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Given a ring R , we define its right i-profile (resp. right p-profile) to
be the collection of injectivity domains (resp. projectivity domains)
of its right R-modules. We study the lattice theoretic properties
of these profiles and consider ways in which properties of the
profiles may determine the structure of rings and vice versa. We
show that the i-profile is isomorphic to an interval of the lattice
of linear filters of right ideals of R , and is therefore modular and
coatomic. In particular, we give a practical characterization of the
profile of a right artinian ring and offer an example of a ring with-
out injective left middle class for with the same is not true on
the right-hand side. We characterize the p-profile of a right per-
fect ring and show through an example that the right p-profile of a
ring is not necessarily a set. In addition, we use our results to pro-
vide a characterization of a special class of QF-rings in which the
injectivity and projectivity domains of all modules coincide. The
study of rings in terms of their (i- or p-)profile was inspired by
the study of rings with no right (i- or p-)middle class, initiated in
recent papers by Er, López-Permouth and Sökmez, and by Holston,
López-Permouth and Orhan-Ertaş.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Throughout, R will denote an associative ring with identity, and modules will be unital right mod-
ules, unless otherwise stated. As usual, we denote by Mod-R the category of right R-modules. Recall
that a module M is said to be N-injective (or injective relative to N) if for every submodule K � N and
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every morphism ϕ : K → M there exists a morphism ϕ : N → M such that ϕ|K = ϕ . For a module M ,
its injectivity domain is defined to be the collection of modules N such that M is N-injective, that
is In−1(M) = {N ∈ Mod-R: M is N-injective}. For convenience, we will say that a class of modules P
is an (injective) portfolio if there exists a module M such that P = In−1(M). It is well known (e.g.
[2, Proposition 16.13]) that injectivity domains are closed under submodules, homomorphic images
and arbitrary direct sums. A module M is called injective if In−1(M) = Mod-R . On the other hand,
Alahmadi, Alkan and López-Permouth defined in [1] the concept of a poor module, namely, a mod-
ule N with smallest possible injectivity domain, that is, In−1(N) consists precisely of the semisimple
modules. In [6, Proposition 1], Er, López-Permouth and Sökmez proved that every ring has poor mod-
ules.

Similarly, a module M is said to be N-projective if for every epimorphism g : N → K and every
morphism ψ : M → K , there exists a morphism ψ : M → N with ψ = gψ . The projectivity domain
of M is then defined as Pr−1(M) = {N ∈ Mod-R: M is N-projective}. Projectivity domains are closed
under submodules, quotients and finite direct sums [2, Proposition 16.12]. If M has a projective cover,
then Pr−1(M) is also closed under arbitrary direct products [2, Exercise 17.16]. Clearly, a module M
is projective if Pr−1(M) = Mod-R . An opposite notion to projectivity was considered by Holston,
López-Permouth and Orhan-Ertaş in [10], as they studied p-poor modules. A module M is p-poor if
Pr−1(M) contains only semisimple modules. In that paper, the authors proved that every ring has
(semisimple) p-poor modules [10, Theorem 2.8].

A class of modules is said to be a hereditary pretorsion class if it is closed under homomorphic
images, submodules and arbitrary direct sums. Hereditary pretorsion classes play a central role in
torsion theory; they also appear in a different setting. Wisbauer’s book [17] documents the movement
he lead to generalize the objectives, methods and results of module theory (seen as the study of the
category Mod-R) by considering, for every module M , the full subcategory σ [M] of Mod-R having as
objects all modules subgenerated by M (i.e. all submodules of homomorphic images of direct sums of
copies of M). Wisbauer’s program has been very popular and has been pursued by many authors (cf.
[4,16], etc.). It is not uncommon to use σ [M] also to denote only the objects in that category. We like
saying, as a recognition to Wisbauer’s contributions that any such class of modules is a Wisbauer class.
Every Wisbauer class is a hereditary pretorsion class and, conversely, for every hereditary pretorsion
class T , if we refer to the direct sum of a complete set of non-isomorphic cyclic modules in T , then
T is precisely the Wisbauer class σ [M]. Consequently we refer to hereditary pretorsion classes as
Wisbauer classes. Furthermore, we denote the class of all Wisbauer classes over a ring R as Wis-R .
Note that Wis-R has a natural lattice structure, with the partial order given by inclusion. Also note
that every Wisbauer class is completely determined by the cyclic modules in it. Thus, Wis-R is in
bijective correspondence with a set.

A subfunctor of the identity functor τ : Mod-R → Mod-R is called a left exact preradical if, for
N � M we have τ (N) = τ (M) ∩ N . The class of left exact preradicals has a natural lattice structure,
given by τ � η if τ (N) � η(N) for all N ∈ Mod-R , τ ∧ η(N) = τ (N) ∩ η(N) for all N ∈ Mod-R , and
τ ∨ η = ∧

ρ�η,τ ρ . We denote this lattice by lep-R .
A set of right ideals F is called a linear filter of right ideals if it satisfies the following axioms:

F1) R ∈ F; F2) I, J ∈ F implies that I ∩ J ∈ F; F3) if I ∈ F and I � J , then J ∈ F; and F4) (I : r) ∈ F

for all I ∈ F and r ∈ R . For a two-sided ideal I of R , the set η(I) = { J : I � J } is a linear filter,
and a linear filter is of this form if and only if it is closed under taking arbitrary intersections [9,
Proposition 1.14]. The set of linear filters of right ideals has a natural lattice structure, given by F�G

if F ⊆G, F∧G= F∩G and F∨G= ∧
H�F,GH. We denote this lattice by fil-R .

It is a well-known torsion theoretic fact that the above-mentioned notions are equivalent (see,
for example [15, Chapter VI]). In [12], Raggi, Ríos, Rincón and Fernández-Alonso extended the list
of isomorphic lattices by showing that indeed they are all isomorphic to the lattice of fully invari-
ant submodules of a specific type of injective module. They define the concept of a main injective
module as an injective module E such that every left exact preradical τ is of the form ωE

τ (E)
, where

ωE
τ (E)

(N) = ⋂{ f −1(τ (E)): f ∈ Hom(N, E)}. In [12, Theorem 2.1], the authors also prove that every

ring indeed has a main injective module.
For later reference, we summarize the above-mentioned results in the following proposition.
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Proposition 1.1. For all rings R, the following lattices are equivalent.

1. The lattice Wis-R of Wisbauer classes in Mod-R.
2. The lattice fil-R of linear filters of right ideals of R.
3. The lattice lep-R of left exact preradicals in Mod-R.
4. The lattice S f i(E) of fully invariant submodules of any main injective right R-module E.

We denote by E(M), J (M),Soc(M) and Z(M) the injective hull, Jacobson radical, socle and sin-
gular submodule of a module M , respectively, while top(M) stands for M/ J (M). If N and M are
modules, we denote the trace of N in M by TrN (M) := ∑{ f (N): f ∈ HomR(N, M)}. If A is a class
of modules, we denote the trace of A in M by TrA(M) = ∑

N∈A TrN (M). We denote by SSMod-R
the full subcategory of Mod-R generated by the semisimple modules. Recall that a module M is said
to be quasi-injective if it is injective relative to itself, that R is said to be a QI-ring if every quasi-
injective module is injective, and that R is said to be a QF-ring if every projective module is injective
or, equivalently, if R is a right noetherian right self-injective ring.

2. The injective profile of a ring

Definition 2.1. Let R be a ring. We call a class A of modules an i-portfolio if there exists M ∈ Mod-R
such that A= In−1(M). The class {A⊆ Mod-R: A is an i-portfolio} is called the right injective profile
(right i-profile, for short) of R and we denote it by iPr(R). Similarly, we define the left i-profile of R
and denote it by iP	(R). When there’s no confusion, we denote the right i-profile of R just by iP(R).

Note that every i-portfolio is a Wisbauer class, as it is closed under submodules, quotient modules
and arbitrary direct sums. Then, iP(R) is in bijective correspondence with a set, so we will think of it
as a set. Our first goal is to give an intrinsic description of an i-portfolio. We start with the following
lemma, that tells us that iP(R) is closed under arbitrary intersections.

Lemma 2.2. Let R be a ring. Let X ⊆ iP(R). Then,
⋂

X is an i-portfolio.

Proof. Note that we can think of X as a set. For every A ∈ X, let MA be a module such that A =
In−1(MA). It is then easy to see that

⋂
X= In−1(

∏
A∈X MA). �

Note that, as a consequence of Lemma 2.2, iP(R) is a complete lattice and is, in fact, a sublattice
of Wis-R . Moreover, since every module is injective with respect to any semisimple module, iP(R) is
a sublattice of the interval [SSMod-R,Mod-R] ⊆ Wis-R .

Proposition 2.3. Let R and S be rings. Then we have a lattice isomorphism iP(R × S) ∼= iP(R) × iP(S).

Proof. If M ∈ Mod-(R × S), then M = MR × M S , with MR ∈ Mod-R and M S ∈ Mod-S . Note that, in
this case, In−1(M(R×S)) = In−1(MR) × In−1(M S ). From here, the isomorphism is clear. �

One may conjecture that if the injective profile of a ring R may be decomposed as the product of
two non-trivial lattices then a decomposition of the ring exists that explains the phenomena. That is,
however, not the case. See Example 4.8.

As a consequence of Proposition 2.3, we have that if R is any ring and S is a semisimple artinian
ring, then iP(R) ∼= iP(R × S). The following proposition is clear.

Proposition 2.4. Let R and S be Morita-equivalent rings. Then, iP(R) ∼= iP(S).

Example 2.5. We calculate iP(Z). Let W be a Wisbauer class containing the semisimple modules,
and suppose W 
= Mod-Z. Then, for every prime number p there exists αp ∈ Z+ ∪ {∞} such that
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W = σ [⊕p prime Zpαp ]. Note that, if αp = ∞ for every p, then W is the class of torsion modules and,

in this case, W = In−1(Z). If not, notice that W = In−1(
⊕

p prime Zpαp ). Finally, if W = Mod-Z, then

W = In−1(Q). So, in each case, W is an i-portfolio. Thus, iP(Z) = [SSMod-Z,Mod-Z].

As we shall see, the conclusion of Example 2.5, namely that any Wisbauer class containing the
semisimples is a portfolio, is not particular of the integers, but it holds for any ring. To prove this, we
use the following notion.

Definition 2.6. Let M and N be modules. We say that M rises to N , and write M ↑ N , if every
M-injective module is N-injective.

Note that, by definition, if N ∈ σ [M] then M ↑ N . Also, if M ↑ N and N ↑ K , then M ↑ K . In
particular, if M ↑ N and K � N , then M ↑ K .

We show that, under a rather reasonable hypothesis, the condition M ↑ N is actually equivalent
to N ∈ σ [M]. Note that if M is any module and N is a semisimple module, then M ↑ N , so we
cannot expect the implication M ↑ N ⇒ N ∈ σ [M] to hold unless M subgenerates every semisimple
module. As it turns out, this condition is indeed sufficient for the equivalence. The following lemma
is a building block towards that conclusion.

Lemma 2.7. Let M and N be modules, and assume M ↑ N. Then, either N is semisimple or Trσ [M](N) 
= 0.

Proof. Assume that N is not semisimple, and assume, on the contrary, that Trσ [M](N) = 0. Let K � N
be a non-direct summand. Then, K is not N-injective. Since Trσ [M](K ) = 0, K is M-injective, a contra-
diction with our assumption. Then, Trσ [M](N) 
= 0. �
Theorem 2.8. Let R be any ring, and let M be a module that subgenerates every semisimple module. Then, for
any module N, M ↑ N if and only if N ∈ σ [M].

Proof. [⇐] is clear. For [⇒], assume that M subgenerates every semisimple module and that
M ↑ N . If N is semisimple, we are done. If not, we show first that Trσ [M](N) must be essen-
tial in N . Indeed, let T � N be a nonzero submodule. Then, T ∩ Trσ [M](N) = Trσ [M](T ). If T is
semisimple, Trσ [M](T ) = T . If T is not semisimple then, by Lemma 2.7 and noting that M ↑ T ,
we have that Trσ [M](T ) 
= 0. Then, Trσ [M](N) is essential in N . This implies that E(Trσ [M](N)) =
E(N). Now, Trσ [M](N) � Trσ [M](E(N)) � E(N), which implies that E(Trσ [M](E(N))) = E(N). Note
that Trσ [M](E(N)) is M-injective. By our assumptions, it is N-injective. Hence, every morphism
N → E(Trσ [M](E(N))) = E(N) has its image in Trσ [M](E(N)) (cf. [11, Lemma 1.13]). In particular, if
we take the inclusion morphism we have that N � Trσ [M](E(N)). Hence, N ∈ σ [M]. �
Theorem 2.9. Let R be a ring, and let W be a Wisbauer class in Mod-R such that SSMod-R ⊆W . Then, W is
an i-portfolio, that is, there exists a module M such that In−1(M) = W . In other words, the following lattices
are the same:

1. iP(R).
2. The interval [SSMod-R,Mod-R] ⊆ Wis-R.

And, consequently, the following lattices are isomorphic.

1. iP(R).
2. The lattice of linear filters of right ideals F such that I ∈ F for any maximal right ideal I .
3. The lattice of left exact preradicals τ such that Soc � τ .
4. The lattice of fully invariant submodules M of any main injective module E such that Soc(E)� M.
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Proof. Let N be a module such that W = σ [N]. Let X be the collection of portfolios A such that
N ∈ A. We claim that σ [N] = ⋂

X. It is clear that σ [N] ⊆ ⋂
X. Not let K be a module not in σ [N].

Since N subgenerates every semisimple module, Theorem 2.8 implies that there exists a portfolio B
with N ∈ B and K /∈ B. Then, σ [N] = ⋂

X. By Lemma 2.2, σ [N] is a portfolio. Then, the lattices
iP(R) and [SSMod-R,Mod-R] ⊆ Wis-R are isomorphic. The second result is a refinement of Proposi-
tion 1.1. �
Corollary 2.10. For any ring R, the lattice iP(R) is modular and coatomic.

Proof. The lattice (4) in the list of isomorphic lattices of Theorem 2.9 is clearly modular. By Zorn’s
lemma, the lattice (2) in the same list is coatomic. �

Note that iP(Z) has only one coatom, namely the class of torsion modules, which is the injectivity
domain of Z. As a first application of Theorem 2.9, we show that this is indeed the case for all right
uniform rings.

Proposition 2.11. Let R be a right uniform ring. Then, iP(R) has only one coatom, namely the class of singular
modules, which is the injectivity domain of any non-injective nonsingular module.

Proof. Note that, in this case, the linear filter corresponding to the Wisbauer class of singular modules
is {I � R: I 
= 0}. From here, the first assertion is clear, as this linear filter is maximum in fil-R .
Now let M be a non-injective nonsingular module. Since for every singular module N we have that
Hom(N, M) = 0, every singular module is in the injectivity domain of M . Then, In−1(M) is precisely
the class of singular modules. �

We saw in Corollary 2.10 that iP(R) is a modular and coatomic lattice. If we set other conditions
on R , we get a nicer lattice. Recall that a ring R is said to be a right QI-ring if every quasi-injective
right R-module is injective [3]. Since they were introduced, QI-rings have played a central role in ring
theory. The following proposition tells us that QI-rings have a particularly well-behaved i-profile. Note
that any QI-ring is necessarily a right noetherian right V -ring.

Proposition 2.12. Let R be a QI-ring. Then, iP(R) is distributive.

Proof. Let {Ei}i∈I be a set of representatives of isomorphism classes of indecomposable injective right
R-modules, and let E = ⊕

i∈I Ei . By [12, Remark 2.7], E is a main injective module. Now, let I ′ ⊆ I be
such that {Ei}i∈I ′ is a set of representatives of isomorphism classes of simple modules. Let J = I \ I ′ .
Let E1 = ⊕

i∈I ′ Ei , E2 = ⊕
i∈ J Ei . Then, Soc(E) = E1 and E = E1 ⊕ E2. Now, if A � E is a fully invariant

submodule, then A = A1 ⊕ A2, with A1 fully invariant in E1 and A2 fully invariant in E2. Then, the set
of fully invariant submodules of E that contain Soc(E) is in bijective correspondence with the set of
fully invariant submodules of E2. Now, if M is a fully invariant submodule of E2, then M = ⊕

i∈ J Mi ,
with Mi fully invariant in Ei for all i ∈ J . Since R is a QI-ring and Ei is indecomposable injective for
all i ∈ J , the only fully invariant submodules of Ei are 0 and Ei . For any fully invariant submodule
M = ⊕

i∈ J Mi , let ϕ(M) = { j ∈ J : M j = E j} ⊆ J . Note that, for M, N fully invariant submodules of E2,
ϕ(M + N) = ϕ(M) ∪ ϕ(N) and ϕ(M ∩ N) = ϕ(M) ∩ ϕ(N). Then, iP(R) is isomorphic to a sublattice
of 2 J , so, in particular, it is a distributive lattice. �
Proposition 2.13. Let R be a right artinian ring. Then, iP(R) is anti-isomorphic to the lattice of ideals con-
tained in J(R). In particular, iP(R) is an artinian and noetherian lattice. Thus, iP(R) is also atomic.

Proof. Since R is right artinian, every linear filter of right ideals of R is closed under arbitrary in-
tersections. Then [9, Proposition 1.14], for every linear filter F there exists a two-sided ideal I of R
such that F = η(I) = { J : I � J }. Since iP(R) is isomorphic to the lattice of linear filters of right ideals
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that contain every maximal right ideal, it follows that iP(R) is anti-isomorphic to the lattice of ideals
contained in J (R). �

From Proposition 2.13, we see the following.

Corollary 2.14. Let R be a right artinian ring. Then, R has no right i-middle class if and only if J (R) contains
no non-trivial ideals of R.

Corollary 2.15. Let R be an artinian ring. Then, iPr(R) ∼= iP	(R). In particular, R has no right i-middle class
if and only if it has no left i-middle class.

Example 2.16. Let R be an artinian chain ring with composition length 	(R). Then, iP(R) is a linearly
ordered lattice of length 	(R) − 1.

Example 2.17. Let R be a QF-ring. By [13, Proposition 2.2], R is main injective as a right module over
itself. Then, iP(R) is isomorphic to the lattice of ideals of R/Soc(R). Note that, in this case, R has no
(left or right) i-middle class if and only if R/Soc(R) is a simple artinian ring.

3. Rings without injective middle class and rings with linearly ordered injective profile

It is clear that a ring is semisimple artinian if and only if iP(R) is a singleton. Rings whose i-profile
consists of two elements (necessarily linearly ordered) are studied in [6], where the authors name
them rings without injective middle class. The natural next step is to enquire about the structure of
rings for which iP(R) is a chain. As we will see, this class of rings includes, among others, right chain
rings.

If a ring has no right i-middle class then every non-semisimple quasi-injective right module is
injective. This notion is generalization of a right QI-ring (every quasi-injective right module is in-
jective, cf. [3]). In [6, Proposition 8] it is shown that for a right SI-ring R with homogeneous and
essential right socle, R has no right i-middle class if and only if every non-semisimple quasi-injective
right module is injective. The following proposition gets the same equivalence with a much weaker
hypothesis.

Proposition 3.1. Let R be a right semi-artinian ring. Then, the following conditions are equivalent.

1. R has no right i-middle class.
2. Every non-semisimple quasi-injective right R-module is injective.

Proof. (1) ⇒ (2) is clear, even in the case where R is not right semi-artinian. For (2) ⇒ (1), let E
be a main injective R-module, and let M be a fully invariant submodule of E such that Soc(E) < M .
Now the injective hull of M , E(M) is a direct summand of E , that is, there exists a module E2
such that E = E(M) ⊕ E2. Now, Soc(E2) = Soc(E) ∩ E2 � M ∩ E2 = 0. Since R is right semi-artinian,
E2 = 0. Then, E = E(M). But now M is fully invariant in its injective hull, so it is quasi-injective.
But M is not semisimple, which implies that M is injective, so M = E . Then, E has only two fully
invariant submodules that contain Soc(E) (namely Soc(E) and E itself). This implies that R has no
right i-middle class. �

The preceding proposition, together with Proposition 2.14 has the following consequence.

Corollary 3.2. Let R be a right artinian ring. Then, the following conditions are equivalent:

1. R has no right i-middle class.
2. Every non-semisimple quasi-injective right R-module is injective.
3. J (R) contains no nonzero two-sided ideals of R.
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Since condition 3 is left–right symmetric, we have that, for an artinian ring, every non-semisimple quasi-
injective right R-module is injective if and only if every non-semisimple quasi-injective left R-module is
injective.

Note that we obtain that a (non-semisimple) right artinian ring with no right i-middle class has
to have Loewy length 2.

Rings with linearly ordered i-profile are a natural generalization of rings with no right i-middle
class. We start with a couple of easy propositions on the module structure of rings with linearly
ordered i-profile.

Proposition 3.3. Let R be a ring for which iP(R) is linearly ordered. Let E be a main injective module, and let
M be a fully invariant submodule of E such that Soc(E) � M. Then, Soc(E/M) is either zero or homogeneous.

Proof. Assume there exists a fully invariant submodule Soc(E) � M � E such that Soc(E/M) is not
homogeneous. This gives us two fully invariant submodules of E that contain M which are not com-
parable. Then, iP(R) is not linearly ordered. �
Proposition 3.4. Let R be a ring such that iP(R) is linearly ordered, and let I, J � J (R). Then, either R/I ∈
σ [R/ J ] or R/ J ∈ σ [R/I].

Proof. Since I, J � J (R), both σ [R/I] and σ [R/ J ] contain every semisimple module. Then, either
σ [R/I] ⊆ σ [R/ J ] or vice versa. The result follows. �

In [16], the problem of characterizing those modules M for which the lattice of Wisbauer classes
in σ [M] is linearly ordered is studied. Note that this condition is too restrictive for our study. For
example, if R is any semisimple artinian ring with two non-isomorphic simple modules S1, S2, then
the lattice of Wisbauer classes in Mod-R is not linearly ordered, as σ [S1] and σ [S2] are not compa-
rable, but clearly iP(R) is a chain. However, it is clear that every ring with linearly ordered lattice
of Wisbauer classes has linearly ordered i-profile. The following is an immediate consequence of [16,
Proposition 2.1].

Proposition 3.5. Let R be a right uniserial ring. Then, iP(R) is linearly ordered.

If R is a local ring, then every non-trivial (that is, different from {R}) linear filter of right ide-
als contains every maximal ideal. Thus, in this case, [16, Proposition 2.2] gives us a necessary and
sufficient condition for R to have linearly ordered i-profile.

Proposition 3.6. Let R be a local ring. Then, iP(R) is linearly ordered if and only if the lattice of ideals of R is
linearly ordered.

Note that, by Proposition 2.13, if R is a right artinian ring with linearly ordered profile, then iP(R)

is finite, as it is of finite length. The next proposition shows that this is not true for arbitrary (even
noetherian) rings.

Proposition 3.7. Let R be a noetherian chain ring which is not artinian. Then, iP(R) ∼= ω + 2. In particular,
iP(R) is linearly ordered but not finite.

Proof. By [7, Proposition 5.3], R is a duo ring and the lattice of ideals of R is R > J (R) > J 2(R) > · · · ,
where J i(R) 
= 0 for all i ∈ N and

⋂
i∈N J i(R) = 0. iP(R) is isomorphic to the lattice of linear filters

of ideals F such that J (R) ∈ F. Let F be such a linear filter. If the set AF = {n ∈ Z+: Jn(R) ∈ F} has a
maximum element m, then F = Fm = { J k(R): 0 � k � m}. If AF does not have a maximum element,
then either F = F∞ = { J k(R): k ∈ N} or F = A, the set of all ideals in R . Then, all linear filters that
contain J (R) are F1 < F2 < · · · < F∞ <A, so iP(R) ∼= ω + 2. �
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In light of Proposition 3.7 it is worth mentioning that if iP(R) is an ordinal, it cannot be a limit
ordinal, as iP(R) is coatomic. In fact, for the same reason we see that if R is not semisimple artinian
and iP(R) is an ordinal, then iP(R) ∼= α + 2 for some ordinal α.

The following proposition, together with its corollary, gives us a necessary condition for a ring
to have a finite and linearly ordered profile. Note that, proceeding exactly as in the proof of [6,
Proposition 2], we get that if Γ is a complete and irredundant set of representatives of cyclic right
R-modules and if M = ∏

N∈Γ N , then M is an i-poor module.

Proposition 3.8. Let R be a non-semisimple artinian ring such that iP(R) is linearly ordered. Then, for every
non-poor module K , there exists a cyclic module C such that In−1(C) � In−1(K ).

Proof. Let M and Γ be as in the preceding paragraph, so M is an i-poor module. Let K be a non-i-
poor module and assume that for every N ∈ Γ , In−1(N) 
� In−1(K ). Since iP(R) is linearly ordered,
this implies that for every N ∈ Γ ; In−1(K ) ⊆ In−1(N). Then, SSMod-R � In−1(K ) ⊆ ⋂

N∈Γ In−1(N) =
In−1(M), a contradiction. Then, there exists C ∈ Γ such that In−1(C) � In−1(K ). �
Corollary 3.9. Let R be a ring such that iP(R) is linearly ordered and atomic (for example, if iP(R) is finite or
if R is as in Example 3.7). Then, R has a cyclic right module that is i-poor.

Proof. In Proposition 3.8, put K as a module such that In−1(K ) is an atom of P(R). �
Note that for a right artinian ring, Corollary 3.9 does not yield anything new, as it is shown in

[1, Theorem 3.3] that for a right artinian ring it is always the case that the cyclic module R/ J (R) is
i-poor. However, the next result tells us that any right artinian ring with linearly ordered i-profile
necessarily has a simple i-poor module. Note that not every ring has a cyclic i-poor module. For
example, the ring of integers Z does not have one.

Proposition 3.10. Let R be a right artinian ring such that iP(R) is linearly ordered. Then, R has a simple
i-poor module.

Proof. Since R is right artinian, R/ J (R) is a semisimple i-poor module. Say R/ J (R) = ⊕k
i=1 Si . Note

that in this case In−1(
⊕k

i=1 Si) = ⋂k
i=1 In

−1(Si). Now proceed as in Proposition 3.8 and Corol-
lary 3.9. �

Recall that for two preradicals τ and λ, the preradical (τ : λ) is defined in such a way that
(τ : λ)M/τ (M) = λ(M/τ (M)), and that a preradical is called a radical if (τ : τ ) = τ (or, equivalently, if
τ (M/τ (M)) = 0 for all M ∈ Mod-R). If τ and λ are supposed to be left exact preradicals, then (τ : λ)

is left exact [15, Exercise VI.1]. From the definition, it is clear that τ ,λ � (τ : λ) for any preradicals.
Using these observations, we can prove the following result.

Proposition 3.11. Let R be a ring with no right i-middle class. Then, either Soc is a radical or R is a right
semi-artinian ring with Loewy length 2.

Proof. Assume Soc is not a radical. Then, (Soc : Soc) is a left exact preradical which is strictly
greater than Soc. Since R has no right middle class, we must have (Soc : Soc) = 1Mod-R . Then,
(Soc : Soc)(R) = R and therefore R is a right semi-artinian ring with Loewy length 2. �

Note that both possibilities in Proposition 3.11 can happen. For example, if R is Cozzens’ ring of
differential polynomials in [5] then R is a noetherian ring with no right i-middle class which is not
right artinian, and in this case Soc is a radical, as the socle of any right module M splits in M . Also
note that the requirement of Soc being a radical is equivalent to the requirement that Ext1(S, T ) = 0
for any semisimple modules S and T .
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4. The projective profile of a ring

Definition 4.1. Let A be a class of modules. We say that A is a p-portfolio if there exists a module M
such that A = Pr−1(M). The class {A ⊆ Mod-R: A is a p-portfolio} is called the right p-profile of R
and we denote it by pPr(R). Similarly, we define the left p-profile of R and denote it by pP	(R).
When there’s no confusion, we denote pPr(R) just by pP(R).

In general, the i-profile of a ring is better behaved than its p-profile. For instance, we have seen
that the i-profile of any ring is a set, but this need not be true for the p-profile, as we will see
next. We call a module M a test-module for projectivity if any module N is projective whenever it
is M-projective. While the famous Baer criterion tells us that the ring R is always a test-module for
injectivity, test-modules for projectivity need not exist. Even in the category of Z-modules, the exis-
tence of a test-module for projectivity is equivalent to the existence of a Whitehead group, and this
problem has been shown to be undecidable in ZFC [14]. The existence of test-modules for projectivity
is important in this problem because of the following proposition.

Theorem 4.2. Let R be a ring. If pP(R) is a set, then there exists a test-module for projectivity.

Proof. We show that if there is no test-module for projectivity, then pP(R) is a proper class. For
brevity, if λ is a cardinal we say that a module M is λ-projective if it is R(λ)-projective. We construct
an injective relation f : ORD → pP(R) recursively, as follows. Since R is not a test-module for projec-
tivity, let M(0) be a module which is R-projective but not projective, and define f (0) = Pr−1(M(0)).
Now let β be an ordinal:

1. If β = α+1 and f (α) has already been defined as Pr−1(M(α)), where M(α) is a module which is
λ(α)-projective but not projective for some cardinal λ(α), let λ(β) be the least cardinal such that
M(α) is not λ(β)-projective. Let M(β) be a module which is λ(β)-projective but not projective,
and define f (β) =Pr−1(M(β)).

2. If β is a limit ordinal and f (γ ) has been defined for all γ < β as Pr−1(M(γ )), where M(γ ) is a
module which is λ(γ )-projective but not projective. Then, for every γ < β there exists a cardinal
κ(γ ) such that M(γ ) is not κ(γ )-projective. Let λ(β) = ⋃

λ<β κ(γ ) and let M(β) me a module

which is λ(β)-projective but not projective. Define f (β) = Pr−1(M(β)).

Then, f defines an injective function from the class of ordinals to pP(R). We conclude that pP(R)

is a proper class. �
Corollary 4.3. There exists a model of ZFC in which the p-profile of Z is not a set.

In light of Theorem 4.2, we cannot use a similar argument to that of Lemma 2.2 to show that
pP(R) is closed under arbitrary intersections, so, contrary to the injective case, we only know that
pP(R) is a semilattice with first and last element. A few results do echo their injective counterparts.
The following two results are proved exactly like in the injective case, so we omit their proofs.

Proposition 4.4. Let R and S be rings. Then, pP(R × S) ∼= pP(R) × pP(S). In particular, if S is semisimple
artinian then pP(R × S) ∼= pP(R).

Note that, although ring decompositions induce decompositions in the injective and projective
profile, the converse is not true, as Example 4.8 shows.

Proposition 4.5. Let R and S be Morita-equivalent rings. Then, pP(R) ∼= pP(S).

Although Theorem 4.2 tells us that the study of the projective profile of a ring is, in general, harder
than that of the injective profile, we have some results in the case where projectivity is well-behaved.
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Namely, if R is a right perfect ring, then any module has a projective cover, so the projectivity domain
of any module is closed under arbitrary direct products. In this case, it is clear that pP(R) is a set,
and we actually have that pP(R) is anti-isomorphic to the lattice of two-sided ideals contained in
J (R). Even more, for any element in pP(R), there is an easy way to find a module M such that the
aforementioned element coincides with Pr−1(M).

Lemma 4.6. Let R be a right perfect ring, and let I ⊆ J (R) be an ideal of R. Then, Mod-R/I is a p-portfolio,
and in fact, Mod-R/I = Pr−1(R/I).

Proof. Since R is a right perfect ring, Pr−1(R/I) is a Wisbauer class closed under products [2, Exer-
cise 17.16], so it is of the form Mod-R/L for some ideal L of R [9, Proposition 1.14]. It is clear that
Mod-R/I ⊆ Pr−1(R/I) so we have that L � I . If we assume that L 
= I , then, as I is contained in J (R),
I/L is superfluous in R/L and so R/L and R/I would be two non-isomorphic projective covers of R/I
in Mod-R/L, a contradiction. Then, Pr−1(R/I) = Mod-R/I . �
Proposition 4.7. Let R be a right perfect ring. Then, pP(R) is anti-isomorphic to the lattice of ideals of R that
are contained in J(R).

Proof. Since R is right perfect, every p-portfolio is a Wisbauer class closed under products. Then, its
corresponding linear filter is closed under arbitrary intersections, so it is of the form η(I) := { J : I � J }
for a two-sided ideal I � R [9, Proposition 1.14]. Thus, pP(R) can be identified with a subset of
the lattice of ideals of R that are contained in J (R). By the preceding lemma, this identification is
surjective. �
Example 4.8. Let K be an algebraically closed field and Q be the quiver 2

α← 1
β→ 3. Let A := K Q , the

path algebra of Q . A is right artinian, so iP(A) and pP(A) are both anti-isomorphic to the lattice of
ideals contained in J (A). Note that J (A) = 〈α,β〉 and that the ideals it contains are 0, 〈α〉, 〈β〉 and
J (A). Then, iP(A) and pP(A) are isomorphic to the product of two intervals of length 1, iP(A) ∼=
pP(A) ∼= L1 × L1. Since Q is a connected quiver, A is indecomposable as a ring. This shows that
non-trivial factorizations on the (injective or projective) profile of a ring do not induce factorizations
of the ring itself.

Proposition 4.9. Let R be a right perfect ring. Then, the following conditions are equivalent.

(1) R has no right p-middle class.
(2) Every non-semisimple quasi-projective right R-module is projective.
(3) J (R) contains no non-trivial two-sided ideals.

Proof. (1) ⇔ (3) is by Proposition 4.7 and (1) ⇒ (2) is clear. We show (2) ⇒ (3). Assume (2) and sup-
pose, on the contrary, that there exists a two-sided ideal I , 0 
= I � J (R). Then, R/I is not semisimple
and it’s clearly quasi-projective, so it must be projective. But this is a contradiction, as I is a super-
fluous ideal of R . Then, J (R) contains no non-trivial two-sided ideals and we’re done. �
Corollary 4.10. Let R be a right artinian ring. Then, the lattices iPr(R), pPr(R) and pP	(R) are all isomorphic.
In particular, we have that for a right artinian ring the following conditions are equivalent.

1. R has no right i-middle class.
2. Every non-semisimple quasi-injective right R-module is injective.
3. R has no right p-middle class.
4. Every non-semisimple quasi-projective right R-module is projective.
5. R has no left p-middle class.
6. Every non-semisimple quasi-projective left R-module is projective.
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The following proposition tells us that if, instead of assuming that R is a right artinian ring we
assume that R is a right perfect ring, we still get (1) ⇒ (3) in the preceding corollary.

Proposition 4.11. Let R be a right perfect ring. If R has no right i-middle class, then R has no right p-middle
class.

Proof. We may assume that R is not semisimple artinian. Then, as R is right perfect, this implies that
J (R) 
= 0. We show that J (R) does not contain properly a nonzero two-sided ideal of R . If this were
the case, say there exists I a two-sided ideal with 0 < I < J (R) then we have three different linear
filters of right ideals containing all the maximal right ideals, namely η(0), η(I) and η( J (R)). This
contradicts the fact that R has no right i-middle class. Thus, the only ideals contained in J (R) are 0
and J (R). This implies, using again that R is right perfect, that R has no projective middle class. �

The converse of Proposition 4.11 is not true, as Proposition 4.15 gives a right perfect ring with no
right p-middle class but with right i-middle class.

The following two results are similar to Proposition 3.8 and Corollary 3.9. Note that it is shown in
[10, Theorem 2.8] that, for any ring, if Γ is a set of representatives of isomorphism classes of simple
modules, then

⊕
S∈Γ S is p-poor.

Proposition 4.12. Let R be a non-semisimple artinian ring such that pP(R) is linearly ordered. Then, for every
non-p-poor module M, there exists a simple module S with Pr−1(S) �Pr−1(M).

Corollary 4.13. Let R be a ring such that pP(R) is linearly ordered and atomic (for example, an artinian chain
ring). Then, R has a simple p-poor module.

Note that, if R is a two-sided artinian ring, then iP	(R) ∼= pP	(R) ∼= iPr(R) ∼= pP	(R). For this
reason, we use P(R) to denote any of these (isomorphic) lattices, and we call any of these lattices
the profile of R .

Proposition 4.14. Let R be a QF-ring with a unique simple module (up to isomorphism). Then, P(R) is linearly
ordered of length n if and only if P(R/Soc(R)) is linearly ordered of length n − 1.

Proof. Under the hypothesis, Soc(R) is the trace of the unique simple module. As R is self-injective,
this implies that Soc(R) is the unique minimal ideal of R . Now, we can decompose R into a direct
sum of indecomposables, R = e1 R ⊕· · ·⊕ em R , with top(ei R) ∼= top(e j R) for every i, j. Since R is right
artinian, this implies that ei R ∼= e j R for every i, j. Since J (ei R) is the unique maximal submodule of
ei R and R is self-injective, this implies that J (R) is the unique maximal ideal of R .

Now assume P(R) is linearly ordered of length n. Then, by the characterization of the profile of
an artinian ring, the lattice of two-sided ideals contained in J (R) is 0 < Soc(R) < I3 < · · · < In =
J (R). This implies that the lattice of two-sided ideals of R/Soc(R) contained in J (R/Soc(R)) is 0 �
I3/Soc(R) < · · · < In/Soc(R) = J (R/Soc(R)). Hence, P(R/Soc(R)) is linearly ordered of length n − 1.

On the other hand, if the profile of R/Soc(R) is linearly ordered of length n − 1, the bijective
correspondence theorem implies that the lattice of ideals contained in J (R) is linearly ordered of
length n (note that here we are using very heavily the fact that Soc(R) is the minimal ideal of R). �
Proposition 4.15. Let R := (

Q 0
R R

)
. Then, R has no left i-middle class, has no (right or left) p-middle class, but

it is not without right i-middle class.

Proof. It is well known that R is left artinian (hence two-sided perfect) but not right artinian. The
Jacobson radical of R is J (R) = ( 0 0

R 0

)
, which does not contain nonzero two-sided ideals. This shows

that R has no left i-middle class and that it has no right and left p-middle class. Now we show that
R is not without right i-middle class. To see this, it suffices to show three distinct linear filters of
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right ideals containing all the maximal right ideals. Clearly, two of these linear filters are the trivial
filter η(0) consisting of all right ideals, and the filter η( J (R)), consisting of all right ideals containing
J (R).

Now let A = {( 0 0
X 0

): X is a Q-subspace of R such that dimQ(R/X) < ∞}, and B = {(Q 0
X 0

): X is
a Q-subspace of R such that dimQ(R/X) < ∞}. We claim that F := A ∪B ∪ η( J (R)) is a linear filter
of right ideals. It is clear that axioms F1), F2) and F3) of the definition of a linear filter are satisfied
by the family F. We show F4), namely, that for every I ∈ F, x ∈ R , (I : x) = {y ∈ R: xy ∈ I} is again a
member of F. Note that, if I ∈ η( J (R)) then (I : x) ∈ η( J (R)) ⊆ F, as η( J (R)) is a linear filter of right
ideals. Also, if I ∈ B then there exists J ∈ A with J ⊆ I , so ( J : x) ⊆ (I : x). Hence, we may assume
without loss of generality that I ∈ A, that is, there exists a subspace of R of finite codimension, Y ,
such that I = ( 0 0

Y 0

)
.

Let x = ( q 0
r1 r2

) ∈ R , y = ( Q 0
R1 R2

) ∈ (I : x). Then, Q q = 0, R2r2 = 0 and qr1 + R1r2 ∈ Y . We consider
four cases.

Case 1. q 
= 0, r2 
= 0. In this case, Q = 0, R2 = 0 and R1r2 ∈ Y . Hence, (I : x) = ( 0 0
r−1

2 Y 0

) ∈ F.

Case 2. q 
= 0, r2 = 0. In this case, Q = 0 and R2, R1 can be any real number. Hence, (I : x) =( 0 0
R R

) ∈ F.
Case 3. q = 0, r2 = 0. Then, we have two subcases. If r1 ∈ Y , then x ∈ I so (I : x) = R . If r1 /∈ Y , then

(I : x) = ( 0 0
R R

)
. In any case, (I : x) ∈ F.

Case 4. q = 0, r2 
= 0. Note that, in this case, (I : x) contains the right ideal
( 0 0

r−1
2 Y 0

) ∈ F. Since F is

closed under super-ideals, (I : x) ∈ F.
Hence, F is a linear filter of right ideals. Since η( J (R)) ⊆ F, F contains all the maximal right ideals.

From the definition of F, it is clear that η( J (R)) � F� η(0). Hence, R is not without right i-middle
class. �

It should be noted that, following Proposition 4.15, we can construct examples of rings with no
left i-middle class and no (right or left) p-middle class, but with arbitrarily large right i-middle class.
Simply replace the ring R of Proposition 4.15 by T = (

Q 0
A A

)
where A is a division Q-algebra of large

enough dimension.

5. When projectivity and injectivity domains coincide.

A classic characterization of QF-rings is that they are those rings for which every projective module
is injective, or, equivalently, every injective module is projective. That inspires the following definition.

Definition 5.1. Let R be a ring. We say that R is a right super QF-ring if In−1(M) = Pr−1(M) for all
right modules M .

Clearly, any right super QF-ring is QF, as the definition implies that every projective module is
injective. Super QF-rings have their origin in [10, Proposition 3.14], where the authors show that any
QF-ring with homogeneous right socle and J (R)2 = 0 is super QF. Now we show that, unlike the class
of QF-rings, the class of super QF-rings is closed under quotient rings.

Proposition 5.2. Let R be a right super QF-ring, and let I be an ideal of R. Then, R/I is right super QF.

Proof. We may identify Mod-R/I with the full subcategory of Mod-R consisting of modules which
are annihilated by I . Then, for any R/I-module M , In−1(MR/I ) = In−1(MR)∩Mod-R/I = Pr−1(MR)∩
Mod-R/I = Pr−1(MR/I ). Therefore, R/I is a right super QF-ring. �
Proposition 5.3. Let R1 and R2 be right super QF-rings. Then, R1 × R2 is right super QF.
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Proof. Let M be an R1 × R2-module. Then, M = M1 ⊕ M2, where M1 = M R1 ∈ Mod-R1 and M2 =
M R2 ∈ Mod-R2. Then, In−1(M) = In−1(M1R1

)×In−1(M2R2
) = Pr−1(M1R1

)×Pr−1(M2R2
) = Pr−1(M).

Then, R1 × R2 is right super QF. �
Next, we show that any artinian chain ring is right super QF. Surprisingly, these are, basically, the

only examples of super QF-rings.

Proposition 5.4. Let R be an artinian chain ring. Then, R is right and left super QF.

Proof. We show that R is right super QF. Since R is artinian and every right module is the direct sum
of cyclic modules, it suffices to show that In−1(R/I) = Pr−1(R/I) for all ideals I . Since R is artinian
chain, the ideals of R are all of the form Jn , n � 	, where 	 denotes the Loewy length of R . The
cyclic modules in In−1(R/ Jn) are R/ Jm , with m � n, and these are precisely the cyclic modules in
Pr−1(R/ Jn): note that R/ Jn is QF as a ring, so the cyclic modules R/ Jm (m � n) are in In−1(R/ Jn)

and Pr−1(R/ Jn). If k < m, then there exists a non-split epimorphism R/ Jm → R/ J k and a non-split
monomorphism R/ J k → R/ Jm , this shows that R/ J k is not in Pr−1(R/ Jn) or In−1(R/ Jn). Then, R is
right super QF. �
Proposition 5.5. Let R be a right super QF-ring and let S be Morita equivalent to R. Then, S is right super QF.

Proof. Follows from the fact that if Φ : Mod-R → Mod-S is an equivalence of categories, then A ∈
In−1(M) (A ∈ Pr−1(M)) if and only if Φ(A) ∈ In−1(Φ(M)) (Φ(A) ∈ Pr−1(Φ(M)), respectively). �

Recall that a ring R is said to be right FGF if every finitely generated right R-module embeds in
a free module. It is clear that every QF-ring is right and left FGF. Whether every right FGF-ring is
necessarily QF is an open problem (see [8] for more references). It is interesting that the condition
‘all factor rings of R are QF’ is equivalent to ‘all factor rings of R are FGF’ [8, Theorem 6.1]. The next
theorem tells us that these rings are precisely the (right or left) super QF-rings.

Theorem 5.6. Let R be a ring. Then, the following conditions are equivalent:

1) R is right super QF.
1′) R is left super QF.
2) Every factor ring of R is right super QF.

2′) Every factor ring of R is left super QF.
3) Every factor ring of R is QF.
4) Every factor ring of R is FGF.
5) R is isomorphic to a product of full matrix rings over artinian chain rings.

Proof. 1) ⇒ 2) is Proposition 5.2, 2) ⇒ 3) is clear, and 3) ⇔ 4) ⇔ 5) is by [8, Theorem 6.1]. For
5) ⇒ 1), note that if R ∼= ∏k

i=1 Mni (Di), where the Di ’s are artinian chain rings, then every Mni (Di)

is right super QF, as it is Morita equivalent to Di and this is right super QF by Proposition 5.4. By
Proposition 5.3, R is right super QF. Then, 1), 2), 3), 4) and 5) are equivalent. By left–right symmetry,
1′), 2′), 3), 4) and 5) are also equivalent. �

Note that if a QF-ring has no (injective or projective) middle class then, by Corollary 4.10, it is
super QF.

Proposition 5.7. Let R be a QF-ring. Then, the following are equivalent:

(1) R/Soc(R) is simple artinian.
(2) J (R) contains no non-trivial two-sided ideals.
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(3) J (R) is semisimple homogeneous.
(4) R ∼= S × T , with S ∼= Mn(D) for an artinian chain ring of length 2 D, and T is 0 or semisimple artinian.

Proof. (1) ⇔ (2) is from Corollary 2.14 and Example 2.17. (2) ⇒ (4) is from the fact that if (2) is
satisfied, then R is super QF, as it is QF and has no i-middle class and no p-middle class. (4) ⇒ (2)

is true because, if (4) holds, then the injective profile of R is isomorphic to the injective profile of D ,
which has no i-middle class. (2) ⇒ (3) follows because J (R)∩Soc(R) 
= 0, so J (R) ⊆ Soc(R) and, since
it contains no non-trivial two-sided ideals, it must be homogeneous. Finally, (3) ⇒ (2) follows from
the fact that R is self-injective, so the trace of any simple module in R is a minimal ideal of R . �
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