
Journal of Complexity 25 (2009) 38–62

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

General local convergence theory for a class of iterative
processes and its applications to Newton’s method
Petko D. Proinov
Faculty of Mathematics and Informatics, University of Plovdiv, Plovdiv 4000, Bulgaria

a r t i c l e i n f o

Article history:
Received 19 September 2007
Accepted 13 May 2008
Available online 7 June 2008

Keywords:
Iterative methods
Gauge functions
Fixed points
Local convergence
Metric spaces
Newton iteration
Banach spaces
Schröder iteration
Polynomial zeros
Zeros of analytic functions

a b s t r a c t

General local convergence theorems with order of convergence
r ≥ 1 are provided for iterative processes of the type xn+1 =
Txn, where T :D ⊂ X → X is an iteration function in a metric
space X . The new local convergence theory is applied to Newton
iteration for simple zeros of nonlinear operators in Banach spaces
as well as to Schröder iteration for multiple zeros of polynomials
and analytic functions. The theory is also applied to establish a
general theorem for the uniqueness ball of nonlinear equations in
Banach spaces. The new results extend and improve some results
of [K. Dočev, Über Newtonsche Iterationen, C. R. Acad. Bulg. Sci.
36 (1962) 695–701; J.F. Traub, H. Woźniakowski, Convergence
and complexity of Newton iteration for operator equations, J.
Assoc. Comput. Mach. 26 (1979) 250–258; S. Smale, Newton’s
method estimates from data at one point, in: R.E. Ewing, K.E.
Gross, C.F. Martin (Eds.), TheMerging of Disciplines: NewDirection
in Pure, Applied, and Computational Mathematics, Springer, New
York, 1986, pp. 185–196; P. Tilli, Convergence conditions of some
methods for the simultaneous computation of polynomial zeros,
Calcolo 35 (1998) 3–15; X.H. Wang, Convergence of Newton’s
method and uniqueness of the solution of equations in Banach
space, IMA J. Numer. Anal. 20 (2000) 123–134; I.K. Argyros,
J.M. Gutiérrez, A unified approach for enlarging the radius of
convergence for Newton’s method and applications, Nonlinear
Funct. Anal. Appl. 10 (2005) 555–563; M. Giusti, G. Lecerf, B. Salvy,
J.-C. Yakoubsohn, Location and approximation of clusters of zeros
of analytic functions, Found. Comput. Math. 5 (3) (2005) 257–311],
and others.

© 2008 Elsevier Inc. All rights reserved.

E-mail address: proinov@uni-plovdiv.bg.

0885-064X/$ – see front matter© 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jco.2008.05.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82653569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
mailto:proinov@uni-plovdiv.bg
http://dx.doi.org/10.1016/j.jco.2008.05.006


P.D. Proinov / Journal of Complexity 25 (2009) 38–62 39

Contents

1. Introduction.................................................................................................................................................... 39
2. Functions of initial conditions and initial points ......................................................................................... 40
3. General local convergence theorems for iterative processes...................................................................... 41
4. Newton’s method for multiple polynomial zeros. I ..................................................................................... 44
5. Newton’s method for multiple polynomial zeros. II .................................................................................... 47
6. Newton’s method for multiple zeros of analytic functions ......................................................................... 49
7. Convergence ball of Newton’s method in Banach spaces............................................................................ 52
8. Uniqueness ball of equations in Banach spaces ........................................................................................... 60
9. Conclusion ...................................................................................................................................................... 61

References....................................................................................................................................................... 62

1. Introduction

In this paper we establish some general local convergence theorems with order of convergence
r ≥ 1 for iterative processes of the type

xn+1 = Txn, n = 0, 1, 2, . . . , (1.1)

where T :D ⊂ X → X is an iteration function in a metric space X satisfying the following condition

E(Tx) ≤ ϕ(E(x)) for all x ∈ Dwith Tx ∈ D and E(x) ∈ J, (1.2)

where E:D→ R+, J is an interval onR+ containing 0,ϕ is a gauge function on J , i.e.ϕ: J → J .We prove
that if T satisfies (1.2) and some other assumptions, then the initial convergence conditions of Picard
iteration (1.1) can be given in the form E(x0) ∈ J . This is way we call a function E:D→ R+ satisfying
(1.2) function of initial conditions of T . Using this notionwe establish a new local convergence theory for
iterative processes of the type (1.1). Applying this theory one can get local convergence theorems for
many iterations. In this work we apply our theory to Newton iteration as well as to Schröder iteration
(Newton iteration for multiple zeros) with respect to various functions of initial conditions.
The paper is structured as follows. The general local convergence theory for the iterative processes

of the type (1.1) is presented in Sections 2 and 3. Themain results here are formulated in Theorems 3.6
and 3.8. In Section 4 we apply Theorem 3.6 to Newton iteration for multiple zeros of a complex
polynomial f (z)with respect to the function of initial conditions E defined as follows E(z) = |z−ξ |/d,
where ξ is a zero of f (simple or multiple) and d denotes the distance from ξ to the other zeros of f .
The results in this section extend the corresponding results of Dočev [5]. In Section 5 we continue to
study the local convergence of Newton iteration for multiple polynomial zeros but with respect to
the function of initial conditions defined by E(z) = |z − ξ |/ρ(z), where ρ(z) denotes the distance
from z to the nearest zero of f which is not equal to ξ . The results of this section improve and extend a
result of Tilli [18]. In Section 6we apply our theory to Newton iteration formultiple zeros of a complex
function f (z)which is analytic in a neighborhood of ξ , where ξ is a zero of f with multiplicitym ∈ N.
The function of initial conditions here is defined as follows E(z) = γ (ξ)‖z − ξ‖, where γ (ξ) =

supk>m
∣∣∣m!f (k)(ξ)k!f (m)(ξ)

∣∣∣1/(k−m) . This quantity γ (ξ) has been introduced in the case m = 1 by Smale [17]
and in the case m ≥ 1 by Yakoubsohn [24]. The first result for the convergence ball of Newton
iteration with respect to this function of initial conditions is due to Traub and Woźniakowski [19] for
simple zeros of analytic functions (even in Banach spaces). Later, Smale [17] (γ -theorem) improves
Traub and Woźniakowski’s result. In 2005, Giusti, Lecerf, Salvy and Yakoubsohn [6, Proposition 3.4]
generalize γ -theorem to cluster of zeros. In this section we improve Proposition 3.4 of [6] in the case
of multiple zeros of analytic functions. In Section 7 we investigate the local convergence of Newton
iteration xn+1 = xn − F ′(xn)−1F(xn) for a simple zero ξ of a nonlinear Fréchet differentiable operator
F defined on a subset D of a Banach space X with values in a Banach space Y . Here we study Newton
iteration with respect to the standard function of initial conditions E(x) = ‖x − ξ‖. The main result
in this section gives a unified theory for the convergence ball of Newton’s method and extends the
corresponding results of Traub and Woźniakowski [19], Smale [17], Wang [21], Wang and Li [23],



40 P.D. Proinov / Journal of Complexity 25 (2009) 38–62

Argyros and Gutiérrez [2] and others. Finally, in Section 8 the new theory is applied to establish a
general theorem for the uniqueness ball of nonlinear equations in Banach spaces around a simple
zero. The main result in this section extends a resent result of Wang [21]. Section 7 and Section 8 can
also be considered as a survey for convergence ball of Newton’s method in Banach spaces.
Throughout the paper Sn(t) denotes the polynomial Sn(t) = 1 + t + · · · + tn−1, where n ∈ N; if

n = 0 we assume that Sn(t) ≡ 0.

2. Functions of initial conditions and initial points

Themain purpose of this section is to introduce the notion function of initial conditions of an iteration
functionwhich play a central role in the convergence theorems given in the next section. Throughout
the paper J denotes an interval on R+ containing 0, that is an interval of the form [0, R], [0, R) or
[0,∞). We begin this section with the following definition of gauge function of order r ≥ 1.

Definition 2.1 ([11]). A function ϕ: J → J is said to be a gauge function of order r ≥ 1 on J if it satisfies
the following conditions:
(i) ϕ(λt) ≤ λrϕ(t) for all λ ∈ (0, 1) and t ∈ J;
(ii) ϕ(t) ≤ t for all t ∈ J .
A gauge function of order r on J is said to be strict gauge function if ϕ(t) < t for all t ∈ J \ {0}

Let us consider some simple but useful properties of nonnegative functions on J satisfying the first
condition of Definition 2.1:
• A nonnegative function ϕ on J satisfies (i) if and only if ϕ(0) = 0 and the function ϕ(t)/t r is
nondecreasing on J \ {0}.
• If two nonnegative function ϕ and ψ on J satisfy (i), then the function ϕ + ψ also satisfies (i).
• If a nonnegative function ϕ on J satisfies (i) and if ψ is nonnegative nondecreasing functions on J ,
then the function ϕψ satisfies (i).

Note that if ϕ 6≡ 0 is a gauge function of order r > 1 on J , then J is a bounded interval. In this
case the second condition of Definition 2.1 can be dropped. Moreover, every gauge function ϕ of order
r > 1 on an interval J = [0, R) is strict gauge function on J . Let us give two examples for gauge
functions of order r ≥ 1 which play an important role in Sections 7 and 8.

Example 2.2. Letω be a nonnegative nondecreasing function on J such thatω(t)/tp is nondecreasing
on J \ {0} for some p ≥ 0. Then the function ϕ defined by ϕ(t) =

∫ t
0 ω(u)du is a gauge function of

order p+ 1 on J provided that ϕ(t) ≤ t for all t ∈ J .

Example 2.3. Letω be a nonnegative nondecreasing function on J such that for λ ∈ (0, 1) and t, u ∈ J
with t ≥ u it satisfies ω(λt)−ω(λu) ≤ λp[ω(t)−ω(u)] for some p ≥ 0. Then the function ϕ defined
by ϕ(t) = tω(t) −

∫ t
0 ω(u)du is a gauge function of order p + 1 on J provided that ϕ(t) ≤ t for all

t ∈ J .

In the following lemma we consider a simple but useful property of gauge functions of order r .

Lemma 2.4 ([11]). For every gauge function ϕ of order r on J there exists a nondecreasing nonnegative
function φ on J such that

ϕ(t) = tφ(t) for all t ∈ J. (2.1)

The function φ has the following properties:

0 ≤ φ(t) ≤ 1 for all t ∈ J; (2.2)

φ(λt) ≤ λr−1φ(t) for all λ ∈ (0, 1) and all t ∈ J. (2.3)

If ϕ is a strict gauge function, then (2.2) can be replaced by

0 ≤ φ(t) < 1 for all t ∈ J. (2.4)
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Remark 2.5. One can always defined a function φ on J satisfying (2.1) by

φ(t) =
{
ϕ(t)/t if t ∈ J \ {0},
0 if t = 0. (2.5)

Note that in the case r > 1 this is the unique nondecreasing nonnegative function on J which satisfies
(2.1). Throughout the paper we assume for convenience that 00 = 1. Then Lemma 2.4 remains true if
we replace λ ∈ (0, 1) in (2.3) by λ ∈ [0, 1].

Definition 2.6 (Function of Initial Conditions). Let T :D ⊂ X → X be a map on an arbitrary set X . A
function E:D → R+ is said to be function of initial conditions of T (with a gauge function ϕ on J) if
there exists a function ϕ: J → J such that

E(Tx) ≤ ϕ(E(x)) for all x ∈ Dwith Tx ∈ D and E(x) ∈ J. (2.6)

Definition 2.7 (Initial Points). Let T :D ⊂ X → X be a map on an arbitrary set X and let E:D→ R+ be
a function of initial conditions of T (with a gauge function on J). Then a point x ∈ D is said to be initial
point of T if E(x) ∈ J and all of the iterates T nx (n = 0, 1, . . .) are well-defined and belong to D.

It is easy to prove that if x0 is an initial point of T , then each iterate xn of Picard iteration (1.1) is
also an initial point of T . Note that Definition 2.7 was given in [11] in the case when E(x) = d(x, Tx).
The following lemma was proved in [11] in the case E(x) = d(x, Tx). The proof of the general case is
the same.

Lemma 2.8. Let T :D ⊂ X → X be a map on an arbitrary set X and let E:D→ R+ be a function of initial
conditions of T with a gauge function ϕ of order r on an interval J . For every initial point x0 ∈ D of T and
every n ≥ 0 we have

E(xn+1) ≤ ϕ(E(xn)) and E(xn) ≤ E(x0)λSn(r),

where xn denotes the n-th iterate of the iterative process (1.1), λ = φ(E(x0)) and φ is a nondecreasing
nonnegative function on J satisfying (2.1).

3. General local convergence theorems for iterative processes

In this section we present three general convergence theorems for local convergence of iterative
processes of the type

xn+1 = Txn, n = 0, 1, 2, . . . , (3.1)

where T :D ⊂ X → X is an iteration function in a metric space (X, d). In these theorems we assume
that the operator T has a function of initial conditions E with a gauge function ϕ on an interval J .
Throughout the paper for a convergent sequence (xn) inX weuse the notion ofQ -order of convergence
as well as the notion of R-order of convergence (see, e.g. [9]). Let us recall these two notions.

Definition 3.1. A sequence (xn) converges to ξ with Q -order (at least) r ≥ 1 if there exists c ≥ 0
such that d(xn+1, ξ) ≤ c(d(xn, ξ))r for sufficiently large n; in the case r = 1 we assume in addition
that c < 1. In the cases r = 1 and r = 2 one say that (xn) converges Q -linearly and Q -quadratically
respectively.

Definition 3.2. A sequence (xn) converges to ξ with R-order (at least) r ≥ 1 if there exists a sequence
of real numbers (αn) converging to zero with Q -order (at least) r such that d(xn, ξ) ≤ αn.

Now we shall establish some general convergence theorems for the iterative process (3.1) with
order of convergence r ≥ 1. We begin with the case when the gauge function ϕ: J → J satisfies only
the following weak condition:

ϕ(t) ≤ t for all t ∈ J. (3.2)
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Theorem 3.3. Let T :D ⊂ X → X be an operator on a metric space (X, d). Suppose that E:D → R+ is
a function of initial conditions of T with a gauge function ϕ: J → J satisfying (3.2). Let ξ be a point in D
such that E(ξ) ∈ J . Assume that

d(Tx, ξ) ≤ β(E(x))d(x, ξ) for all x ∈ D with E(x) ∈ J, (3.3)

where β is a nondecreasing function on J satisfying

0 ≤ β(t) < 1 for all t ∈ J. (3.4)

Then ξ is a unique fixed point of T in the set U = {x ∈ D : E(x) ∈ J}. Moreover, for each initial point x0
of T Picard iteration (3.1) remains in U and converges Q -linearly to ξ with error estimates

d(xn+1, ξ) ≤ hd(xn, ξ) and d(xn, ξ) ≤ hnd(x0, ξ), (3.5)

where h = β(E(x0)).

Proof. Applying (3.3) with x = ξ we conclude that ξ is a fixed point of T . Suppose η ∈ U is also a
fixed point of T . Applying (3.3) with x = η we obtain d(η, ξ) ≤ β(E(η))d(η, ξ) which according to
(3.4) means that d(η, ξ) = 0, i.e. η = ξ . From (3.3) and the fact that each iterate xn is an initial point
of T , we obtain

d(xn+1, ξ) ≤ β(E(xn))d(xn, ξ). (3.6)

By (2.6) and (3.2) we get E(xn) ≤ E(x0) and so β(E(xn)) ≤ β(E(x0)). Now it follows from (3.6) that

d(xn+1, ξ) ≤ hd(xn, ξ), (3.7)

which implies (3.5). To complete the proof it is sufficient to note that (3.4) implies 0 ≤ h < 1. �

Remark 3.4. Let ξ is a point in D. It is easy to show that under the assumptions of Theorem 3.3 the
condition E(ξ) ∈ J is satisfied if and only if E(ξ) is a fixed point of the gauge function ϕ. In particular,
one can choose in Theorem 3.3 ξ to be a zero of the function E since 0 is a fixed point of ϕ.

Remark 3.5. It is easy to prove that Theorem 3.3 remains true but without the estimate (3.5) if one
replace the assumption ‘‘β is a nondecreasing function on J ’’ by ‘‘β is a right continuous function
on J ’’.

Theorem 3.6 (Main Convergence Theorem). Let T :D ⊂ X → X be an operator on a metric space (X, d).
Suppose that E:D → R+ is a function of initial conditions of T with a gauge function ϕ of order r ≥ 1
on J. Let ξ be a point in D satisfying E(ξ) ∈ J . Assume that (3.3) holds with a nondecreasing nonnegative
function β on J such that

tβ(t) is strict gauge function of order r on J (3.8)

and

for t ∈ J : φ(t) = 0 implies β(t) = 0, (3.9)

where φ is a nondecreasing nonnegative function on J satisfying (2.1). Then ξ is a unique fixed point of T
in the set U = {x ∈ D : E(x) ∈ J}. Moreover, for each initial point x0 of T the following statements hold.

(i) The iterative sequence (3.1) remains in the set U and converges to ξ . If φ(E(x0)) < 1, then the
sequence (3.1) converges with R-order r.

(ii) For all n ≥ 0 we have the estimate

d(xn, ξ) ≤ θnλSn(r)d(x0, ξ), (3.10)

whereλ = φ(E(x0)), θ = ψ(E(x0)) andψ is a nonnegative function on J such that β(t) = φ(t)ψ(t)
for all t ∈ J .
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(iii) If there exists a function C:D→ R+ continuous at ξ and such that E(x) ≤ C(x)d(x, ξ) for all x ∈ D,
then the iterative sequence (3.1) converges to ξ with Q -order r as follows

d(xn+1, ξ) ≤ Cn(d(xn, ξ))r for all n ≥ 0, (3.11)

where Cn = C(xn)r−1µ(E(xn)) → C(ξ)r−1µ(0) as n → ∞, and the real function µ: J → R+ is
continuous at 0 and β(t) = t r−1µ(t) for all t ∈ J .

Proof. Let us note first that condition (3.8) guarantees the existence of a nonnegative function ψ on
J such that β = φψ . Indeed, choose an arbitrary nonnegative number b and define ψ: J → R+ as
follows:

ψ(t) =
{
β(t)/φ(t) if φ(t) > 0,
b if φ(t) = 0.

Taking into account (3.9) we get that β(t) = φ(t)ψ(t) for all t ∈ J . It is easy to see that condition
(3.8) guarantees the existence of the function µ as well. (i) The Q -linear convergence of the iterative
sequence (3.1) follows immediately from Theorem 3.3. From Lemma 2.4 and the definitions of λ and
θ we conclude that

0 ≤ λ ≤ 1, θ ≥ 0 and 0 ≤ θλ < 1.

Therefore, if λ = φ(E(z0)) < 1, then (3.10) shows that Picard sequence (3.1) converges with R-order
r . (ii) According to Lemma 2.4 and (3.8) the function β satisfies (3.4) and

β(ut) ≤ ur−1β(t) for all u ∈ [0, 1] and t ∈ J. (3.12)

Now we shall prove (3.10) by induction on n. If n = 0, then (3.10) reduces to an equality. Assuming
(3.10) to hold for an integer n ≥ 0, we shall prove it for n+ 1. Using Lemma 2.8 and (3.12) we deduce

β(E(xn)) ≤ β(E(x0)λSn(r)) ≤ λ(r−1)Sn(r)β(E(x0)) = θλ1+(r−1)Sn(r) = θλr
n
.

From (3.6), the last inequality and induction hypotheses, we get

d(xn+1, ξ) ≤ θn+1λSn+1(r)d(x0, ξ)

which proves (3.10). (iii) It follows from (3.3) that for every x ∈ D such that E(x) ∈ J we have

d(Tx, ξ) ≤ β(E(x))d(x, ξ) = E(x)r−1µ(E(x))d(x, ξ)
≤ C(x)r−1µ(E(x))(d(x, ξ))r .

From this inequality we obtain (3.11) since xn is an initial point of T . Now taking into account that C
is continuous at ξ and µ is continuous at 0, we conclude that Cn → C(ξ)r−1µ(0) as n→∞ �

If the function of initial conditions is defined by E(x) = d(x, ξ), where ξ ∈ D, we get the following
simple but useful special case of Theorem 3.6.

Corollary 3.7. Let T :D ⊂ X → X be an operator on a metric space (X, d) and let ξ ∈ D. Assume that

d(Tx, ξ) ≤ ϕ(d(x, ξ)) for all x ∈ D with d(x, ξ) ∈ J, (3.13)

where ϕ is a strict gauge function of order r ≥ 1 on J. Then ξ is a unique fixed point of T in the set
U = {x ∈ D : d(x, ξ) ∈ J}. Moreover, if T :U → U, then for each point x0 ∈ U the following statements
hold.

(i) Picard sequence (3.1) remains in U and converges to ξ with Q -order r.
(ii) For all n ≥ 0 we have the estimates

d(xn, ξ) ≤ λSn(r)d(x0, ξ), (3.14)

where λ = φ(E(x0)) and φ is a nondecreasing nonnegative function on J satisfying (2.1)
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(iii) For all n ≥ 0 we have the estimate

d(xn+1, ξ) ≤ ϕ(d(xn, ξ)). (3.15)

The following general convergence theorem gives better error bounds than Theorem 3.6 but a
smaller convergence domain.

Theorem 3.8. Let T :D ⊂ X → X be an operator on a metric space (X, d). Suppose that E:D→ R+ is a
function of initial conditions of T with a gauge functionϕ of order r ≥ 1 on J. Let ξ be a point in D satisfying
E(ξ) ∈ J . Assume that (3.3) hold with a nonnegative and nondecreasing function β on J satisfying (3.8)
and (3.9) as well as

β(ϕ(t)) ≤ β(t)r for all t ∈ J. (3.16)

Then ξ is a unique fixed point of T in the set U = {x ∈ D : E(x) ∈ J}. Moreover, for each initial point x0
of T the following statements hold.
(i) Picard sequence (3.1) remains in U and converges to ξ with R-order r. It converges with Q -order r
provided that E(x) ≤ C(x)d(x, ξ) for all x ∈ D, where C:D→ R+ is continuous at ξ .

(ii) For all n ≥ 0 we have the estimate

d(xn, ξ) ≤ hSn(r)d(x0, ξ), (3.17)

where h = β(E(x0)), φ is a nondecreasing nonnegative on J satisfying (2.1).

Proof. According to Theorem 3.6 we have to prove only (ii). First we will show by induction that

β(E(xn)) ≤ hr
n

(3.18)

for all n ≥ 0. It is trivial in the case n = 0. From Lemma 2.8, (3.16) and induction hypotheses we get

β(E(xn+1)) ≤ β(ϕ(E(xn))) ≤ [β(E(xn))]r ≤
(
hr
n
)r
= hr

n+1

which proves (3.18). Now we shall prove (3.17) again by induction. In the case n = 0 it is an equality.
From (3.6) and (3.18) and induction hypotheses, we obtain

d(xn+1, ξ) ≤ hr
n
d(xn, ξ) ≤ hr

n
+Sn(r)d(x0, ξ) = hr

n+1
d(x0, ξ)

which completes the proof. �

Obviously, in the case r = 1 the assumption (3.16) holds always. Therefore, in this case both
Theorems 3.6 and 3.8 coincide.

4. Newton’s method for multiple polynomial zeros. I

Let f :D ⊂ C→ C and ξ be a zero of f with multiplicitym ∈ N. Let us define Newton’s method for
multiple zeros

zk+1 = Tzk, k = 0, 1, . . . , (4.1)

where T :C→ C denotes Schröder’s operator [16] defined as follows

Tz =

z −m
f (z)
f ′(z)

if f ′(z) 6= 0,

z if f ′(z) = 0.
(4.2)

In this section we apply Theorem 3.6 to Newton’s method for multiple polynomial zeros. Assume that
f is a complex polynomial and ξ is a zero of f (simple or multiple). We study the convergence of
Newton’s method with respect to the following function of initial conditions:

E(z) = E(f , z) =
|z − ξ |
d

, (4.3)
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where d denotes the distance from ξ to the nearest zero of f which is not equal to ξ ; if ξ is a unique
zero of f we set E(z) ≡ 0.
In 1962, Dočev [5] established two convergence theorems for Newton iteration for a polynomial f

with real and simple zeros. From the first Dočev’s theorem one can get the the following result.

Theorem 4.1 (Dočev [5]). Let f be a polynomial of degree n ≥ 2 which has only real and simple zeros.
Suppose ξ is a zero of f and 0 < λ < 1. Assume z0 ∈ R satisfies

E(z0) ≤
λ

(λ+ 1)n− 1
,

where the function E:C→ R+ is defined by (4.3). Then Newton’s method (4.1) converges to ξ with error
estimate

|zk − ξ | ≤ λ2
k
−1
|z0 − ξ | for all k ≥ 0. (4.4)

The next result is the second Dočev’s theorem.

Theorem 4.2 (Dočev [5]). Let f be a polynomial of degree n ≥ 2which has only real and simple zeros and
ξ be a zero of f which lie in an interval [a− ε, a− ε]with ε < d/(4n− 1), where d denotes the distance
from ξ to the other zeros of f . Then for every z0 ∈ [a− ε, a− ε] Newton iteration (4.1) is convergent to
ξ with error estimate

|zk − ξ | ≤ 2ελ2
k
−1 for all k ≥ 0,

where λ = 2(n−m)ε/(md− (2n+ 1)ε).

In this section we extend Theorems 4.1 and 4.2 for arbitrary complex polynomials.

Lemma 4.3. Let f be a complex polynomial of degree n ≥ 2 and let ξ be a zero of f with multiplicity m.
Then for every z ∈ C satisfying

E(z) <
m
n
, (4.5)

where the function E:C→ R+ is defined by (4.3), there exists a complex number σ such that

Tz − ξ =
σ

m+ σ
(z − ξ) and |σ | ≤

(n−m)E(z)
1− E(z)

, (4.6)

where T :C→ C is Schröder’s operator defined by (4.2).

Proof. Let z ∈ C satisfy (4.5). If either m = n or z = ξ , then Tz = ξ and so the statement of the
lemma holds with σ = 0. Suppose that m < n and z 6= ξ . Let ξ1, . . . , ξs be all the zeros of f with
the multiplicitiesm1, . . . ,ms respectively. Without loss of generality we can assume that ξ = ξi and
m = mi (1 ≤ i ≤ s). By triangle inequality and (4.5) for every j 6= iwe get

|z − ξj| ≥ |ξ − ξj| − |z − ξ | ≥ d− |z − ξ | > 0. (4.7)

It follows from (4.7) that z is not a zero of f . Now we shall prove that the complex number

σ = (z − ξ)
s∑

j=1,j6=i

mj
z − ξj

(4.8)

satisfies the statement of the lemma. From (4.7) we obtain

|z − ξ |
|z − ξj|

≤
|z − ξ |
d− |z − ξ |

=
E(z)
1− E(z)

. (4.9)
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Combining (4.8) and (4.9) we obtain the inequality in (4.6). It remains to prove the equality in (4.6).
From the well-known identity

f ′(z)
f (z)
=

s∑
j=1

mj
z − ξj

we have

f ′(z)
f (z)
=

m
z − ξ

+

s∑
j=1,j6=i

mj
z − ξj

=
m+ σ
z − ξ

. (4.10)

From the second part of (4.6) and (4.5)we conclude that

|m+ σ | ≥ m− |σ | ≥
m− nE(z)
1− E(z)

> 0

which means thatm+ σ 6= 0. Then (4.10) implies that f ′(z) 6= 0. Hence we have Tz = z− f (z)/f ′(z).
Using (4.10) we obtain the first part of (4.6). �

From Lemma 4.3 we immediately get the following lemma.

Lemma 4.4. Assume that the assumptions of Lemma 4.3 are satisfied. Then for every z ∈ C satisfying
(4.5) we have

E(Tz) ≤ ϕ(E(z)) and |Tz − ξ | ≤ φ(E(z))|z − ξ |,

where the real functions ϕ and φ are defined on [0,m/n) as follows ϕ(t) = (n − m)t2/(m − nt) and
φ(t) = (n−m)t/(m− nt).

Theorem 4.5. Let f be a complex polynomial of degree n ≥ 2 and let ξ be a zero of f with multiplicity m.
Suppose z0 is a complex number satisfying

E(z0) <
m

2n−m
,

where the function E:C→ R+ is defined by (4.3). Then Newton’s method (4.1) converges Q -quadratically
to ξ with error estimate

|zk − ξ | ≤ λ2
k
−1
|z0 − ξ | for all k ≥ 0.

where λ = φ(E(z0)) and φ(t) = (n−m)t/(m− nt),

Proof. It is easy to see that the function ϕ(t) = tφ(t) is a strict gauge function of the second order
on the interval J = [0,m/(2n − m)). According to Lemma 4.4 the assumptions of Theorem 3.6 are
fulfilled with β(t) = φ(t) and ψ(t) ≡ 1. �

Taking into account that the function φ is strictly increasing and continuous on the interval J =
[0,m/(2n − m)] and that φ(J) = [0, 1] we can reformulate Theorem 4.5 in the following equivalent
form. Note that Theorem 4.6 is a extension of Theorem 4.1

Theorem 4.6. Let f be a polynomial of degree n ≥ 2, ξ a zero of f with multiplicity m and 0 < λ < 1.
Suppose z0 ∈ C satisfies

E(z0) ≤
mλ

(λ+ 1)n−m
,

where the function E:C→ R+ is defined by (4.3). Then Newton’s method (4.1) converges Q -quadratically
to ξ with error estimate (4.4)

The following corollary of Theorem 4.6 improves and generalizes Theorem 4.2.
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Corollary 4.7. Let f be a complex polynomial of degree n ≥ 2. Suppose ξ is a zero of f with multiplicity
m which lie in a closed disc U(a, ε)with radius ε < md/(4n− 2m), where d denotes the distance from ξ
to the other zeros of f (if ξ is a unique zero of f we assume that d = +∞). Then for every z0 ∈ U(a, ε)
Newton’s method (4.1) converges Q -quadratically to ξ with error estimate

|zk − ξ | ≤ 2ελ2
k
−1 for all k ≥ 0,

where λ = 2(n−m)ε/(md− 2nε).

5. Newton’s method for multiple polynomial zeros. II

In this section we again apply Theorem 3.6 as well as Theorem 3.8 to Newton’s method (4.1) for
multiple polynomial zeros butwith respect to another function of initial conditions. Let f be a complex
polynomial and ξ be a zero of f (simple ormultiple). Define the following function of initial conditions

E(z) = E(f , z) =
|z − ξ |
ρ(z)

, (5.1)

where ρ(z) denotes the distance from z to the nearest zero of f which is not equal to ξ ; if ξ is a unique
zero of f we set E(z) ≡ 0. Suppose that f has at least two zeros. Then it is easy to prove that the
function ρ satisfies |ρ(x)− ρ(y)| ≤ |x− y| for all x, y ∈ C, i.e. ρ is Lipschitz continuous on C.
In 1998, Tilli [18], improving a result of Renegar [14], proved that if f has only simple zeros

and the starting point z0 is such that E(z0) ≤ 1/(3n − 3), then Newton iteration converges
quadratically right from the first iteration (see Corollary 5.5). In this section we extend Tilli’s result
for arbitrary polynomials. The new results (Theorems 5.3 and 5.4) improve Tilli’s one even in the case
of polynomials with simple zeros.

Lemma 5.1. Let f be a complex polynomial of degree n ≥ 2 and let ξ be a zero of f with multiplicity m.
Then for every z ∈ C satisfying

E(z) <
m
n−m

, (5.2)

where the function E:C→ R+ is defined by (5.1), there exists a complex number σ such that

Tz − ξ =
σ

m+ σ
(z − ξ) and |σ | ≤ (n−m)E(z), (5.3)

where T :C→ C is Schröder’s operator defined by (4.2).

Proof. The proof is the same as the proof of Lemma 4.3. One must only replace the inequalities (4.7)
and (4.9) by |z − ξj| > 0 and |(z − ξ)/(z − ξj)| ≤ E(z) respectively. �

Lemma 5.2. Assume that the assumptions of Lemma 5.1 are satisfied. Then for every z ∈ C satisfying

E(z) <
m
n

(5.4)

we have the following two inequalities:

E(Tz) ≤ ϕ(E(z)) and |Tz − ξ | ≤ β(E(z))|z − ξ |, (5.5)

where the real functions ϕ and β are defined by

ϕ(t) =
(n−m)t2

m− nt
and β(t) =

(n−m)t
m− (n−m)t

.
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Proof. Let z be a complex number satisfying (5.4). The second inequality in (5.5) follows immediately
from Lemma 5.1. Let η be any zero of f which is not equal to ξ . By triangle inequality, the second
inequality in (5.5) and the definition of E(z)we obtain

|Tz − η| ≥ |z − η| − |z − ξ | − |Tz − ξ | ≥ ρ(z)− [1+ β(E(z))]|z − ξ |
= [1− E(z)(1+ β(E(z)))]ρ(z) = ψ(E(z))ρ(z),

where ψ(t) = (m− nt)/[m− (n−m)t]. It follows from the last inequality and (5.4) that

ρ(Tz) ≥ ψ(E(z))ρ(z) > 0. (5.6)

Dividing by ρ(Tz) both sides of the second inequality in (5.5) and applying (5.6) we get the first
inequality in (5.5) with

ϕ(t) = tβ(t)/ψ(t) = (n−m)t2/(m− nt)

which completes the proof. �

Theorem 5.3. Let f be a complex polynomial of degree n ≥ 2 and let ξ be a zero of f with multiplicity m.
Suppose z0 is a complex number satisfying

E(z0) ≤
m

2n−m
,

where the function E:C→ R+ is defined by (5.1). Then Newton’s method (4.1) converges Q -quadratically
to ξ . Moreover, we have the estimate

|zk − ξ | ≤ θ kλ2
k
−1
|z0 − ξ | for all k ≥ 0,

where λ = φ(E(z0)), θ = ψ(E(z0)), and the real functions φ and ψ are defined by

φ(t) =
(n−m)t
m− nt

and ψ(t) =
m− nt

m− (n−m)t
.

Proof. Let ϕ(t) = tφ(t) and β(t) = φ(t)ψ(t). It is easy to see that both ϕ(t) and tβ(t) are gauge
functions of the second order on the interval I = [0,m/(2n−m)] and tβ(t) is a strict gauge function.
According to Lemma 5.2 the assumptions of Theorem 3.6 are satisfied. �

The next convergence theorem for Newton’smethod gives better error estimates than Theorem5.3
but a smaller convergence domain. Note that the new theoremcan be applied only to polynomial zeros
with multiplicitym < n/2.

Theorem 5.4. Let f be a complex polynomial of degree n ≥ 3 and let ξ be a zero of f with multiplicity
m < n/2. Suppose z0 is a complex number such that

E(z0) ≤
m(n− 2m)
2(n−m)2

,

where the function E:C→ R+ is defined by (5.1). Then Newton’s method (4.1) converges Q -quadratically
to ξ . Moreover, for all k ≥ 0 we have

|zk − ξ | ≤ λ2
k
−1
|z0 − ξ |

where λ = β(E(z0)) and β(t) = (n−m)t/(m− (n−m)t).

Proof. Define the functions ϕ and β on the interval I = [0,m/(2n−m)] as in Lemma 5.2. As we have
mentioned in the proof of the previous theorem the assumptions of Theorem 3.6 are fulfilled with ϕ
and β defined on I . Now to satisfy the assumptions of Theorem 3.8 we have to find a subinterval J of
I such that

β(ϕ(t)) ≤ β(t)2 for all t ∈ J.
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It is easy to verify that the last inequality is equivalent to the following one

[m− (n−m)t]2 ≤ m(m− nt)− (n−m)2t2

which holds for t ∈ J = [0,m(n−2m)/2(n−m)2] provided that 1 ≤ m < n/2. Applying Theorem 3.8
we complete the proof. �

The following result of Tilli [18] is an immediate consequence of Theorem 5.4.

Corollary 5.5 (Tilli [18]). Let f be a complex polynomial of degree n ≥ 4 with only simple zeros. Assume
ξ is a zero of f and 0 < µ ≤ 1/3. Suppose z0 is a complex number such that

E(z0) ≤
µ

n− 1
,

where the function E:C→ R+ is defined by (5.1). Then Newton’s method (4.1) converges to ξ . Moreover,
for all k ≥ 0 we have

|zk − ξ | ≤ σ 2
k
−1
|z0 − ξ |,

where σ = µ/(1− µ).

6. Newton’s method for multiple zeros of analytic functions

In this section we apply Theorem 3.6 to Newton’s method (4.1) for multiple zeros of analytic
functions. Let f :D ⊂ C → C and let ξ ∈ D be a zero of f with multiplicity m ∈ N. If f is analytic
in a neighbourhood of ξ we define

γ (ξ) = γ (f , ξ) = sup
k>m

∣∣∣∣m!f (k)(ξ)k!f (m)(ξ)

∣∣∣∣1/(k−m) .
This quantity has been introduced in the case m = 1 by Smale [17] and in the case m ≥ 1 by
Yakoubsohn [24]. In this sectionwe study the local convergence of Newton’s method (4.1) for analytic
functions with respect to the following function of initial conditions

E(z) = E(f , z) = γ (ξ)|z − ξ |. (6.1)

In 1979, Traub and Woźniakowski [19] proved that if ξ is a simple zero of f and f is analytic in
the ball {z ∈ C : E(z) < 1} ⊂ D, then there exists r ∈ (0, 1) such that for every z0 in the
ball U = {z ∈ C : E(z) < r} Newton iteration (4.1) converges quadratically to ξ . Traub and
Woźniakowski obtained this result with r = 0.182 . . . , where r is the unique real solution of the
equation (1 − t)3 = 3t . In 1986, Smale [17] (see also [3, Chapter 8, Proposition 1]) obtained the
optimal value of r = (5 −

√
17)/4 = 0.219 . . . This result of Smale is known in the literature as γ -

theorem. A short proof of the γ -theorem is given in [7, Theorem 1.16]. Note that the results in [19,17]
are obtained even for analytic functions in Banach spaces (see Corollary 7.9). In 2005, Giusti, Lecerf,
Salvy and Yakoubsohn [6, Proposition 3.4] generalize the γ -theorem to cluster of zeros of analytic
functions. In this section we present a generalization of the γ -theorem that improves the result of
Giusti et al. [6] in the case of multiple zeros of analytic functions.

Lemma 6.1. Let f :D ⊂ C→ C. Assume that ξ ∈ D is a zero of f with multiplicity m and f is analytic in
an open ball U = {z ∈ C : E(z) < r} ⊂ D, where the function E:C→ R+ is defined by (6.1) and

0 < r ≤ R =
3m+ 1−

√
m2 + 6m+ 1
4m

. (6.2)

Then for every z ∈ U there exists a complex number σ such that

|Tz − ξ | ≤
1

|m+ σ |
E(z)

(1− E(z))2
|z − ξ | (6.3)
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and

|σ | ≤
(m+ 1)E(z)−mE(z)2

(1− E(z))2
, (6.4)

where T :C→ C is Schröder’s operator defined by (4.2).

Proof. Let z ∈ U . If z = ξ , then Tz = ξ and so the statement of the lemma holds with σ = 0. Let us
consider the case z 6= ξ . Using Taylor’s expansion of f ′(z) around ξ we get

f ′(z) =
∞∑
k=m

f (k)(ξ)
(k− 1)!

(z − ξ)k−1

=
f (m)(ξ)
(m− 1)!

(z − ξ)m−1 +
∞∑

k=m+1

f (k)(ξ)
(k− 1)!

(z − ξ)k−1

=
f (m)(ξ)
m!

(z − ξ)m−1(m+ σ), (6.5)

where

σ =

∞∑
k=m+1

k
m!f (k)(ξ)
k!f (m)(ξ)

(z − ξ)k−m.

By triangle inequality we obtain the estimate

|σ | ≤

∞∑
k=m+1

k
∣∣∣∣m!f (k)(ξ)k!f (m)(ξ)

∣∣∣∣ |z − ξ |k−m ≤ ∞∑
k=m+1

kE(z)k−m

=

∞∑
k=1

(m+ k)E(z)k =
mE(z)
1− E(z)

+
E(z)

(1− E(z))2

=
(m+ 1)E(z)−mE(z)2

(1− E(z))2
,

which proves (6.4). From the last inequality taking account (6.2) we deduce that

|m+ σ | ≥ m− |σ | ≥
2mE(z)2 − (3m+ 1)E(z)+m

(1− E(z))2
> 0 (6.6)

which means thatm+ σ 6= 0. Then (6.5) implies f ′(z) 6= 0 and

|f ′(z)| =
|f (m)(ξ)|
m!

|z − ξ |m−1|m+ σ |, (6.7)

Now we shall prove (6.3). Using Taylor’s expansion on f (z) and f ′(z) around ξ we get

Tz − ξ = f ′(z)−1[f ′(z)(z − ξ)−mf (z)]

=
1
m!
f (m)(ξ)
f ′(z)

∞∑
k=m

(k−m)
m!f (k)(ξ)
k!f (m)(ξ)

(z − ξ)k.

From this we obtain

|Tz − ξ | ≤
1
m!

∣∣∣∣ f (m)(ξ)f ′(z)

∣∣∣∣ ∞∑
k=m

(k−m)
∣∣∣∣m!f (k)(ξ)k!f (m)(ξ)

∣∣∣∣ |z − ξ |k
≤
1
m!

∣∣∣∣ f (m)(ξ)f ′(z)

∣∣∣∣ |z − ξ |m ∞∑
k=m

(k−m)E(z)k−m
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=
1
m!

∣∣∣∣ f (m)(ξ)f ′(z)

∣∣∣∣ |z − ξ |m ∞∑
k=1

kE(z)k

=
1
m!

∣∣∣∣ f (m)(ξ)f ′(z)

∣∣∣∣ |z − ξ |m E(z)
(1− E(z))2

.

Combining this bound with (6.7) we obtain (6.3). �

The next lemma is an immediate consequence of the previous one.

Lemma 6.2. Assume that the assumptions of Lemma 6.1 are satisfied. Then for every z ∈ U we have

E(Tz) ≤ ϕ(E(z)) and |Tz − ξ | ≤ φ(E(z))|z − ξ |, (6.8)

where ϕ and φ are real functions defined by ϕ(t) = t2/(2mt2 − (3m + 1)t + m) and φ(t) =
t/(2mt2 − (3m+ 1)t +m)

The following theorem generalizes the above mentioned results of Traub–Woźniakowski [19] and
Smale [17] and improves Proposition 3.4 of Giusti et al. [6] in the case of multiple zeros.

Theorem 6.3. Let f :D ⊂ C→ C. Assume that ξ ∈ D is a zero of f with multiplicity m and f is analytic
in an open ball U = {z ∈ C : E(z) < r} ⊂ D, where the function E:C→ R+ is defined by (6.1) and

0 < r ≤ R =
3m+ 2−

√
m2 + 12m+ 4
4m

. (6.9)

Then for every z0 ∈ U Newton iteration (4.1) converges Q -quadratically to ξ as follows

|zk+1 − ξ | ≤ Ck|zk − ξ |2 for all k ≥ 0,

where Ck = γ (ξ)µ(E(xk)), Ck → γ (ξ)/m as k → ∞, and the real function µ is defined by µ(t) =
1/(2mt2 − (3m+ 1)t +m). Moreover, for all k ≥ 0 we have

|zk − ξ | ≤ λ2
k
−1
|z0 − ξ |,

where λ = φ(E(z0)) and φ(t) = t/(2mt2 − (3m+ 1)t +m).

Proof. Obviously, the function ϕ(t) = tφ(t) is strictly increasing on [0, R] and R is a fixed point of
ϕ. Therefore, ϕ is a strict gauge functions of the second order on the interval J = [0, R). According to
Lemma 6.2 the assumptions of Theorem 3.6 are satisfied with β(t) = φ(t). �

Corollary 6.4 (Giusti–Lecerf–Salvy–Yakoubsohn [6]). Let f :D ⊂ C→ C be analytic. Assume that ξ ∈ D
is a zero of f with multiplicity m such that U = {z ∈ C : E(z) < r} ⊂ D, where the function E:C→ R+
is defined by (6.1) and

0 < r ≤ R̃ =
4m+ 1−

√
8m2 + 8m+ 1
4m

. (6.10)

Then for every z0 ∈ U Newton iteration (4.1) converges to ξ with error estimate

|zk+1 − ξ | ≤ γ (ξ)µ̃(r)|zk − ξ |2,

where the real function µ̃ is defined by µ̃(t) = 1/(2mt2 − 4mt +m).

Proof. The proof follows immediately from Theorem 6.3 taking into account that R̃ ≤ R and
µ(E(xk)) ≤ µ(E(x0)) ≤ µ(r) ≤ µ̃(r). �

Note that in the case m = 1 both Theorem 6.3 and Corollary 6.4 coincide with the γ -theorem of
Smale [17]. Ifm ≥ 2, we have R̃ < 1−

√
2/2 ≤ R and µ̃(r) > µ(r). Hence, Theorem 6.3 gives larger

convergence ball and better error bounds than Corollary 6.4.
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Remark 6.5. From (6.9) it is easy to see that R < m/(2m + 1) < 1/2. According to Theorem 6.3
Newton iteration is convergent in U(ξ , R/γ (ξ)) provided that f is analytic in this ball. Hence ξ is the
unique zero of f in the ballU(ξ , R/γ (ξ)). This shows that twodistinct zeros ξ and ξ ′ of f are at distance
at least R/γ (ξ). In fact Dedieu [4] (case m = 1) and Yakoubsohn [24,25] (case m ≥ 1) have proved
that this last result holds with 1/(2γ (ξ)) instead of R/γ (ξ).

Taking into account that the functionφ defined in Theorem6.3 is strictly increasing and continuous
on the interval J = [0, R] and that φ(J) = [0, 1]we can formulate the following theorem.

Theorem 6.6. Let f :D ⊂ C→ C and 0 < λ < 1. Assume ξ ∈ D is a zero of f with multiplicity m and f
is analytic in a ball U = {z ∈ C : E(z) < r} ⊂ D, where the function E:C→ R+ is defined by (6.1) and

0 < r ≤ Rλ =
3m+ 1+ 1/λ−

√
(3m+ 1+ 1/λ)2 − 8m2

4m
. (6.11)

Then for every z0 ∈ U Newton iteration (4.1) converges Q -quadratically to ξ with error estimate

|zk − ξ | ≤ λ2
k
−1
|z0 − ξ |.

Setting λ = 1/2 in Theorem 6.6 we obtain the following generalization of the γ -theorem of
Smale [17] (see also [3, Chapter 8, Theorem 1]). In the casem = 1 we get Smale’s result.

Corollary 6.7. Let f :D ⊂ C→ C. Assume ξ ∈ D is a zero of f with multiplicity m and f is analytic in a
ball U = {z ∈ C : E(z) < r} ⊂ D, where the function E:C→ R+ is defined by (6.1) and

0 < r ≤ R =
3m+ 3−

√
m2 + 18m+ 9
4m

. (6.12)

Then every z0 ∈ U is an approximate zero of f with associated zero ξ , i.e. for all k ≥ 0 Newton iteration
(4.1) satisfies

|zk − ξ | ≤
(
1
2

)2k−1
|z0 − ξ |.

7. Convergence ball of Newton’s method in Banach spaces

In this section we apply Corollary 3.7 to Newton’s method

xn+1 = xn − F ′(xn)−1F(xn), n = 0, 1, . . . , (7.1)

where F :D ⊂ X → Y is a Fréchet differentiable operator defined on a subset D of a Banach space X
with values in a Banach space Y . Suppose that F has a simple zero ξ , i.e. F(ξ) = 0 and F ′(ξ)−1 exists
and is bounded. Recall that an open ball U(ξ , r) ⊂ Dwith center ξ and radius r is called a convergence
ball ofNewton’smethod, if Newton iteration (7.1) starting fromeachpoint x0 ∈ U(ξ , r) iswell-defined
and converges to ξ . An interesting problem is to establish the optimal radius of the convergence ball
of Newton iteration. The classical works in this area are due to Rall [13], Rheinboldt [15], Traub and
Woźniakowski [19], Ypma [26,27] and Smale [17]. In this section we study Newton iteration with
respect to the standard function of initial conditions

E(x) = ‖x− ξ‖.

The main result in this section gives a unified theory for convergence ball of Newton’s method and
extends the corresponding results of Traub andWoźniakowski [19], Smale [17],Wang [21],Wang and
Li [23], Argyros and Gutiérrez [2] and others.
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In 1979, Traub andWoźniakowski [19] proved that if ξ is a simple zero of F and F ′ satisfies an affine
invariant Lipschitz condition

‖F ′(ξ)−1(F ′(x)− F ′(y))‖ ≤ L(‖x− y‖) (7.2)

for all x, y ∈ U(ξ , r), then Newton iteration starting from every point x0 in the open ball U(ξ , r)with
radius r = 2/(3L) is well-defined, remains in U(ξ , r) and converges quadratically to ξ . Moreover,
they proved also that r = 2/(3L) is the optimal radius of the convergence ball of Newton’s method
under the condition (7.2). It is well-known that Traub–Woźniakowski’s result remains true even if the
condition (7.2) is satisfied only for the points y lying in the segment joining the points ξ and x. In what
follows for two points u, v ∈ X we denote by [u, v] the segment joining these points, i.e.

[u, v] = {x ∈ X : x = tu+ (1− t)v, 0 ≤ t ≤ 1}. (7.3)

In 2000, Wang [21] generalized Traub and Woźniakowski’s result replacing (7.2) by

‖F ′(ξ)−1(F ′(x)− F ′(ξ + t(x− ξ)))‖ ≤
∫
‖x−ξ‖

t‖x−ξ‖
L(u)du (7.4)

for all x ∈ U(ξ , r) and 0 ≤ t ≤ 1, where L is a nondecreasing function on [0, r]. In 2005, Argyros and
Gutiérrrez [2] proposed the following more general condition

‖F ′(ξ)−1(F ′(x)− F ′(ξ + t(x− ξ)))‖ ≤ f (t, ‖x− ξ‖) (7.5)

for all x ∈ U(ξ , r) and 0 ≤ t ≤ 1, where f is a real function of two variables.
In this section we prove a general convergence theorem for Newton’s method under the following

two conditions:

‖F ′(ξ)−1(F ′(x)− F ′(y))‖ ≤ Ω(‖x− y‖, ‖x− ξ‖, ‖y− ξ‖) (7.6)

and

‖F ′(ξ)−1(F ′(x)− F ′(ξ))‖ ≤ ω(‖x− ξ‖) (7.7)

for all x ∈ D with ‖x − ξ‖ < r and all y ∈ [ξ, x], whereΩ and ω are nonnegative functions defined
on [0, r)3 and [0, r) respectively. Without loss of generality we assume thatω(0) = 0. It is easy to see
that conditions (7.5) and (7.6) are equivalent.

Lemma 7.1. Let F :D ⊂ X → Y be a continuously Fréchet differentiable operator on an open convex set
D. Suppose ξ ∈ D is a simple zero of F and the conditions (7.6) and (7.7) are satisfied. Assume that the real
function

ϕ(t) =

∫ 1
0 Ω(t, u, t − u)du
1− ω(t)

(7.8)

is well-defined on the interval [0, r). Then

‖Tx− ξ‖ ≤ ϕ(‖x− ξ‖) for all x ∈ D with ‖ξ − x‖ < r, (7.9)

where T is Newton’s operator, i.e. Tx = x− F ′(x)−1F(x).

Proof. Let x ∈ D be such that ‖x− ξ‖ < r . Note that since ϕ is well-defined on [0, r), then ω(t) < 1
for all t ∈ [0, r). From this and (7.7) we get

‖F ′(ξ)−1F ′(x)− I‖ = ‖F ′(ξ)−1[F ′(x)− F ′(ξ)]‖ ≤ ω(‖x− ξ‖) < 1

since 0 ≤ ‖x− ξ‖ < r . It follows from Banach’s theorem on invertible operator (see Kantorovich and
Akilov [10, Theorem V.4.3]) that F ′(x)−1 exists and

‖F ′(x)−1F ′(ξ)‖ ≤
1

1− ω(‖x− ξ‖)
. (7.10)
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Further, we have

Tx− ξ = −F ′(x)−1(F(x)− F(ξ)− F ′(x)(x− ξ))

= F ′(x)−1F ′(ξ)
∫ 1

0
F ′(ξ)−1(F ′(x)− F ′(xt)(x− ξ))dt,

where xt = ξ + t(x− ξ). From this and (7.6) we obtain

‖Tx− ξ‖ ≤ ‖F ′(x)−1F ′(ξ)‖
∫ 1

0
‖F ′(ξ)−1(F ′(x)− F ′(xt))‖‖x− ξ‖dt

≤ ‖F ′(x)−1F ′(ξ)‖
∫ 1

0
Ω(‖x− ξ‖, ‖xt − ξ‖, ‖x− xt‖)dt

= ‖F ′(x)−1F ′(ξ)‖
∫ 1

0
Ω(‖x− ξ‖, t‖x− ξ‖, (1− t)‖x− ξ‖)dt

= ‖F ′(x)−1F ′(ξ)‖
∫
‖x−ξ‖

0
Ω(‖x− ξ‖, u, ‖x− ξ‖ − u)dt.

Now combining this with (7.10) we get (7.9) which completes the proof. �

Theorem 7.2 (Convergence Ball Theorem). Let F :D ⊂ X → Y be a continuously Fréchet differentiable
operator on an open ball U(ξ , r) ⊂ D, where ξ is a simple zero of F . Suppose that F ′ satisfies conditions
(7.6) and (7.7) and the real function ϕ defined by (7.8) is a strict gauge function of order p + 1 for some
p ≥ 0 on the interval [0, r). Then for each x0 ∈ U(ξ , r) the following statements hold true:

(i) Newton iteration (7.1) is well-defined, remains in U(ξ , r) and converges to ξ with Q -order p+ 1.
(ii) For all n ≥ 0 we have the following estimate

‖xn+1 − ξ‖ ≤ ϕ(‖xn − ξ‖). (7.11)

(iii) For all n ≥ 0 we have the following estimate

‖xn − ξ‖ ≤ λSn(p+1)‖x0 − ξ‖, (7.12)

where λ = φ(‖x0 − ξ‖) and φ is a nondecreasing nonnegative function on J satisfying (2.1).
(iv) If r is a fixed point of ϕ, then r is the optimal radius of the convergence ball of Newton’s method under

the conditions (7.6) and (7.7) for someΩ and ω.

Proof. The statements (i)–(iii) follows immediately from Corollary 3.7 and Lemma 7.1. The statement
(iv) will be proved in Theorem 7.3. �

In the following theorems and corollaries in this sectionwe consider some interesting special cases
of Theorem 7.2.

Theorem 7.3. Let F :D ⊂ X → Y be a continuously Fréchet differentiable operator on an open ball
U(ξ , r) ⊂ D, where ξ is a simple zero of F . Suppose

‖F ′(ξ)−1(F ′(x)− F ′(y))‖ ≤ ω(‖x− ξ‖)− ω(‖y− ξ‖) (7.13)

for all x ∈ U(ξ , r) and all y ∈ [ξ, x], where ω is a real function defined on [0, r] with ω(0) = 0. Assume
that

ϕ(t) =
tω(t)−

∫ t
0 ω(u)du

1− ω(t)
. (7.14)

is a strict gauge function of order p + 1 for some p ≥ 0 on [0, r). Then starting from every x0 ∈ U(ξ , r)
Newton iteration (7.1) is well-defined, remains in U(ξ , r), converges with Q -order p+1 to ξ and satisfies
the estimates (7.11) and (7.12). Moreover, if r is a fixed point of ϕ and ω is continuous, then r is the
optimal radius of the convergence ball of Newton’s method.
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Proof. The first part of the theorem follows immediately from Theorem 7.2. Assume that r is a fixed
point of ϕ. We shall prove the exactness of r even in the case X = Y = R. Let ξ be an arbitrary point
in R and r be a positive number. Define a real function F on D = U(ξ , r) by

F(x) = x− ξ − sign(x − ξ)
∫
|x−ξ |

0
ω(t)dt, (7.15)

where ω is continuous on [0, r] and such that ω(0) = 0. It is easy to prove that F is continuously
differentiable on U(ξ , r) with F ′(x) = 1− ω(|x− ξ |). Note that for all x ∈ U(ξ , r) and y ∈ [ξ, x] we
have

|F ′(ξ)−1(F ′(x)− F ′(y))| = ω(|x− ξ |)− ω(|y− ξ |)

which shows that (7.13) holdswith usual norm inR. It is easy to show that T (ξ+r) = ξ−ϕ(r) = ξ−r
and T (ξ − r) = ξ + ϕ(r) = ξ + r , where Tx = x − F ′(x)−1F(x). Therefore, if x0 = ξ + r , then
xn = ξ + (−1)nr and so Newton iteration (7.1) starting from x0 = ξ + r is not convergent. �

Remark 7.4. Let us give a sufficient condition for ϕ defined by (7.14) to be a gauge function of order
p+1. It follows from Example 2.3that ifω is a nonnegative nondecreasing function on [0, r) such that
for all λ ∈ (0, 1) and all t, u ∈ [0, r)with t ≥ u it satisfiesω(λt)−ω(λu) ≤ λp[ω(t)−ω(u)] for some
p ≥ 0, then the function ϕ defined by (7.14) is a strict gauge function of order p+1 on J provided that
ϕ(t) < t for all t ∈ (0, r).

Note that in the case ω(t) = Lt condition (7.13) coincides with (7.2) and we obtain Traub and
Woźniakowski’s result [19]. Setting in Theorem 7.15 ω(t) =

∫ t
0 L(u)du, where L is nondecreasing on

[0, r], we immediately get some results of Wang [21, Theorems 3.1 and 5.1]. Theorem 7.15 is also an
improvement of a recent result of Wang and Li [23, Theorem 1.1].

Corollary 7.5. Let F :D ⊂ X → Y be a continuously Fréchet differentiable operator on an open ball
U(ξ , r) ⊂ D, where ξ is a simple zero of F . Suppose that (7.13) holds with

ω(t) = Ltp (p > 0, L > 0) and 0 < r ≤ R =
(
p+ 1
2p+ 1

1
L

)1/p
. (7.16)

Define the real functions

ϕ(t) =
p
p+ 1

Ltp+1

1− Ltp
and φ(t) =

p
p+ 1

Ltp

1− Ltp
. (7.17)

Then starting from every x0 ∈ U(ξ , r) Newton iteration (7.1) is well-defined, remains in U(ξ , r) and
converges with Q -order p + 1 to ξ and with the error estimates (7.11) and (7.12). Moreover, r = R
is optimal radius of the convergence ball of Newton’s method under the condition (7.13) with ω defined
by (7.16).

In the case when p = 1 we again get the above mentioned result of Traub andWoźniakowski [19]
as well as the results of Rheinboldt [15], Wang [20] and Ypma [26]. If 0 < p ≤ 1, then Corollary 7.5
leads to the results of Wang and Li [23, Corollary 3.1] and Huang [8, Theorem 2].
The following example shows that for every positive number p there exist nonlinear operators

F :D ⊂ X → Y (at least in the case X = Y = R) such that Newton iteration (7.1) converges to a
solution of the equation F(x) = 0 with the exact order of convergence p+ 1.

Example 7.6. Let X = Y = R and let ξ be a point in R. Further, let L and p be two positive numbers.
Define the function F :R→ R as follows

F(x) = (x− ξ)
(
1−

L|x− ξ |p

p+ 1

)
.
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The function F is continuously differentiable on R and satisfies

|F ′(ξ)−1(F ′(x)− F ′(y))| = L(|x− ξ |p − |y− ξ |p)

for all x ∈ R and y ∈ [ξ, x]. Define the positive number R and the real functions ϕ and φ as in
Corollary 7.5. By Corollary 7.5 it follows that Newton iteration (7.1) starting from every x0 ∈ U(ξ , R) is
well defined, remains inU(ξ , R) and convergeswithQ -order p+1 to ξ andwith error estimates (7.11)
and (7.12). Moreover, it is easy to show that for all x ∈ U(ξ , (1/L)1/p) we have |Tx− ξ | = ϕ(|x− ξ),
where again Tx = x − F ′(x)−1F(x). Therefore, Newton iteration (7.1) starting from x0 ∈ U(ξ , R)
satisfies

lim
n→∞

|xn+1 − ξ |
|xn − ξ |p+1

=
Lp
p+ 1

if xn 6= ξ for sufficiently large n

and so it converges to ξ with exact order p + 1 and with asymptotic constant c = Lp/(p + 1). Note
also that R is the optimal radius of the convergence ball since if x0 = ξ ± R, then Newton iteration
(7.1) is not convergent.

Corollary 7.7. Let F :D ⊂ X → Y be a continuously Fréchet differentiable operator on an open ball
U(ξ , r) ⊂ D, where ξ is a simple zero of F . Suppose that (7.13) holds with

ω(t) =
c

(1− γ t)2
(c > 0, γ > 0) (7.18)

and

0 < r ≤ R =
3c + 2−

√
c(9c + 8)

2(c + 1)γ
. (7.19)

Define the real functions

ϕ(t) =
cγ t2

(c + 1)(1− γ t)2 − c
and φ(t) =

cγ t
(c + 1)(1− γ t)2 − c

. (7.20)

Then starting from every x0 ∈ U(ξ , r) Newton iteration (7.1) is well-defined, remains in U(ξ , r) and
converges Q -quadratically to ξ with the error estimates (7.11) and

‖xn − ξ‖ ≤ λ2
n
−1
‖x0 − ξ‖ for all n ≥ 0, (7.21)

where λ = φ(‖x0 − ξ‖). Moreover, r = R is optimal radius of the convergence ball of Newton’s method
under the condition (7.13) with ω defined by (7.18).

Corollary 7.7 without the estimate (7.11) is due to Wang and Han [22] (c = 1) and Wang [21,
Example 1] (c > 0). Note that the function φ defined in (7.20) is strictly increasing and continuous on
the interval J = [0, R] and it satisfies φ(J) = [0, 1]. Therefore, if we ignore the estimate (7.11), then
Corollary 7.7 is equivalent to the following result of Wang [21, p. 132].

Corollary 7.8. Let F :D ⊂ X → Y be a continuously Fréchet differentiable operator on an open ball
U(ξ , r) ⊂ D, where ξ is a simple zero of F . Let 0 < λ < 1. Suppose that (7.13) holds with ω defined by
(7.18) and

0 < r ≤ Rλ =
2c + 2+ c/λ−

√
(2c + 2+ c/λ)2 − 4(c + 1)
2(c + 1)γ

. (7.22)

Then for every x0 ∈ U(ξ , r) Newton iteration (7.1) converges Q -quadratically to ξ with error estimate

‖xn − ξ‖ ≤ λ2
n
−1
‖x0 − ξ‖ for all n ≥ 0. (7.23)
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In general Newton iteration converges only locally. In 1979, Traub and Woźniakowski [19]
established conditions under which Newton iteration enjoys a ‘‘type of global convergence’’. The next
corollary is a variant of Traub and Woźniakowski’s result.

Corollary 7.9. Let F :D ⊂ X → Y be analytic in an open ball U(ξ , r) ⊂ D, where ξ ∈ D is a simple zero
of F . Assume that

‖F ′(ξ)−1F (k)(ξ)‖ ≤ ck!γ k−1 for all k ≥ 2(c > 0, γ > 0) (7.24)

and r satisfies (7.19). Define the real functions ϕ and φ by (7.20). Then starting from each x0 ∈ U(ξ , r)
Newton iteration (7.1) is well-defined, remains in U(ξ , r) and converges Q -quadratically to ξ with the
error estimates (7.11) and (7.21). Moreover, r = R is optimal radius of the convergence ball of Newton’s
method under the condition (7.24).

Proof. The statement follows from Corollary 7.7 since (7.24) implies (7.13) with ω defined by
(7.18). �

Traub andWoźniakowski [19] obtained Corollary 7.9 in the case c = 1 with r = 0.182 . . . ,where
r is the unique real solution of the equation (1− t)3 = 3t . In this case the optimal r = (5−

√
17)/4γ

was obtained by Smale [17]. The case c > 0 was considered by Wang [21, p. 132].

Corollary 7.10. Let F :D ⊂ X → Y be analytic in an open ball U(ξ , r) ⊂ D, where ξ ∈ D is a simple zero
of F . Let 0 < λ < 1. Assume that (7.24) holds and r satisfies (7.22). Then for every x0 ∈ U(ξ , r) Newton
iteration (7.1) converges Q -quadratically to ξ with error estimate (7.23).

Setting λ = 1/2 in Corollary 7.10 we obtain the following generalization of the well-known γ -
theorem of Smale [17] (see also [3, Chapter 8, Theorem 1]). In the case c = 1 we get Smale’s result.
The case c > 0 is due to Wang [21, p. 132].

Corollary 7.11. Let F :D ⊂ X → Y be analytic in an open ball U(ξ , r) ⊂ D, where ξ ∈ D is a simple zero
of F . Assume that (7.24) holds and

0 < r ≤ R =
2c + 1−

√
c(4c + 3)

(c + 1)γ
. (7.25)

Then every x0 ∈ U(ξ , r) is an approximate zero of F with associated zero ξ , i.e. Newton iteration (7.1)
satisfies

‖xn − ξ‖ ≤
(
1
2

)2n−1
‖x0 − ξ‖ for all n ≥ 0.

The following theorem is another natural generalization of Traub and Woźniakowski’s result [19]
mentioned in the beginning of the section.

Theorem 7.12. Let F :D ⊂ X → Y be a continuously Fréchet differentiable operator on an open ball
U(ξ , r) ⊂ D, where ξ is a simple zero of F . Suppose

‖F ′(ξ)−1(F ′(x)− F ′(y))‖ ≤ ω(‖x− y‖) (7.26)

for all x ∈ U(ξ , r) and all y ∈ [ξ, x], where ω is a real function defined on [0, r] with ω(0) = 0. Assume
that

ϕ(t) =

∫ t
0 ω(u)du
1− ω(t)

. (7.27)

is a strict gauge function of order p+1 for some 0 ≤ p ≤ 1 on [0, r). Then starting from every x0 ∈ U(ξ , r)
Newton iteration (7.1) is well-defined, remains in U(ξ , r) and converges with Q -order p+1 to ξ and with
the error estimates (7.11) and (7.12).
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Corollary 7.13. Let F :D ⊂ X → Y be a continuously Fréchet differentiable operator on an open ball
U(ξ , r) ⊂ D, where ξ is a simple zero of F . Suppose that (7.26) holds with

ω(t) = Ltp (0 ≤ p ≤ 1, L > 0) and 0 < r ≤ R =
(
p+ 1
p+ 2

1
L

)1/p
. (7.28)

In the case p = 0 we assume that L < 1/2 and R = ∞. Define the functions

ϕ(t) =
1
p+ 1

Ltp+1

1− Ltp
and φ(t) =

1
p+ 1

Ltp

1− Ltp
. (7.29)

Then starting from every x0 ∈ U(ξ , r) Newton iteration (7.1) is well-defined, remains in U(ξ , r) and
converges with Q -order p+ 1 to ξ with the error estimates (7.11) and (7.12).

From Corollary 7.13 in the case p = 1 we again get the classical results of Rheinboldt [15],
Traub and Woźniakowski [19], Wang [21], Ypma [26]. In the case 0 ≤ p ≤ 1 Corollary 7.13 is
obtained by Ypma [27, Theorem 3.1], Huang [8, Theorem 1] and in a slightly different form by Argyros
[1, Theorem 4].
Using the following proposition we can show that if the assumptions of Theorem 7.12 or

Corollary 7.13 are satisfied with p > 1, then F(x) = A(x − ξ), where A is a linear operator, i.e. in
this case the equation F(x) = 0 is linear.

Proposition 7.14. Let F :D ⊂ X → Y be an operator on a convex domain D and ξ ∈ D. Suppose

‖F(x)− F(y)‖ ≤ ω(‖x− y‖) for all x ∈ D and y ∈ [ξ, x],

whereω: J → R is a nondecreasing function such that limt→0 ω(t)/t = 0. Then the operator F is constant
on D.

Proof. Define the functionΩ: J → R as follows

Ω(t) = sup{‖F(x)− F(y)‖ : x ∈ D, y ∈ [ξ, x], ‖x− y‖ ≤ t}.

Obviously, Ω(t) ≤ ω(t) for all t ∈ J . This implies limt→0Ω(t)/t = 0. It is easy to show that Ω is
nondecreasing and Ω(t1 + t2) ≤ Ω(t1) + Ω(t2) for all t1, t2 ∈ J with t1 + t2 ∈ J . Using the last
inequality one can show that Ω(ut) ≤ (u + 1)Ω(t) for all u, t ∈ J with (u + 1)t ∈ J . Now we shall
prove that Ω is identical to zero. Without loss of generality we can assume that J = [0, R), where
0 < R ≤ +∞. Suppose Ω is not identical to zero. Then there exists δ ∈ J such that Ω(δ) > 0. For
every t ∈ (0, δ)with δ + t ∈ J we have

Ω(δ) = Ω((δ/t)t) ≤ (δ/t + 1)Ω(t) ≤ 2(δ/t)Ω(t)

which can be written in the form Ω(t)/t ≥ (1/2)Ω(δ)/δ > 0. The last inequality contradicts to
the fact that limt→0Ω(t)/t = 0. Consequently, Ω(t) ≡ 0 which implies that F(x) = F(ξ) for every
x ∈ D. �

Now assume that an operator F satisfies assumptions of Corollary 7.13 (or Theorem 7.12) with
p > 1. Then it follows from Proposition 7.14 that the operator F ′(ξ)−1F ′ is constant in U(ξ , r) which
implies that F ′ is constant in this ball as well. Hence, for all x ∈ U(ξ , r) we have F(x) = A(x − ξ),
where A is a linear operator.
The next theorem is s an improvement of a recent result of Wang and Li [23, Theorem 1.2].

Theorem 7.15. Let F :D ⊂ X → Y be a continuously Fréchet differentiable operator on an open ball
U(ξ , r) ⊂ D, where ξ is a simple zero of F . Suppose

‖F ′(ξ)−1(F ′(x)− F ′(ξ))‖ ≤ ω(‖x− ξ‖) (7.30)
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for all x ∈ U(ξ , r), where ω is a real function defined on [0, r] with ω(0) = 0. Assume that

ϕ(t) =
tω(t)+

∫ t
0 ω(u)du

1− ω(t)
. (7.31)

is a strict gauge function of order p + 1 for some p ≥ 0 on [0, r). Then starting from every x0 ∈ U(ξ , r)
Newton iteration (7.1) is well-defined, remains in U(ξ , r) and converges with Q -order p+ 1 to ξ with the
error estimates (7.11) and (7.12).

Proof. Note that (7.30) implies that

‖F ′(ξ)−1(F ′(x)− F ′(y))‖ ≤ ω(‖x− ξ‖)+ ω(‖y− ξ‖) (7.32)

for all x, y ∈ U(ξ , r). Now the proof follows from Theorem 7.2. �

Remark 7.16. Let ϕ be defined by (7.27) or (7.31). It follows from Example 2.2that ifω is nonnegative
nondecreasing on [0, r) andω(t)/tp is nondecreasing on (0, r) for some p ≥ 0, then ϕ is a strict gauge
function of order p+ 1 on [0, r) provided that ϕ(t) < t for all t ∈ (0, r).

Corollary 7.17. Let F :D ⊂ X → Y be a continuously Fréchet differentiable operator on an open ball
U(ξ , r) ⊂ D, where ξ is a simple zero of F . Suppose that (7.30) holds with

ω(t) = Ltp (p ≥ 0, L > 0) and 0 < r ≤ R =
(
p+ 1
2p+ 3

1
L

)1/p
. (7.33)

In the case p = 0 we assume that L < 1/3 and R = ∞. Define the functions

ϕ(t) =
p+ 2
p+ 1

Ltp+1

1− Ltp
and φ(t) =

p+ 2
p+ 1

Ltp

1− Ltp
. (7.34)

Then starting from every x0 ∈ U(ξ , r) Newton iteration (7.1) is well-defined, remains in U(ξ , r) and
converges with Q -order p+ 1 to ξ with the error estimates (7.11) and (7.12).

From Corollary 7.17 in the case p = 1 we obtain R = 2/(5L) which improves a recent result of
Wang and Li [23, Corollary 3.2]. For example they have proved R = 1/(3L). Note also that Example 7.6
shows that for every p > 0 there exist nonlinear functions F :R → R satisfying the assumptions
of Corollary 7.17. The following corollary is an improvement of another result of Wang and Li [23,
Corollary 3.3].

Corollary 7.18. Let F :D ⊂ X → Y be a continuously Fréchet differentiable operator on an open ball
U(ξ , r) ⊂ D, where ξ is a simple zero of F . Suppose that (7.30) holds with holds with ω defined by (7.18)
and

0 < r ≤ R =
5c + 2−

√
c(25c + 8)

2(3c + 1)γ
. (7.35)

Define the real unctions

ϕ(t) =
cγ t2(3− 2γ t)

(c + 1)(1− γ t)2 − c
and φ(t) =

cγ t(3− 2γ t)
(c + 1)(1− γ t)2 − c

. (7.36)

Then starting from every x0 ∈ U(ξ , r) Newton iteration (7.1) is well-defined, remains in U(ξ , r) and
converges Q -quadratically to ξ with the error estimates (7.11) and (7.21).

In the convergence ball of Newton’s method, the solution ξ of the equation F(x) = 0 is certainly
unique. But it is well-known that the uniqueness ball of this equation may be larger. In Section 8 we
study the problem of the uniqueness ball of the equation F(x) = 0.
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8. Uniqueness ball of equations in Banach spaces

In this section we apply Corollary 3.7 to establish a general theorem for the uniqueness ball of
nonlinear equations in Banach Spaces. Let X and Y be two Banach spaces. Suppose F :D ⊂ X → Y and
ξ ∈ D is a simple zero of the equation

F(x) = 0. (8.1)

Then an open ball U(ξ , r)with center ξ and radius r is called a uniqueness ball of equation (8.1) if ξ is
a unique solution of (8.1) in D ∩ U(ξ , r).

Lemma 8.1. Let F :D ⊂ X → Y be a continuous operator on a convex set D and continuously Fréchet
differentiable on intD. Suppose ξ ∈ intD is a simple zero of F and

‖F ′(ξ)−1(F ′(x)− F ′(ξ))‖ ≤ ω(‖x− ξ‖) for all x ∈ D with ‖x− ξ‖ < r, (8.2)

where r > 0 and ω is such that the function

ϕ(t) =
∫ t

0
ω(u)du (8.3)

is well-defined on [0, r) and right continuous at zero. Then

‖Tx− ξ‖ ≤ ϕ(‖x− ξ‖) for all x ∈ D with ‖x− ξ‖ < r, (8.4)

where T :D ⊂ X → X is defined by Tx = x− F ′(ξ)−1F(x).

Proof. For each x ∈ intD such that ‖x− ξ‖ < r we have

Tx− ξ = −F ′(ξ)−1(F(x)− F(ξ)− F ′(ξ)(x− ξ))

= −

∫ 1

0
F ′(ξ)−1(F ′(xt)− F ′(ξ))(x− ξ)dt,

where xt = ξ + t(x− ξ). From this and (7.7) we obtain

‖Tx− ξ‖ ≤
∫ 1

0
‖F ′(ξ)−1(F ′(xt)− F ′(ξ))‖‖x− ξ‖dt

≤

∫ 1

0
ω(t‖x− ξ‖)‖x− ξ‖dt =

∫
‖x−ξ‖

0
ω(u)du = ϕ(‖x− ξ‖)

which proves (8.4) in the casewhen x is an interior point ofD. Now let x be an arbitrary point ofDwith
‖x−ξ‖ < r . Take a real sequence (tn) in the interval (0, 1) that converges to 0 and set xn = ξ+tn(x−ξ).
Then the sequence (xn) lies in intD and ‖xn − ξ‖ < R. It follows from the first part of the proof that
‖Txn − ξ‖ ≤ ϕ(‖xn − ξ‖). Now by continuity of T and right continuity of ϕ we get (8.4). �

Theorem 8.2 (Uniqueness Ball Theorem). Let F :D ⊂ X → Y be a continuous operator on a convex set D
and continuously Fréchet differentiable on intD. Suppose ξ ∈ intD is a simple zero of F and the condition
(8.2) holds. Assume that the real function ϕ defined by (8.3) is a strict gauge function of the first order on
[0, r) and right continuous at 0 . Then the Eq. (8.1) has a unique solution in the set D∩U(ξ , r). Moreover,
if r is a fixed point of ϕ and ω is continuous on [0, r], then r is the optimal radius of the uniqueness ball
of the equation F(x) = 0 under the condition (8.2).

Proof. Consider again themodified Newton operator T :D ⊂ X → X defined by Tx = x−F ′(ξ)−1F(x).
Obviously, the set of fixed points of T coincides with the set of zeros of F . By Lemma 8.1 and the first
part of Corollary 3.7 we conclude that ξ is a unique fixed point of T in D ∩ U(ξ , r). We shall prove
the exactness of the radius of the uniqueness ball even in the case X = Y = R. Let ξ be an arbitrary
point in R and r be a positive number. Further, let ω be continuous on [0, r] and ω(0) = 0. Without
loss of generality we can assume that ω is defined and continuous on [0,∞). Define a real function
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F :R→ R again by (7.15). Note that F is continuously differentiable on R and ξ is a simple zero of F .
Moreover, |F ′(ξ)−1(F ′(x)− F ′(ξ))| = ω(|x− ξ |) for all x ∈ R. Hence, condition (8.2) holds with usual
norm in R. It is easy to show that F(ξ + r) = r − ϕ(r) and F(ξ − r) = −r + ϕ(r). Now suppose that
r is a fixed point of ϕ. Then F(ξ ± r) = 0, i.e. F has three zeros in U(ξ , r)which means that U(ξ , r) is
the optimal ball of uniqueness of the equation F(x) = 0. �

Remark 8.3. From Example 2.2 it follows that if ω is nonnegative nondecreasing on [0, r), then ϕ
defined by (8.3) is a strict gauge function of the first order on [0, r) provided that ϕ(t) < t for all
t ∈ (0, r). In this case ϕ is right continuous at 0 as well.

From Theorem 8.2 one can obtain some results of Wang [21, Theorems 4.1 and 5.2].

Corollary 8.4. Let F :D ⊂ X → Y be a continuous operator on a convex set D and continuously Fréchet
differentiable on intD. Suppose ξ ∈ intD is a simple zero of F and the condition (8.2) holds with

ω(t) = Ltp (p ≥ 0, L > 0) and 0 < r ≤ R =
(
p+ 1
L

)1/p
. (8.5)

In the case p = 0 we assume that L < 1 and R = ∞. Then the equation F(x) = 0 has a unique solution
in the set D ∩ U(ξ , r). Moreover, r = R is the optimal radius of the uniqueness ball under the condition
(8.2) with ω defined by (8.5).

Corollary 8.4 is obtained byWang [21, Corollary 6.2] (p = 1) andHuang [8, Theorem3] (0 < p ≤ 1).
Note that Wang [21] and Huang [8] have formulated their results in a slightly weaker form assuming
that U(ξ , r) ⊂ D. Note also that Example 7.6 shows that for every p > 0 there exist nonlinear
functions F :R→ R satisfying the assumptions of Corollary 8.4.

Corollary 8.5. Let F :D ⊂ X → Y be a continuous operator on a convex set D and continuously Fréchet
differentiable on intD. Suppose ξ ∈ intD is a simple zero of F and the condition (8.2) holds with

ω(t) =
c

(1− γ t)2
− c (c > 0, γ > 0) and 0 < r ≤ R =

1
(c + 1)γ

. (8.6)

Then the equation F(x) = 0 has a unique solution in the set D ∩ U(ξ , r) and r = R is the optimal radius
of the uniqueness ball under the condition (8.2) with ω defined by (8.6).

Corollary 8.5 is due to Wang [21, p. 130]. When F is analytic and satisfies (7.24) with c = 1 then
this result is due to Dedieu [4].

9. Conclusion

In this paper we present a general method for proving convergence results for iterative processes
of the type xn+1 = Txn, where T :D ⊂ X → X is an iteration function in a metric space (X, d). To
establish an unified local convergence theory we introduce the notion of a function of initial conditions
of T . A real-valued function E:D→ R+ is said to be a function of initial conditions of T (with a gauge
function ϕ on an interval J) if there exists a function ϕ: J → J such that

E(Tx) ≤ ϕ(E(x)) for all x ∈ Dwith Tx ∈ D and E(x) ∈ J. (9.1)

Further, we assume that T has a fixed point ξ ∈ X and that T satisfies a condition of the type

d(Tx, ξ) ≤ β(E(x))d(x, ξ) for all x ∈ Dwith E(x) ∈ J, (9.2)

where β is a nondecreasing function on J satisfying 0 ≤ β(t) < 1 for all t ∈ J . The main theorems of
the paper (Theorems 3.6 and 3.8) give a method for obtaining local convergence theorems with order
of convergence r ≥ 1 for given iteration function T with respect to given function of initial conditions
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E. We apply our theory to Newton’s operator Tx = x − F ′(x)−1F(x) with respect to four different
functions of initial conditions of the type

E(x) = C(x)d(x, ξ), (9.3)

where C:D → R+. Let us give an easy algorithm for obtaining a local convergence result for given
iteration function T with respect to given function of initial conditions E of the type (9.3).

Step 1. Consider d(Tx, ξ) and derive an inequality of the type (9.2) with a nondecreasing function β
on an interval J = J1.

Step 2. Derive an inequality of the type C(Tx) ≤ γ (E(x))C(x) for all x ∈ D such that E(x) ∈ J and
Tx ∈ D, where γ is a real function defined on an interval J = J2.

Step 3. Using Step 1 and Step 2 prove an inequality of the type (9.1) with the function ϕ defined by
ϕ(t) = tβ(t)γ (t) on the interval J = J1 ∩ J2.

Step 4. Find an interval J ⊂ J1 ∩ J2 such that ϕ is a gauge function of order r ≥ 1 on J and apply
Theorem 3.6 or Theorem 3.8

Finally, let us note that the idea of this paper can be developed (see [12]) to establish general
semilocal convergence theorems in which we do not assume the existence of fixed points or zeros.
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