definitions
specialise to the models of event structures and nets, with nonsequential observations
in the form of pomsets.

We Start by characterising PomL-open morphisms on labelled asynchronous
transition Systems. Following our convention, we shall identify pomsets with their
image under the embedding EL + AL.

Proposition 16. The Pom,-open morphisms of AL are precisely those which satisfy the
“zig-zag” condition of Proposition 8 and which, in addition, reflect consecutive indepen-
dence, i.e. morphisms satisfying:

n is total and label preserving
whenever (o(s), e’, u’) E tran2 then there exists (s, e, u) E trant such that r,+(e) = e’ and

o(u) = u’
whenever (s, e, u), (u, e’, v) E traq, with s reachable, and n(e)Izn(e’) in T2, then elte’

in Tl.

Proof. The proof of this proposition is a straightforward modification of the proof of
the corresponding result from [S]. We are going to refer to Parts of this proof later,
and so present a part in some detail.

Let f = (cr, q): T + T’ be an open morphism in AL. The function q is total and label
preserving from definition of morphisms in AL, and by considering linear pomsets,
where causa1 dependency is a total Order, it is clear as in Proposition 8, that f satisfies
the “zig-zag” condition. The only nontrivial part is the reflection of consecutive
independence.

Suppose

s=u and u 5 v

with s reachable, are two consecutive transitions in T for which

CJ(S)~O(U) and a(u)~cr(v)

and assume q(e) and q(e’) are independent in T’. Assume further l(e) = l(n(e)) = a and
l(e’) = l(n(e’)) = a’.

Because s is reachable there is a chain of transitions

e1 e2
1 = so 4 .yl + . . . e; s, = s

in T from its initial state i. Assume l(ei) = ai. Let P be the linear pomset with n + 2
elements, ordered and labelled as indicated in the foilowing associated labelled

M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244 235

asynchronous transition System (only labels indicated for the transitions):
01 a2 0” 11’ .+.+.*...+.G.-+.

Let p: P + T be that morphism in AL which maps this chain of transitions to

SO e: sr e: e” e’ . . . -+s=ll+u

in T. Let Q be the pomset differing from P only in that the a and a’ labelled elements
are unordered, i.e. the pomset associated with the following labelled asynchronous
transition System:

Let q: Q + T’ be that morphism in AL mapping these transitions to

in T’. Letting m:P + Q be the obvious morphism of pomsets, we observe the
commuting diagram:

P p.T

ml Ir
Q,T

But f is open, so
commute in:

we obtain a morphism p’:Q + T such that the two “triangles”

Because p’ preserves independence, we see that e and e’ are independent in T. So
because f is open it satisfies the “zig-zag” condition and reflects consecutive indepen-
dence.

For the proof in the other direction we refer to [S]. 0

And now to the question of bisimulations. In [S] it was shown that in the case of
event structures taking the path category P to be pomsets one gets a reasonable
strengthening of a previously studied equivalence, that of history-preseruing bisimula-
tion. Its definition depends on the simple but important remark, that a configuration

236 M. Nielsen, G. Winskell Theoretical Computer Science 153 (1996) 211-244

of an event structure tan be regarded as a pomset, with causa1 dependency relation
and labelling got by restricting that of the event structure.

Definition (Rabinovich-Trakhtenbrot [20], van Glabeek-Goltz [SI). A history-
preserving bisimulation between two event structures El, E2 consists of a set H of
triples (xi, f, x2), where xi is a configuration of El, x2 a configuration of E2 and f is
a isomorphism between them (regarded as pomsets), such that (fl,@, 0) EH and,
whenever (xl ,f; x2) E H

(i) if x1 4 x; in El then x2 3 xi in E2 and (x;,f’, x2) EH with f c f’, for some
x; and f ‘.

(ii) if x2 4 x; in E2 then xi 4 x; in El and (x; ,f’, x;) E H with f c f’, for some
x; and f’
We say a history-preserving bisimulation H is strong when it further satisfies

(1) (x,f, y) E H &x’ c x, for a configuration x’ of El implies (x’,f’, y’) E H, for
some f’ E f and y’ E y.

(11) (x,f; y) E H & y’ E y, for a configuration y’ of E2, implies (x’,f’, y’) E H, for
some f' c f and x’ E x.

In [8] it is shown that Pom,-bisimilarity of event structures in EL coincides with
their being strong history-preserving bisimilar. However, this in itself does not show
that PomL-bisimilarity of event structures in the smaller category Ei of coherent event
structures also coincides with strong history-preserving bisimilarity. There might
conceivably be a span of open morphisms, fi : E + El, f2: E + E2, from a noncoher-
ent event structure E relating two coherent event structures El, E2 which could never
be replaced by a span of open morphisms from a coherent event structure. In fact, such
is not the case, because for any event structure E in EL there is an open morphism
f: E’ + E from a coherent event structure E’ (Lemma 18). Hence a span of open
morphisms fl : E + El, f2 : E -) E2 in E,, with El, E2 coherent, tan always be con-
verted to a span of open morphisms fl 0 f: E’ + El, f2 0 f: E’ + E2 in EL. Conse-
quently, PomL-bisimilarity in the subcategory of coherent event structures EL co-
incides with strong history-preserving bisimilarity. This result will also have implica-
tions for Pom,-bisimilarity between Petri nets, because of the coreflection from
coherent event structures to nets.

Although we have not insisted on it, a reasonable requirement on event structures
(and the other objects we consider here) is that they be countable. One might view
with suspicion any result which depended crucially on allowing event structures to be
uncountable. For this reason, some care has been taken to give countable construc-
tions, at the tost of a little extra argurnentation.

In preparation for the key lemma, Lemma 18, we first show how any consistency
relation on events tan be “simulated” by a conflict relation, ignoring for the moment
causa1 dependency and labelling. A conflict relation consists of (E, #), where # is
a binary irreflexive relation on E. In accord with the terminology for event structures,

J! ‘y 3 D JOJ ‘rEpryled UI) ‘x JO az!s ayl sa~ouap 1x1 a.~ay - 1 ,y J > Xz > 0 ~ey~ yDns

‘(z))Jy 3 x Aq paxapur ‘X3 S.K&)U! JO (0)~ypX(X~) aldn] e SI ‘1~1~1 ?? ‘1 put! v 3 v a.IayM

‘(1 ‘v)

sl!ed aq 01 8 JO s)uautaIa

aqJ aUlJap ‘&XU.lO~ ‘IS!MJ ‘t? q$JM jr’ JO SJUaLUala JO JS!SUO3 01 g Jas aql aUlJap ‘MON

‘{X~WV~X} =(v)yu

auyap ‘y 3 v JOJ ‘avuy &MIE a.u2 m Um slas a$oN

‘{W~X’X%IA%‘YI$Xb’ 5 X> = J4l
‘ay ‘y ~0 slasqns luals!suoxI! pxu~uy~

ayi JO ~s!suo3 01 m auyap lsiry aM (1403 ‘v) uoyelaJ huaJs!suo3 B 8urwnssy yoo.8d

‘alytJlajqvluno3 aq 01 uasoys aq oslv um fg uayi a+tJ/alqviuno3 sz y J! ‘ranoanoN

;I = 2s puv 2 5 x

mg yms (# ‘g) 50 2 iasqns wawy403 aiiu$ v s! arayi uayl

‘UOD 3x 10s ‘x 5 Jg-

pur, (# ‘ff) jo iasqns waxgsuo3 ai!u$ 2) s! x JI (n)

‘zq = hj s= (zq)j= (hj)j- ‘X 3 zq ‘Iq/+

puv 2403 3 XJ uayl ‘(# ‘g) jo mqns wawfsuos aw$ v sz x _!j (r)
:ivyi yms y c 8 :J uotimnj v puv g las v uo

uo?jvlan 13@03 v ‘ # si arau *y las v uo u0igvla.i hualspuo3 v aq uog ia7 ‘Lt BumaT

*.(# 3) 30 mqns vw
-sysuo3 al!uy ayl JO s~s~suo3 ~03 y3ty~ u! (~03 ‘YJ) uoyzla~ bualysuo3 e sauylalap

(# ‘g) uogela~)3guo3 B ‘asIn ~0 y JO x ‘x slasqns put? ,a ‘a sluaurala Ale JOJ

uo33x t uo33xElx

9403 3 {a)

:samlxw)s $uaAa u10.g .W!~!UIK?J AlJadold %I.I~MOIIOJ ay$ %u_~@y?s g

jo slasqns al!uy JO ~CI~I_II~J E s! ~03 a.rayM ‘(~03 ‘2) JO s~sfsuo3 uoyIaJ 63uajs!su03 v

‘Za# 1aL.x 3 Za ‘TaA

g! waw?suo3 s! j(5 x las e At?s aM

LEZ

238 M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244

M(a) = 0, then a’s only twist is the empty tuple, whereas if M(a) consists solely of
(unordered) pairs then all entries of its twists will be 1.) Define a conflict relation on B,
by setting

(a, t) # (a’, t’) iff a = a’ & t # t’ or

u#u’&3XEM(u)nM(u’).t,=t;.

Define f: B + A to be the projection (u, t) H u. We should show (i) and (ii) above.
We first observe the following “counting property” of consistent sets of (B, #):
If X is a consistent set of (B, #) and Y E M, then

I(ty13uE Y.(Q)EX}I = IYn(fX)l.

To justify the counting property let

s = {(u, t) E x 1 u E Y}.

Then S, being a subset of X, is consistent in (B, #). The first clause in the definition of
the conflict relation # on B ensures that 1 SI = 1fS 1. Clearly, fS = Y n (fX), so

ISI = IYnW)I.

The second clause in the definition of #, ensures that

JSI = l(tyl3uE Y.(UJ)EX}J.

This establishes the counting property.
We now prove (i) and (ii).
(i) If (i) were to fail, there would be a consistent set X of (B, #) and Y E M such that

Y c fX. But then by the counting property

I(ty13uE Y.(u,t)EX}I = IYI.

However this is impossible as each tr is bounded within the interval {k (0 < k < 1 YI },
of size (YI -1.

(ii) It suffices to show the following Claim.

Claim. Suppose X is u consistent set of (B, #) und (fX) V {u’} is u consistent set of
(A, Con). Then there is u twist u such thut (u’, U) E B und X In {(u’, u)} is u consistent set
of (B, #).

[Thenotutionx=ytizmeunsx=yuz&ynz=~.]
To construct a suitable twist u we need to find an assignment uy, for each Y E M (u’),

such that

uy 4 {ty l3u E Y.(u, t) E X}.

This is impossible only if

I{ty13uE Y.(u,t)EX}I = IYI -1.

M. Nielsen, G. Winskel/ 7’heoretical Computer Science 153 (1996) 211-244 239

By the counting property, if this were so, then

) Y n (fX)(= 1 Y(- 1.

But then

Y c (j-X) i, {a’},

contradicting the consistency of (fX) V (a’}. Thus we tan find a twist u = (~r)r.~(~,)
such that X u ((a’, u)} is consistent.

The construction of (B, #) from (A, Con) tan yield an uncountable set B even
though A is countable. Suppose, for instance, that there is a E _4 for which M(a)
contains infinitely may sets of size greater than 2. Then B will include uncountably
many-elements of the form (a, t). However, there will be a countable (B, #) fulfilling
the conditions of the lemma when A is countable. The argument involves a little model
theory. We tan express the conditions on f :B -) A as a countable theory in a predi-
cate calculus. Our construction Shows the theory to be consistent. It thus has
a countable model, from which we tan extract the required countable (B, #) and f:

In more detail, we take a predicate calculus with equality, over two sorts c1 and fl,
a Single unary Operation F from fl to CI, binary relation # on /?, and for each n 2 0
predicates Conn and Conn on c1 and b, respectively. If A is finite the construction above
clearly yields a finite B, so we tan restritt attention to countably infinite A enumerated
as

ao, at, am, . . .

We extend our language by constants ao, ar, a,, . . . of sort ~1. The theory T is to
consist of:
?? those atomic assertions and their negations which hold of A, i.e. those assertions

Ui = Uj> l(Ui = Uj), ConE(Ui,, .ea, ain),l Conz(ai,, e.., at.), which are true interpreted
as assertions of consistency.

?? the properties required of # , Conn, Coni, e.g. assertions such as

vx 1, ***> X,:p.COnn(X,,...,X,)t,AlXi #Xj

Lj

- here Ai, jl Xi # xj abbreviates a finite conjunction

‘**AlXi#XjA ..-where i, j < n,

saying consistency in /I is equivalent to conflict freeness, and other saying that
consistency predicates are invariant under permutation, that consistency is closed
under inclusion and contains all singletons.

?? the conditions required on F, of the form

VXl,..., xn:P.Conf(xl, xn)+

240 M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244

(Cml~(F(Xl), . ..) F(Xn)) & (/j F(Xi) = F(Xj) + Xi = Xj i, j))
VXl, . ..) xn:p, y:cLCon~(x1, . ..) X”) A Con~+1(F(x1), F(xn), Y)

-) (3x:cr.F(x) = y A Con!+1(x1, XI, $1.

The theory T is countable, and is satisfied by our construction, so consistent. Every
countable consistent first-Order theory has a countable model (See e.g. [ll, p. 65,
Proposition 2.121). In particular, the theory T has a countable model in which F is
interpreted as a function f’ from a countable set B’ to a countable set A’ which
includes A. Restricting f’ to the inverse image B =f’-IA we obtain a function
f: B + A fulfilling the conditions required above, but now with respect to a countable
(B, #) and (A, On). 0

Lemma 18. Let A = (A, <, Con, 1) be a labelled event structure. Then, there is a label-
led coherent event structure E = (E, 6’, #‘, 1’) and an open morphism g: E -i A.

Moreover, if A is countable/_finite then so tan E be taken to be countable/$nite,
respectively.

Proof. There is a set B with binary conflict # and a function f :B + A satisfying the
conditions of Lemma 17 with respect to the consistency relation Con on A. We first
construct a labelled coherent asynchronous transition System T. Its states are finite
consistent subsets x of (B, #) for which the direct image fx is a configuration of A. Its
set of events is B with independence relation Z, where

blZb2 iff ib1 #bz &f(bl)cof(bz).

Its labelling function is 10 1: Its transitions are all (x, b, x’) where x’ = x V {b} for x, x’
and b E B.

It tan be verified that T is a labelled coherent asynchronous transition System. For
example, to Show property (4), assume x is a state of T with transitions (x, bi, XI) and
(x, bz, XZ) where blZb2. Then x u {bi, bz} is a consistent set of (B, #). Hence because
f preserves consistency, fx u {f(bl),f(bz)) E Con. The two sets fxl =fx u {f(bi))
and fxz =fx u (f(bz)) are configurations of A and so < -downwards closed. Hence
their Union fx u {f(bl), f(bz)} 1s consistent and < -downwards closed, and so
a configuration of A. This ensures that u = x u {bi, bz} is a state of Twith transitions
(~1, bz, u), (XZ, bi, u), as required by (4).

There is an open morphism (o,f) : T + es(A) in AL, where O(X) =fx. Here we have
recourse to Lemma 16 characterising open morphisms in AL and make essential use of
the properties of f; expressed in Lemma 17. The right adjoint ae of the coreflection
between EL and AL preserves open morphisms, by Lemma 14(iii), and there is an
isomorphism h:aeoea(A) z A, by the coreflection. Hence g = hoae(o,f):ae(T) + A,
being the composition of an open morphism with an isomorphism, is itself an open

M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244 241

morphism in EL. Because T is coherent it unfolds under ae to an event structure of the
form ae(T) = (E, G’, #‘, 1’).

Because the constructions used in this proof preserve countability and finiteness, we
see from Lemma 17, that in the proof J3, and so E, may be made countable or finite
according to whether A is countable or finite.

(We remark that an alternative proof is obtained by recognising that the states of
T form the finite elements of a coherent stable family, and so of a coherent Prime
algebraic domain D. The event structure E is obtained, to within isomorphism, from
the complete primes of D - see [25].) 0

At long last we tan show that restricting the category of event structures to those
which are coherent does not effect the relation of bisimilarity.

Corollary 19. Let EI, Ez be coherent event structures with labelling sets L. The
following are equivalent:

(i) EI, Ez are PomL-bisimilar in Ei.
(ii) EI, E2 are PomL-bisimilar in EL.

(iii) EI, E2 are strong history-preserving bisimilar.

Proof. The equivalence between (i) and (ii) follows by Lemma 18. A span of open
morphisms fr : E + EI, fi : E + E2 in EL, with EI, E2 coherent, tan be converted to
a span of open morphisms fr 0 f: E’ + E 1, f2 0 f: E’ -+ E2 in Ei, where f : E’ + E is the
open morphism provided by Lemma 18. The equivalence between (ii) and (iii) is shown
in [S]. 0

Via the coreflection between event structures and Petri nets, we tan draw character-
isations of PomL-bisimilarity on nets.

Theorem 20. Let NI, N2 be nets with labelling sets L. The following are equivalent:
(i) The nets NI, NZ are PomL-bisimilar in NL.

(ii) The reachable case graphs nao(Nl), nao(Nz) are PomL-bisimilar in Ag.
(iii) The case graphs na(Nl), na(Nz) are PomL-bisimilar in AL.
(iv) The unfoldings to event structures ne(Nl), ne(Nz) are strong history-preserving

bisimilar.

Proof. The equivalence between (i) and (ii) follows by Corollary 15 applied to the
coreflection Ai -+ NL. Because of the coreflection Ei + Ai, Corollary 15 yields the
equivalence of (ii) with:

(iv)’ The unfoldings to event structures ne(Nl), ne(Nz) are PomL-bisimilar in Ef.
As we have seen (Corollary 19), we have that (iv)’ is equivalent to (iv). Finally, (ii)

and (iii) are equivalent by Proposition 13 because Af is a full subcategory of AL. 0

242 M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244

So, for general reasons, the notion of bisimilarity for nets agrees with the notion of
bisimilarity for the associated case graphs and unfoldings (where it amounts to strong
history-preserving bisimilarity). Results expressing agreements of this kinds would
probably be required of any notion of bisimilarity, and, without the help of some
categorical machinery, would seem to require separate proofs. Of course, now we have
characterised PomL-bisimilarity on nets as strong history-preserving bisimilarity of
their unfoldings to event structures, we may produce a characterisation in terms of
nets and their “processes” along the lines of [24].

Many attempts have been made to define bisimilarity for noninterleaving models
like Petri nets. The idea of parametrizing such definitions on a notion ?f Observation is
not new, see e.g. [4]. However, there are major differentes with previous approaches.
To Point out one, we briefly address the question of robustness of our notion of
bisimilarity. Of course, the results Corollary 19 and Theorem 20 show that the notion
is robust across a range of models. But another issue is the sensitivity of our notion of
PomL-bisimilarity for nets to the particular choice of path category PomL. The notion
of PomL-bisimilarity might seem questionable to those who view general pomsets as
not observable.

However, let us define a pomset to be an almost totally ordered multiset iff it is of one
of the two simple forms considered in the proof of Proposition 16, i.e. allowing at most
two (maximal) elements to be unordered. Note that in the range of subclasses of pomsets
considered in the literature, [19], this class is as close to BranL as one tan get! Let us
denote the full subcategory of PomL consisting of Object of this simple form by Atomr..

Corollary 21. (i) A morphism in Nr. is PomL-open i. it is AtomL-open.
(ii) Two nets are PomL-bisimilar ifs they are AtomL-bisimilar.

Proof. Clearly (ii) follows from (i), so we concentrate on a proof of (i). The “only if
part of (i) follows immediately from definition of open maps. By inspecting the proof of
Proposition 16, we observe that a morphism in AL is PomL-open if it is AtomL-open.
By Proposition 13, a similar Statement also holds of the category A2. Finally, a similar
Statement (the “if” part of (i)) holds also in NL by Lemma 14. 0

Remark. Similar results hold for the alternative category of Petri nets mentioned in
Section 1.2. In particular, because there is also a coreflection between event structures
and that category, PomL-bisimilarity of nets in that framework will also amount to
strong history-preserving bisimilarity of their event-structure unfoldings - another
example of the robustness of the definitions.

3. Concludiag remarks

We have illustrated how to introduce bisimilarity for Petri nets following a general
Pattern, a Pattern which automatically guarantees consistency with bisimilarity on

M. Nielsen, G. Winskel/ Theoretical Computer Science 153 (1996) 211-244 243

a number of related models. This sets the Scene, but many questions are left open,
including a theory of our bisimulation for nets parallelling the well established theory
of bisimulation for transition Systems. Some initial ideas may be found in the game
theoretic and logical characterizations for PomL-bisimilation for transition Systems
with independence given in [15], which may be transferred immediately to nets,
following the results of this Paper. A particular unresolved issue is that of the
decidability of our PomL-bisimilarity on finite nets and asynchronous transition
Systems.

References

[l] M.A. Bednarczyk, Categories of asynchronous Systems, Ph.D. thesis in Computer Science, Univ. of
Sussex, Report No. lj88, 1988.

[2] D.B. Benson and 0. Ben-Shachar, Bisimulation of automata, Inform. and Comput. 79 (1988) 60-83.
[3] 1. Castellani, Bisimulation and abstraction homomorphisms, Proc. CAAP 85, Lecture Notes in

Computer Science, Vol. 185 (Springer, Berlin, 1985) 223-238.
[4] P. Degano, R. De Nicola and U. Montanari, Observational equivalences for concurrency models, in

Wirsing, M. ed., Formal Description of Programming Concepts - 111, IFIP (Elsevier, Amsterdam, 1987)
105-132.

[S] J.-Y. Girard, Linear logic, Theoret. Comput. Sei. 50 (1987) 1-102.
[6] R.J. van Glabbeek and U. Goltz, Equivalence notions for concurrent Systems and refinement of

actions, Proc. MFCS, Lecture Notes in Computer Science, Vol. 379, (1989) 237-248.
[7] A. Joyal and J. Moerdijk, A completeness theorem for open maps, Arm. Pure Appl. Logic 70 (1994)

5 1-86.
[S] A. Joyal, M. Nielsen and G. Winskel, Bisimulation from open maps, LICS93 BRICS Report RS-94-7,

Aarhus Univ., 1994.
[9] S. MacLane, Categories for the Working Mathematician, Graduate Texts in Mathematics (Springer,

Berlin, 197 1).
[lO] A. Mazurkiewicz, Basic notions of trace theory, in: de Bakker, de Roever and Rozenberg, eds., Linear

Time, Branching Time and Partial Orders in Logics and Models for Concurrency, Lecture Notes in
Computer Science, Vol. 354 (Springer, Berlin, 1988) 285-263.

[l l] E. Mendelson, Introduction to Mathematical Logic (Van Nostrand Reinhold, New York, 1964).
[12] A.R.G. Milner, Communication and Concurrency (Prentice-Hall, Englewood Cliffs, NJ, 1989).
[13] M. Mukund, Petri nets and step transition Systems, Int. J. Found. Comput. Sei. 3 (1992) 443-478.
[141 M. Mukund, and M. Nielsen, CCS, locations and asynchronous transition Systems, in: R. Shyama-

sundar, ed., FST & TCS 92, Lecture Notes in Computer Science, Vol. 652 (Springer, Berlin, 1992)
328-341.

[15] M. Nielsen and C. Clausen, Bisimulations, Garnes, and Logic, Proc. CONCLrR’94, Lecture Notes in
Computer Science, Vol. 836 (Springer, Berlin 1994) 385-400.

[16] M. Nielsen, G. Plotkin and G. Winskel, Petri nets, Event structures and Domains, Part 1, Theoret.
Comput. Sei. 13 (1981) 85-108.

[17] M. Nielsen, G. Rozenberg, P.S. Thiagarajan, Elementary transition Systems, Theoret. Comput. Sei. %
(1992) 3-33.

[18] E.R. Olderog, Nets, Terms and Formulas, Cambridge Tracts in Theoretical Computer Science
(1991).

[19] V.R. Pratt, Modelling concurrency with partial orders, Int. J. Parallel Programming 15 (1986) 33-71.
[20] A. Rabinovich and B. Trakhtenbrot, Behaviour structures and nets, Fundam. lnform. 11 (1988)

357-404.
[21] K. Segerberg, Decidbility of S4.1, Theoria 34 (1968) 7-20.
[22] M.W. Shields, Concurrent machines, Comput. J. 28 (1985) 449-465.

244 M. Nielsen, G. Winskel/ 7’heoretical Computer Science 153 (1996) 211-244

[23] J. Van Bentham, Correspondence theory, in: Gabbay and Guenther, eds., Handbook of Philosophical
Logic, Vol. 11 (Reidel, Dordrecht, 1984) 167-247.

[24] W. Vogler, Deciding history preserving bisimilarity, Proc. ICALP 91, Lecture Notes in Computer
Science, Vol. 510 (Springer, Berlin, 1991) 495-505.

[25] G. Winskel, Event structures, Lecture Notes in Computer Science, Vol. 255 (Springer, Berlin, 1987)
325-392.

[26] G. Winskel, Petri nets, algebras, morphisms and compositionality, Inform. and Comput. 72 (1987)
197-238.

[27] G. Winskel and M. Nielsen, Models for concurrency, in: Abramsky, Gabbay and Maibaum, eds.,
Handbook of Logic in Computer Science, Vol. 4 (Oxford University Press, Oxford, 1995) 1-148.

