
ADVANCES IN APPLIED MATHEMATICS 12, 337-357 (1991)

A Time-Efficient, Linear-Space Local
Similarity Algorithm*

XIAOQW HUANG

Department of Computer Science, Michigan Technological University,
Houghton, Michigan 49931

AND

WEBB MILLER

Department of Computer Science, The Pennsyloania State University,
Unicersity Park, Pennsylvania 16802

Dynamic programming algorithms to determine similar regions of two sequences
are useful for analyzing biosequence data. This paper presents a time-efficient
algorithm that produces k best “non-intersecting” local alignments for any chosen
k. The algorithm’s main strength is that it needs only O(M + N + K) space,
where M and N are the lengths of the given sequences and K is the total length of
the computed alignments. o 1991 Academic PUS, IIIC.

1. INTRODUCTION

Local alignment algorithms locate matching segments within two se-
quences (Sellers [lo]); this contrasts with global alignment methods, which
align entire sequences including unconserved regions. A number of dy-
namic programming algorithms have been designed to produce local
alignments (Goad and Kanehisa [2], Hall and Myers [4], Sellers [ll], Smith

*This publication was supported in part by Grant ROl LMOSllO from the National Library
of Medicine.

337
0196-8858/91 $7.50

Copyright 0 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82653667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

338 HUANG AND MILLER

and Waterman [13], Waterman and Eggert [15]>. Waterman [141 offers the
opinion that such an algorithm is “probably the most useful dynamic
programming algorithm for current problems in biology.”

In many contexts, a major drawback of current dynamic programming
algorithms for local sequence alignment is the need for space proportional
to the product of the two sequence lengths. For global alignments, there
exists a dynamic programming algorithm that requires only space propor-
tional to the sum of the sequence lengths (Hirschberg [51, Myers and
Miller [7]).

Very recently, Huang et al. [6] used the Myers-Miller global alignment
algorithm as part of a local alignment algorithm. The resulting method is a
“linear-space algorithm” in the sense that it needs only space proportional
to the sum of the input size and the output size. Huang et al. illustrate the
method’s utility by computing 100 best non-intersecting local alignments of
a 73,360-nucleotide sequence containing the human /?-like globin cluster
and a corresponding 44,594-nucleotide sequence from rabbit. Such a
problem is completely outside the scope of quadratic-space algorithms,
i.e., those requiring space proportional to the product of the sequence
lengths, since 73360 x 44595 is over three billion. Huang et al. also point
out certain advantages of their method over the widely-used and faster,
but less rigorous, LFASTA program (Pearson and Lipman 193). Unfortu-
nately, the simple method that they present is very slow. For each of the k
alignments it makes an O(MN)-time sweep of the entire dynamic-pro-
gramming matrix, so the total time is O(kMN). For example, each of the
100 local alignments for the P-globin sequences required 5 or 6 h on a Sun
4 workstation.

Here we improve the algorithm of Huang et al. by lowering its time
requirement, while retaining its space efficiency. Under reasonable as-
sumptions, the new algorithm’s running time is O(MN + C~=,L~), where
L, is the length of the nth computed alignment. This represents a
considerable savings when both k is large and most of the computed
alignments are short compared to the original sequences. For instance, the
new algorithm finds the 100 local alignments for the /3-globin sequences
mentioned above in about 15 h on a Sun 4, a definite improvement over
the three weeks required by the simpler algorithm.

The remainder of the paper is organized as follows. In Section 2 we
review the local similarity algorithm of Smith and Waterman [131 as
extended by Waterman and Eggert [15]. To prepare for later develop-
ments, this method is explained in terms of an algorithm for finding
optimal paths in a certain graph, following Myers and Miller [81. Section 3
presents the new linear-space algorithm. An example is given in Section 4
to verify the need for particular care in the algorithm’s formulation.
Section 5 closes by discussing a program that implements the algorithm.

LOCAL SIMILARITY ALGORITHM 339

An implementation in the C language of the program described in this
paper is freely available from the authors. The simplest way to obtain
the program is by electronic mail from huang@cs.mtu.edu or
webb@cs.psu.edu.

2. WATERMAN’S APPROACH

The sequences A and B consist of symbols chosen from an alphabet 2.
Let E, a unique symbol not in C, denote the sequence of zero symbols.
Then E is the identity element with respect to the concatenation of
sequences, i.e., if u and w are sequences, then UEW = uw.

An aligned pair has the form [:I, w h ere a, b E I: U {E}. An alignment
is a finite sequence of aligned pairs. An alignment S aligns A and B if A is
the concatenation of upper elements of S and B is the concatenation of
lower elements. For example, the sequence of four aligned pairs I:1M:l
[;] aligns pqr and xyz. The null pair, 77 = [~1, acts as the identity
element for the concatenation of alignments, i.e., if (Y and /3 are align-
ments, then (YTP and aP are considered equal. Without loss of generality,
assume that alignments consist of non-null aligned pairs.

An aligned pair with upper entry E is called an insertion pair, and one
with lower entry E is a deletion pair. Within a given alignment, an insertion
gap is a contiguous subsequence of insertion pairs delimited by non-inser-
tion pairs or an end of the alignment. A deletion gap is similarly defined,
and collectively such blocks are called gaps. For example, the alignment [~1

ml [:I has an insertion gap of length two and a deletion gap of length
one.

A score is assigned to an alignment based on a user-specified scoring
function (+ that assigns a real-valued cost to each possible non-null aligned
pair, and on a gap penalty g > 0. The score of an alignment S is simply
the sum of the costs of each aligned pair in it minus a penalty g for each
gap, i.e., score (9 = C{a(r): r is an aligned pair of Sl - g x (number of
gaps in S). For local similarity problems, the “average” weight of an
aligned pair should be negative so that a random extension of an align-
ment will lower the score. For instance, with DNA sequences, which have
a four-letter alphabet, we might set a([z]) = 1 for all a E 2 and a([i]) =
- 1 if b # a. In addition, assume that all insertion and deletion pairs have
negative weight.

The above definition is slightly more general than the traditional ap-
proach to affine gap penalties (Gotoh [3]). Beside charging g for opening a
gap, we assess potentially different penalties for each kind of insertion or

340 HUANG AND MILLER

deletion pair; traditionally, each pair in the gap is charged a fixed “gap-
extension” penalty.

For sequences A = u1u2 * a* uM and B = b,b, . *. b,, the alignment
graph7 GA,By is an edge-labeled directed graph, defined as follows. G has
3(M + MN + 1) vertices, denoted (i, j)c, (i, j),, and (i, j)I, where i E
[O, M] and j E [O, N]. (We use [x, y] to denote the set of integers t such
that x I t I y.> The following edges, and only these edges, are in GA+

1. If i E [l, M] and j E [O, N], then there is a deletion edge
(i - 1, i), + (i, j), labeled [21.

2. If i E [l, M] and j E [0, N], then there is a deletion initiation edge
(i - 1, & + (i, j), labeled [21.

3. If i E [0, M] and j E [l, N], then there is an insertion edge (i, j -
l), + (i, j)I labeled i . [I

4. If i E [0, M] and j E [l, N], then there is an insertion initiation
edge (i, j - l), -+ (i, j), labeled [I ij .

5. If i E [l, M] and j E [l, N], then there is a substitution edge
(i - 1, j - l), + (i, j)c labeled 2’ . [1

6. If i E [0, M] and j E [O, h;], then there is a null edge (i, j), -+
(i, j), labeled 7.

7. If i E [0, M] and j E [O, N], then there is a null edge (i, j), +
(i, j), labeled 7.

Note that the D-vertices in row 0 and the Z-vertices in column 0 are not
reachable from other vertices.

Figure 1 illustrates G,,, baa. Rows of the graph after the top-most row
are labeled with successive entries of the first sequence; columns after the
left-most column are labeled with entries of the second sequence. All
edges not annotated are null edges labeled 7.

Let A[m..i] denote the sequence u~+~u~+~ ... ui and let B[n..j]
denote bn+lbn+2 * * * bj. A path in GA,B from (m, n), to (i, j), is said to
spell the alignment obtained by concatenating its edge labels. Each path
from (m, n), to (i, j), spells an alignment between A[m..il and Bln..jl,
and every such alignment is spelled by some path. However, there may be
many paths from (m, n), to (i, j), spelling the same alignment. Thus the
correspondence between paths and alignments is not one-to-one unless
one restricts attention to a canonical subset of the paths. A path is normal
if and only if it does not contain subpaths of the form (i - 1, jjD +
(i - 1, j), + (i, j), or (i, j - O1 -9 (i, j - 11, -+ (i, j),. An exercise, not
proven here, shows that alignments between A[m..i] and B[n..j] are in
one-to-one correspondence with normal paths from (m, n), to (i, j),.

LOCAL SIMILARITY ALGORITHM 341

FIG. 1. G,,, for A = ab and B = baa.

Our first goal is an algorithm that computes the score and final vertex
(i,j), of a highest-scoring alignment among all alignments between a
substring A[m..i] of A and a substring B[n.. j] of B. Assign weights to
edges of GA, B as follows. Deletion initiation and insertion initiation edges
are weighted a(r) - g, where r is the aligned pair labeling the edge.
Null edges are weighted 0 and all other edges are weighted a(r). The
weight or score of a path, i.e., the sum of its edge weights, thus equals the
sum of the scores of its non-null labels minus g times the number of
initiation edges. For normal paths this is exactly the score of the corre-
sponding alignment since each initiation edge corresponds to the leftmost
aligned pair in a gap. Hence the problem is to locate a maximum-weight
normal path between any two nodes of G. However, for every non-normal
path there is a normal path of greater weight spelling the same alignment,
since a subpath such as (i - 1, j), --+ (i - 1, j), + (i, j), can be replaced
by (i - 1, j), -+ (i, j), for a net weight gain of g > 0. Thus the problem is
to locate a maximum-weight path (it must be normal) in G. Since insertion
and deletion edges have negative weights, there is a maximum-weight path
that begins and ends with a substitution edge, and hence connects
C-vertices. A path connecting C-vertices will be called a C-path.

Because GA, B is acyclic, a maximum-weight path can be determined in a
single pass over its vertices, so long as they are taken in a topological

342 HUANG AND MILLER

D(O,O) +- Z(O,O) * --m
C(0, 0) + 0
score-nun + i-best + j-best + 0
for j +- 1 to N do

ONI, i) + --co

I(O,j)+u ;. (I I) -g I
C(0, j) + 0 1

for i + 1 to M do
(l&O) + --m

D(i, 0) + u =, (1 I) E -g
C(i, 0) + 0
for j + 1 to N do

(D(i, j) + max{D(i - 1, j),C(i - 1,j) - g) + c ([I) “,i

Z(i, j) +- max{I(i, j - l),CG, j - 1) - g) + u ([I) i J
C(i, j) + max 0, D(i, j), I(i, j),C(i - Lj - 1) + (+

1
if C(i, j) > score-max then

(1 1)) t’ I
(i-best * i

j-best + j
score-m0.x + C(i, j)

write “A best local alignment with score” score-max “ends at” (i-best, j-best)

FIG. 2. The Smith-Waterman local alignment algorithm.

order, i.e., an ordering of the vertices with the property that every edge is
directed from a vertex to a successor in the ordering. One topological
order for GA,B ‘s vertices is to treat the rows in order, sweeping left to
right within a row. For fixed (i, j), (i, j), is treated after (i, j), and (i, j),.

In the algorithm of Fig. 2, the values D(i, j), Z(i, j), and C(i, j> are,
respectively, the maximum weight of the path from any C-vertex to (i, jjD,
to (i, j)[, and to (i, jjC. Each of these values is found by considering the
edges entering the vertex, where for C(i, j) we also consider the zero-edge
path from (i, jlc to itself. For instance, when i > 0, there are two edges
into (i, j),, i.e., one from (i - 1, j), with weight g([:I) and one from

(i - 1, & with weight u([~1) - g. Since a maximum weight path to
(i, j), must end with one of these edges and since the portion of the path
preceding that last edge must be optimal, D(i, j) is the larger of

LOCAL SIMILARITY ALGORITHM 343

D(i - l,j> + a([:]) or c(i - 1, j) + a([:I) - g. Values at unreachable
vertices, i.e., D(0, j) and I(i, 01, are defined to be - 03, a suitably large
negative constant.

Waterman and Eggert [15] extend the Smith-Waterman algorithm to
compute k best “non-intersecting” local alignments, where k > 0 can be
chosen arbitrarily. More formally, let P,, P2,. . . , Pk be C-paths of G in
non-increasing order of scores. P,, P,, . . . , Pk are k best non-intersecting
paths if for each n E [l, k], P, is a maximum-score path in G,,, where G,,
is obtained by removing the substitution (i.e., diagonal) edges of
p,, p,, . . .7 Pnel from G. This definition has the following “non-unique-
ness” property. It is possible to have two sequences of k best non-inter-
secting paths {P,) and IQ,} such that for some n, P,, and Q, have different
scores. An example of this phenomenon is given in Section 4.

The basic idea of the Waterman-Eggert algorithm is that once all
entires D,(i, j), Z,(i, j), and C,(i, j) for paths in G, are found, the
corresponding values in G,, + 1 can be determined quite efficiently. Indeed,
D,+Ji, j) = D,(i, j) for “most” positions (i, j) (and similarly for I and
C). Only values at positions “near” P,, need be recomputed. See the
Waterman-Eggert paper for more details; Waterman [141 gives a complete
implementation in the C language.

3. A LINEAR-SPACE ALGORITHM

A serious drawback of the Waterman-Eggert algorithm is the need to
save all values D,(i, j), I,(i, j), and C,(i, j) from the current graph, G,.
(A subscript n will always indicate that the value is relative to GJ Huang
et al. [6] give a local alignment algorithm that needs only “linear space,”
i.e., space proportional to M + N + K (instead of MN + K), where K is
the total length of all computed alignments. Unfortunately, the technique
is quite slow: for each n E [l, k] it computes all entries of D,,, I,, and C,,
from scratch, so O(kMN) time is needed to find k alignments. Our goal is
to obtain a speedup comparable to that from the Waterman-Eggert
approach, while maintaining the linear space bound and guaranteeing
optimality of the computed solution.

In outline, our approach is as follows. We perform the Smith-
Waterman algorithm (Fig. 21, saving k best scores instead of just one.
Care is required since typically the k largest values C(i, j) will occur at
vertices (i, j) that are packed tightly together. To avoid this problem, we
save values C(i,, j,) and C(i,, j.J only if there are disjoint optimal paths
ending at (iI, j,) and (i2, j,). However, this approach introduces another
problem. It may be that the terminal vertex of, say, the ith overall best

344 HUANG AND MILLER

non-intersecting path is also the endpoint of a higher scoring path that
shares its startpoint with local alignment #l. It is only after we remove the
substitution edges of the best path that the Smith-Waterman method can
discern this ith best path. In other words, the k best non-intersecting
paths that can be found in one Smith-Waterman pass over the C-matrix
may not include the k overall best paths. Huang et al. show that this
phenomenon is important in practice.

Once we have determined the best path, the problem is to discover any
high-scoring paths that were hidden from the first Smith-Waterman pass.
This can be done by making a “backward” Smith-Waterman pass over a
limited portion of the graph to discover the “region of influence” of the
path being removed, followed by a forward Smith-Waterman pass over
this region to find the newly-exposed paths. It is not immediately apparent
how one can determine a region that is guaranteed to be sufficiently large;
see Lemma 3, below, for our solution. In general, we need one complete
pass over the matrix, followed by limited forward and backward passes for
each removed path (except for the final path). Our record of the k best
non-intersecting paths is updated whenever we find a path that outscores
our current k th best path. With this outline, we are ready to consider the
details.

The first observation we need is that the Smith-Waterman algorithm
(Fig. 2) can be modified to compute the first vertex of an optimal path. As
will be shown in Section 4, it is critical how we select this first vertex in the
case of ties, i.e., when there are several optimal paths to (i, j>, with
different initial vertices. In what follows, let < G denote any topological
order on the C-vertices of G. This ordering can be the same as the order
in which vertices are treated in Fig. 2, or it can be different. First&, j), is
defined to be the last C-vertex in this ordering such that there is a path in
G, from that vertex to (i, j), of score D(i, j). First,(i, j), and First,(i, j),
are defined similarly.

Figure 2 can be augmented so that vertices First&j) are computed. The
basic idea is simply to inherit First from whichever incoming path is found
to be optimal. (For O-edge optimal paths set First(i, j), = 6, j),.) For
example, the line

D(i, j) + max{D(i - 1, j),C(i - 1, j) -g} + U([21)

becomes

ifD(i-l,j)>C(i-l,j)-gthen
Wi, j) + D(i - 1, j) + a([21)
First(i, j), + First(i - 1, j),

1

LOCAL SIMILARITY ALGORITHM 345

else if D(i - 1, j> < C(i - 1, j) - g then

(D(i, j) + C(i - 1, j> + a([21) - g

First&j), * First(i - 1, j),
I

else / *tier*/
(Hi, j) di Hi - 1, j> + a([21)

First& j), + max, G(First(i - 1, jID, Fir& - 1, j),)
1

LEMMA 1. Fix n E [l, k] and let u be a C-vertex such that G,, + 1 is
formed from G,, by removing the substitution edges of an optimal path from
First,(u) to u. Zf v is a C-vertex with First,(v) # First,(u), then C,+,(v) =
C,(v) and First,+,(v) = First,(v).

Proof: Let P be the path from First,(u) to u whose substitution edges
are removed, and let Q be an optimal path from First,(v) to v. We first
show that P and Q have no vertex in common. Suppose otherwise and let
s be a vertex lying on P and Q. The prefix of P ending at s and the prefix
of Q ending at s must have the same score (sum of edge weights). To see
this, suppose that the prefix of P ending at s had lower score. Form a
path P’ from First,(v) to u by appending the suffix of P beginning at s to
the prefix of Q ending at s. Then score(P) > score(P), contradicting the
optimality of P.

Without loss of generality, suppose First,(u) < G First,(v). Then the
path P’ constructed as above satisfies score(P’) = score(P), and P’ starts
at a vertex that follows First,(u) in the ordering < G. This contradicts the
definition of First,(u) and proves that P and Q are disjoint.

Since P and Q have no vertex in common, they have no edge
in common. Thus Q is also a path in G,,+r, so C,+,(v) 2 C,(v). But
since C,+,(w) I C,(w) for all vertices w, we have C,+,(v) = C,(U).
There cannot exist an optimal path in G,,+r from a < G-successor of
First,(v) to v, since such a path would also be a path in G,, so
First,+,(v) = First.(u). 0

As described in the previous section, let G, be the original graph GA,s
and for each n E [l, k - 11, let G,,,, be determined by locating a C-vertex
u that maximizes C,(u) and removing from G,, the substitution edges of an
optimal path from First,(u) to u. Define a relation E,, over the C-vertices
of G by: uE,v if and only if First,(u) = First,(v). E,, is an equivalence
relation, and hence E, partitions the vertices of G into equivalence
classes. For each equivalence class S of E,, define score,(s) = max{C,(u):
u E S}. Our local alignment algorithm begins by determining the k best
(i.e., highest-scoring) equivalence classes for E,. Each of these k equiva-

346 HUANG AND MILLER

lence classes S is represented by a 7-tuple:

(C, F, u, T, B, L, R), where
C = score(S),
F = First(s) for all s E S,
First(u) = F and C(u) = score(S), and
[T, B] X [L, R] contains all s E S with C(s) > W.

In this definition, W is the minimum score of the retained equivalence
classes, and we say that [T, B] x [L, R] contains (i, j), if T I i I B and
L I j I R. Initially, C values and First vertices are relative to G,; as the
algorithm proceeds, the tuples are updated so as to be valid for
G,, G,, . . . , G,-,. Henceforth, we use tuple to designate such a 7-tuple,
and refer to the entries of tuple S by SC, S. F, . . . , S. R.

Once k best classes of G, are determined, we select and delete a best
class S, then remove the diagonal edges of an optimal path from S.F to
S.u to get G,. Lemma 1 implies that if vertex u satisfies First,(v) # S.F,
then C,(U) = C,(U) and First,(u) = First,(u). Thus, to find the k - 1 best
classes in G, we need only re-evaluate C and First for vertices in S with
score > W, i.e., vertices contained in [S.T, S.B] X [S.L, S.Rl. This is
because vertices in other equivalence classes are already assigned to the
proper First vertex, and vertices with score I W are no longer interest-
ing, since we already have enough non-intersecting paths with score at
least W. However, each vertex in [S.T, S.B] X [S.L, S.R] needs to be
re-scored in G,, i, because we may find a new path to it of score > W.

The k - 12 + 1 best tuples for G,, are kept in a data structure, called
LIST, that supports the following operations:

find(f): Return the tuple whose First vertex is f, or null if no such
tuple exists.

insert(S): Add tuple S to LIST.
maxtuple (): Remove and return a maximum-score tuple in LIST.
minscore (): Return the minimum score of a tuple in LIST.
replace(S): Replace a minimum-score tuple in LIST by S.
size(): Return the number of tuples in LIST.

Candidates for implementing LIST include a linear list, a balanced search
tree (Aho et al. [l]) or a splay tree (Sleator and Tarjan [12]). The data
structure used in our alignment software is described near the end of this
section.

To maintain LIST, we use the function enter of Fig. 3. Let i(u) and j(u)
denote the i-component and j-component of vertex u. Enter(c, f, u, W, E)
performs the following tasks. If there is already a tuple S in LIST whose

LOCAL SIMILARITY ALGORITHM 347

function enterk, f, 24, w, 0
S + find(f)
if S f null then

(if S.C < c then
(S.C +- c
s.u - u
1

S.T * min(S.T, i(u))
S.B + max(S.B, i(u))
S.L +- min(S.L, j(u))

S.R + max(S.R, j(u))

else
if size() = 1 then

replace((c, f, u, i(u), i(u), j(u), j(u)))
else

insert((c, f, u, i(u), i(u), j(u), j(u)))
if size() = I then

return minscorec 1
else

return w

FIG. 3. The enter function.

First vertex is f, then the other attributes of S are adjusted if necessary.
Otherwise, the tuple (c, f, U, i(u), i(u), j(u), j(u)) either replaces a mini-
mum-score tuple in LIST or is inserted into LIST, depending on whether
or not LIST is full (i.e., contains I tuples). Finally, the minimum tuple
score is returned if LIST is full.

Notice that enter guarantees that any two tuples in LIST have distinct
First values. That is, if S and S’ are in LIST and S f S’, then S.F # S.F.
The rectangle [T, B] x [L, R] is properly maintained so long as enter is
called whenever C(U) > W.

Figure 4 outlines our algorithm for computing k best non-intersecting
paths. The first part of the algorithm (two nested for loops) computes
tuples representing k highest-scoring classes in G,, while the second part
reports k best non-intersecting paths one at a time. The nth iteration of
the for loop in the second part selects a highest-scoring tuple, reports its
optimal path, removes the diagonal edges of the path to form G,,+r, and
computes the k - IZ best tuples in G,, r. The algorithm mentions only
computation of C(i, j) and abbreviates First(i, j), by First(i, j); computa-
tion of ZIG, j), First(i, jjD, Z(i, j), and First(i, j>, is implicit. In another
effort to simplify the presentation, we assume in what follows that there
are at least k distinct values of First in G, with paths of positive score.

348 HUANG AND MILLER

W+O
for i + 0 to M do

forj+Oto Ndo
{Compute C(i, j) and First& j)
if C(i, j) > W then

W + enter(C(i, j), Fir&i, j), (i, j), W, k)
I

for n + 1 to k do
(S + maxtuple()
alignment(d)
if n # k then

{Determine T I S.T and L s S.L so that no C-path starting outside [T, S.B] X
[L, S.R] and ending inside [XT, XB] X [XL, S.Rl has score greater than W
for i + T to S.B do

for j + L to S.R do
(Compute C(i, j) and First(i, j) relative to IT, S.Bl X [L, S.Rl
if C(i, j) > Wand (i, j) is in [S.T, S.B] X [S.L,S.Rl then

W + enter(C(i, j), Fir&i, j), 6, j), W, k - n)

FIG. 4. Outlined of the linear-space algorithm.

The procedure alignment(S) employs the global alignment of Myers and
Miller to find an optimal path from S.F to S.U and then removes the
diagonal edges of the path from G,. In practice, these “removed” edges
are recorded in a data structure so that they will not be used again in
determining T and L, in the final nested for loops, or in subsequent calls
to alignment. Specifically, when evaluating

O,D(i, j),I(i, j),C(i - l,j - 1) + (+

after entering the main for loop of Fig. 4, we need to check whether the
edge from (i - 1, j - ljc to (i, j), has been removed; if it has, then we
maximize over just the first three terms. We now prove correctness of
the local alignment algorithm, postponing a description of our method for
computing T and L until the end of this section.

LEMMA 2. At the start of the nth iteration of the main for loop of Fig.
4, LIST contains k - n + 1 tuples that satisfy the following properties:

(1) min{S.C: S E LIST} = W,, where W, is the value of W at the
start of the nth iteration.

LOCAL SIMILARITY ALGORITHM 349

(2) for each C-vertex u that satisfies C,(U) > W,, there is a S in
LIST such that First,(u) = S.F, C,(u) I S.C, and u E [S.T, S.B] x
[S.L, S.R],

(3) for each tuple S in LIST, First,(S.u) = S.F and C,(S.u) = S.C
and

(4) maxtuple delivers a tuple S such that an optimal path from S.F to
S.u is an optimal path in G,,.

Proof. (Induction on n). For n = 1, the claim follows readily from the
definition of enter in Fig. 3. (Recall our assumption that there are at least
k distinct values of First in G, with paths of positive score.) Assuming
that the claim is true for n, we will show that it is true for n + 1. Consider
the nth iteration of the loop. The assignment S + maxtuple () reduces
the size of LIST from k - n + 1 to k - n. With every call to enter during
that iteration, the last argument in the call is k - n, so the condition
“size() = E” is true within enter. It follows that enter calls replace rather
than insert. Thus the size of LIST at the start of the next iteration is still
k - n = k - (n + 1) + 1, and hence LIST contains the claimed number
of tuples. It likewise follows that enter returns the minimum tuple score,
which is assigned to W. This verifies condition 1.

Consider condition 2, and let u satisfy C,,, i(u) > W,,,. We have
already noted that insert is not called once execution reaches the main for
loop; instead minimum-score tuples are replaced by ones of higher score.
It follows that successive values of W are non-decreasing throughout the k
iterations of the main loop. Thus, C,(U) 2 C,, i(u) > W,, 1 2 W,. The
induction hypothesis guarantees that at the start of the nth iteration there
is a S’ in LIST such that First,(u) = S’.F, C,(u) I SC, and u E
[S’.T, S’.B] x [S’.L, S’J?]. Let S be the tuple selected and removed from
LIST by maxtuple.

First suppose that S’ # S. Then S’.C 2 C,(U) > W, + i at the start of the
nth iteration, so S’ is not replaced during the nth iteration. Enter is
written so that S’.C can only increase in value and the rectangle associated
with S’ can only increase in extent. Also, First.+,(u) = First,(u) and
C,+,(U) = C,(U) by Lemma 1, so u satisfies condition 2 with n replaced by
n + 1.

Next suppose that S’ = S. Since C,, i(u) > W,,, 2 W,, the definition
of T and L in Fig. 4 guarantees that all paths in G,,,, to u of cost greater
than W, are entirely contained in [T, Xl?] X [L, SX]. The nested for loop
at the end of Fig. 4 discovers all those paths and updates LIST to contain
the desired tuple. This completes the verification of condition 2.

Now consider condition 3. Let S be in LIST at the start of the (n + l)th
iteration. If S is placed in LIST during the nth iteration, or if S.C and S.u
are assigned new values during that iteration, then c, f, and u for that call

350 HUANG AND MILLER

to enfer satisfy c = C,,, r(u) and f = First,+ i(u), verifying condition 3.
Otherwise, Lemma 1 and the induction hypothesis imply that
First,+,(S.u) = First,(S.u) = S.F and C,+i<u> = C,(u) = S.C.

It remains to verify condition 4. Let S be the tuple selected by maxtuple
in the nth iteration of the main for loop of Fig. 4. It follows from
assertions 2 and 3 of Lemma 2 that C,(S.u) = S.C = max{C,(u>: u is a
vertex of G) and First,(S.u) = S.F. Thus any optimal path from S.F to
S.u is a highest-scoring path in G,,. q

THEOREM 1. The algorithm of Fig. 4 computes k best non-intersecting
local alignments.

Proof Correctness follows immediately from condition 4 of Lem-
ma 2. 0

To compute values T and L needed in the main for loop of Fig. 4, we
use the procedures locate and disjoint of Fig. 5. Namely, the algorithm of
Fig. 4 performs the call locate(S.T, S.B, S.L.S.R) to find T and L such
that no C-path starting outside [T, S.B] x [L, S.R] and ending inside
[S.T, S.B] x [S. L, S.R] has score greater than W. For the most part, the
computation is merely a “reverse” local similarity method that proceeds
from lower right to upper left. (The differences are that no analog of LIST
is maintained and that any tie-breaking rule can be used.) Values C’, D’, I’
and vertices Last in the reverse computation correspond to the C, D, I,
and First in the forward computation. For the remainder of the section, X
represents any of C’, D’, or I’. The notation Last(v) r (T’, Z!) means that
both i(Last(u)) 2 T’ and j(Last(u)) 2 L’. The while loop in locate stops
when either no optimal path beginning on row T and column L ends
inside [T’, b] x [L’, r] or T = L = 0. The repeat loop in locate terminates
when either disjoint returns true or T = L = 0. Lastly,
disjointct, b, 1, r; var t’, 1’) returns false if there is no S in LIST such that
[S.T, S.B] x [S.L, S.R] shares any vertex with either [t, b] x [l, 1’ - 11 or
[t, t' - 11 x [I, r]; it returns true with t' and 1’ adjusted if there is such
an S.

LEMMA 3. Locate(t, b, 1, r) determines T and L so that any path starting
outside [T, b] x [L, r] and ending inside [t, b] x [I, r] has score at most W,
where W is the minimum tuple score in LIST.

Proof. To smooth the way for a more formal proof, we first develop an
intuitive understanding based on Fig. 6. If locate terminates with T = L =
0, then the result is trivial, so suppose otherwise. Indeed, suppose that the
final values of T and L are both positive; we leave the case that exactly
one of T or L is 0 to the reader. At termination, r/lag = cJrag = false, so
for each vertex u on the top and right boundaries of [T, Bl X [L, RI the

LOCAL SIMILARITY’ ALGORITHM 351

FUNCTION locate(t, b, I, r).
Perform a reverse local alignment computation on [t, b] x [I, r] and save C’, D’, I’, and

Last for vertices of the forms (t, jjx for j E [I, r] or (i, I), for i E [l, b]
T+T’+t
L*L’*l
repeat

(r&y + cfiag + true
while (flag and T > 0) or (c&g and L > 0) do

(if tflug and T > 0 then
(r&g + false
T+T-1
Determine C’, D’, I’, and Lust at (T, j), for j + r down to L
if Last(T, j)x 2 (T’, L’) for some j E [L, r] and X then

rflag + ture
if Last(T, L), 2 (T’, L’) for some X then

cpug + ture

if c&g and L > 0 then
(cflug + false
L+L-1
Determine C’, D’, I’, and Lust at (i, L), for i + b downto T
if La&i, L), 2 (T’, L’) for some i E [T, b] and X then

cflag +- true
if La&T, L), 2 (T’, L’) for some X then

rflag +- true
1

I
I

until disjoint(T, b, L, r, T’, L’) or T = L = 0
return (T, L)

FUNCTION disjoint(t, b, 1, r; var t’, I’).
for each S in LIST do

if S.T I b and S.L I r and S.B 2 t and S. R 2 1 and (S.T < t’ or S.L < I’) then
{ t’ +- min(t’, S.T)

I’ + min(l’, S.L)
return false

return true

FIG. 5. The locate and disjoint functions.

352

L

HUANG AND MILLER

r = S.R

b = S.B

FIG. 6. Graphical interpretation of T and L.

condition “Last(u) 2 CT’, ~3” is false. Pictorially, Last(v) is in the shaded
region in Fig. 6. Also disjoint(T, b, L, r, T’, L’) = true, so no S in LIST
has an associated rectangle that intersects the shaded region in Fig. 6. Part
2 of Lemma 2 then guarantees that all vertices s in the shaded region
satisfy C,(s) 5 W.

More formally, let P be a C-path that starts outside [T, b] x [L, r] at
vertex s and ends in [t, bl X [I, r] at vertex e. Let u be the first vertex on
P that has the form either (T, j& for j E [L, r] or (i, L), for i E [T, b].
Also, let U’ = Last(v). Let P, be the prefix of P ending at u and let P2 be
the sufi of P starting at U. Then U’ must be in [t, bl X [1, I’ - 11 or
[t, t’ - l] x [I, r], so U’ is not in the rectangle [S.T, S.Bl X [S.L, S.Rl for
any S in LIST. Thus C,(u’) I W by part 2 of Lemma 2. Let Q be the path
from u to U’ and form P’ by appending Q to P,. Since P’ ends at u’,
score(P’) 5 CJu’), so score(P) = score(P,) + score(P,> < score(P,) +
score(Q) = score(P’) 5 C,(v’> I W. q

Notice that if no path in G,, 1 that ends in [t, b] x [1, r] has score
greater than W, then no value of C’ will exceed W in the reverse pass. In
that case, the forward pass at the end of Fig. 4 can be omitted.

Our preferred implementation of LIST uses an array of k records, one
per tuple. Special care is taken to accelerate the frequent operations size,
find, minscore, and replace. The number of tuples in LIST is kept in a
variable so that size takes only constant time. Since vertices in the same
equivalence class form a connected region, find(f) tends to be invoked

LOCAL SIMILARITY ALGORITHM 353

with the same f for a period of time. Maintaining a pointer to the most
recently accessed record allows find(f) to usually be served in constant
time. To speed up minscore, a pointer to a minimum score record is kept,
which also makes replace efficient. Whenever this minimum-score record
is replaced or modified, the pointer needs be recomputed by searching the
entire array. Experimental results quoted in Section 5 show that this
simple implementation strategy is entirely adequate.

The algorithm is designed to require only linear space. In the complete
forward sweep of G,, it suffices to save only the most recently computed
row of each matrix. (For implementation details, see Huang et al. 161). In
the reverse pass to determine a rectangle, the most recently computed
column of each matrix is saved as well. Recomputation of rectangles is
handled like the complete forward sweep. Thus, O(M + N) space is
sufficient for values C,(i, j), First,(i, j),, etc. The alignment procedure of
Myers and Miller [7] uses space O(M + N + L,), where L, is the length
of the computed alignment. O(K) space is needed to save the aligned
pairs of computed alignments, where K = Ck=, L,. Lastly, the data struc-
ture for LIST takes O(k) space, where k +Z K. Thus, the algorithm
requires 004 + N + K) space.

A completely rigorous and realistic analysis of the algorithm’s time
complexity would be difficult, but the general trend is easy to grasp. The
complete forward sweep clearly takes O(MN) time in the worst case,
exclusive of calls to manipulate LIST, and as just noted, manipulation of
LIST takes negligible time in practice. The remainder of the algorithm
may take O(kMN) time in the worst case that all computed alignments are
nearly as long as the original sequences. However, in practice, at most a
few alignments are large, and the performance of the algorithm is much
better than the worst case. Execution time is strongly affected by the
choice of scoring function c and gap penalty g. When mismatches and
gaps are penalized very lightly, the rectangles requiring recomputation are
large and the algorithms’ efficiency suffers accordingly. When reasonable
weights are used, sides of the recomputation rectangle are only a few
times longer than the length L, of the local alignment, so the recomputa-
tions take O(C:=,L2,) time in expectation.

One final implementation note deserves mention. Some users may
prefer a cutoff score to k. That is, instead of computing k best alignments,
all non-intersecting alignments with scores greater than the cutoff score
are computed. Our algorithm can easily be modified to do this. In Fig. 4,
replace W + 0 by W +- cutoff, and replace

by:
for n + 1 to k do

while LIST is not empty do

354 HUANG AND MILLER

In addition, the function enter is modified accordingly: no bound is placed
on the size of LIST, insert is always called, and no minimum core is
returned. The difficulty in working with cutoffs is that a setting just slightly
below the optimal cutoff value may bring forth a deluge of insignificant
local alignments.

4. AN EXAMPLE

Lemma 1 is central to our approach. It implies that we need only save
endpoints of k paths from a single complete sweep that computes all
entries of D, I, and C. Lemma 1 guarantees that we will never “break”
any of the retained paths by removing diagonal edges of a higher-scoring
path. This section contains an example showing that a less meticulous
definition of First may well not work properly for this purpose.

For simplicity of this example, suppose that the gap-open penalty g is 0.
Then for each i and j the vertices (i, j), for X = D, I, and C can be
thought of a coalescing into a single node. (Details can be found in Myers
and Miller [8].) Consider the tie-breaking rule that is applied when the
diagonal edge entering a node gives a path-weight identical to a horizontal
or vertical edge. In particular, suppose that such a tie is broken in favor of
the diagonal edge, i.e., Fist(i, j) is set equal to First(i - 1, j - 1). Assume
the following matrix, u, of substitution costs.

a b c d e

%
2 1
1 2 1

ii
1 4 1

2
e 1

Values of c not shown (including deletions and insertions) equal - 1.
Let A = abed and B = aced. A best local alignment of A and B is

Mkl[:l[I$ which scores 6. The second best local alignment that shares

noF~~~~~d7p~~~ic~~h~the first alignment is. [.:I [f] ,-which scores 5.
A,B. Edges with posttive weights are shown; edges

weighted - 1 are either not shown or dotted. First(u) and First(v) are
shown for the rule that prefers diagonal edges. There is an alternative
optimal path from First(u) to u that breaks the only optimal path from
First(u) to v. The corresponding alignment is [~1 [i] [S] [z] [:I, which
scores 6 but contains the pair [f] . This would affect our algorithm because

LOCAL SIMILARITY ALGORITHM 355

a c e cl
First (u)-0. l l l l

a \
2

d

FIG. 7. G,,, for A = abed and B = aced.

when the Myers-Miller procedure is invoked to find an optimal path
between two given vertices, there is no effective way of controlling which
optimal path is found.

If First is defined as in Section 3 (using < o to break ties), then
First(u) = First(u) = (1, 0). Then the only optimal path from First(u) to u
spells the alignment [i] [:I[~1 [:I, which scores 6. The second best
non-intersecting alignment is spelled by a path extending t of the way
down the main diagonal of G, i.e., [~1 [t] [~1, which scores 4.

Figure 7 also provides an example of the non-uniqueness phenomenon
mentioned at the end of Section 2, i.e., where two sequences of k best
non-intersecting paths have different scores. For k = 2, the paths

(070) + (171) + (272) -+ (3,3) + (4,4)

(LO) + (271) -+ (332)

constitute two best non-intersecting paths, the second of which scores 5.
The paths

(l,O) -+ (291) + (392) - (393) + (494)

(O,O) -+ (l,l) + (272) + (393)

also constitute two best non-intersecting paths, the second of which
scores 4.

356 HUANG AND MILLER

5. DISCUSSION

This section compares the execution time of the new algorithm and that
of the algorithm of Huang et al. [6]. Both algorithms were implemented in
the C programming language. DNA sequences containing the human and
rabbit P-like globin gene clusters were used as test sequences. These
sequences share many similar regions, which tends to favor the old
algorithm. Use of random sequences would perhaps unfairly favor the new
algorithm because such sequences usually contain only short regions of
similarity, hence the new algorithm would spend very little time recomput-
ing parts of the matrix.

In all tests, a matching aligned pair scored 1.0 and a mismatched pair
scored - 1.5. The running time of the old algorithm is not significantly
affected by the choice of weights. Thus, we conducted only one run using
one set of weights for the old algorithm. On a 73,360~nucleotide sequence
containing the human p-globin gene cluster and a corresponding 44,594-
nucleotide rabbit sequence, the old algorithm took about 23 days to
compute 100 best non-intersecting alignments with a gap-open penalty
g = 6.0 and and a gap-extension penalty e = 0.2. (That is, each deletion or
insertion pair is scored - 0.2.) On the 11,950-nucleotide human S-p region
and the 12,400-nucleotide rabbit 6 - p region, the old algorithm took
53 h to compute 20 best non-intersecting alignments with g = 6.0 and
e = 0.2.

Times for the new program are shown in Tables I and II. Table I
reports the time to compute 100 best non-intersecting alignments between
the human and rabbit sequences for various gap penalties. Table II reports
the time to compute 20 best non-intersecting alignments between the
shorter 6 - /3 regions. The total column shows the total time (in hours)
taken by our program. The time distribution over the five major parts of
the program is also given, where main is the complete forward pass, locate
is the backward pass determining a rectangle, update is recomputation of
the rectangle, list is maintanence of LIST, and align is the Myers-Miller
global alignment procedure. Notice that using small gap penalties can

TABLE I
Time to Compute 100 Best Alignments of p-Globin Regions

g e Total Main Locate Update List Align

3.0 0.5 15.5 71.3% 12.9% 11.9% 1.4% 2.3%
3.0 1.0 12.5 91.7% 4.2% 2.1% 0.4% 1.5%
6.0 0.2 15.9 66.7% 14.3% 12.6% 2.2% 3.8%
8.0 0.2 13.3 82.7% 7.5% 6.8% 1.6% 1.2%

LOCAL SIMILARITY ALGORITHM 357

TABLE II
Time to Compute 20 Best Alignments of the S - @ Regions

g e Total Main Locate Update List Align

3.0 0.5 2.05 25.5% 34.2% 32.6% 2.6% 4.6%
3.0 1.0 0.70 73.5% 12.4% 9.5% 1.3% 3.1%
6.0 0.2 2.08 23.8% 27.6% 27.2% 3.0% 17.9%
8.0 0.2 0.82 61.6% 14.9% 14.7% 4.3% 3.7%

substantially increase the sizes of recomputed regions, which has a note-
worthy impact on the total execution time.

REFERENCES

1. A. V. PLHo, J. E. HOPCROFT, ANI) J. D. ULLMAN, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, MA, 1974.

2. W. B. GOAD AND M. I. KANEHISA, Pattern recognition in nucleic acid sequences I: A
general method for finding local homologies and symmetries, Nucl. Acids Res. 10 (19821,
247-263.

3. 0. GOTOH, An improved algorithm for matching biological sequences, J. Mol. Biol. 162
(19821, 705-708.

4. J. D. HALL AND E. W. MYERS, A software tool for finding locally optimal alignments in
protein and nucleic acid sequence, CABIOS 4 (1988), 35-40.

5. D. S. HIRSCHBERG, A linear space algorithm for computing maximal common subse-
quences, Commun. ACM 18 (1975), 341-343.

6. X. HUANG, R. C. HARDISON, AND W. MILLER, A space-efficient algorithm for local
similarities, CABIOS, 6 (19901, 373-381.

7. E. W. MYERS AND W. MILLER, Optimal alignments in linear space, CABIOS 4 (19881,
11-17.

8. E. W. MYERS AND W. MILLER, Approximate matching of regular expressions, Bull.
Math. Biol. 51 (1989), 5-37.

9. W. R. PEARSON AND D. J. LIPMAN, Improved tools for biological sequence comparison,
Proc. Nat. Acad. Sci. U.S.A. 88 (1988), 2444-2448.

10. P. H. SELLERS, The theory and computation of evolutionary distances: pattern recogni-
tion, .I. Algorithms 1 (19801, 359-373.

11. P. H. SELLERS, Pattern recognition in genetic sequences by mismatch density, Bull. Math.
Biol. 46 (1984), 501-514.

12. D. D. SLEATOR AND R. E. TARJAN, Self-adjusting binary search trees, J. Assoc. Comput.
Mach. 32 (1985), 652-686.

13. T. F. SMITH AND M. S. WATERMAN, Identification of common molecular sequences,
J. Mol. Biof. 147 (1981), 195-197.

14. M. S. WATERMAN, Sequence alignments, in “Mathematical Methods for DNA Se-
quences” (M. S. Waterman, Ed.), pp. 53-92, CRC Press, Boca Raton, FL, 1988.

15. M. S. WATERMAN AND M. EGGERT, A new algorithm for best subsequence alignments
with application to tRNA-rRNA comparisons, J. Mol. Biol. 197 (19871, 723-728.

