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Inflationary models are usually based on dynamics of one or more scalar fields coupled to gravity. In this
work we present a new class of inflationary models, gauge-flation or non-Abelian gauge field inflation,
where slow-roll inflation is driven by a non-Abelian gauge field. This class of models is based on a
gauge field theory with a generic non-Abelian gauge group minimally coupled to gravity. We then focus
on a particular gauge-flation model by specifying the action for the gauge theory. This model has two
parameters which can be determined using the current cosmological data and has the prospect of being
tested by Planck satellite data. Moreover, the values of these parameters are within the natural range of
parameters in generic grand unified theories of particle physics.

© 2013 Elsevier B.V. All rights reserved.
Inflationary Universe paradigm [1], the idea that early Universe
has undergone an inflationary (accelerated expansion) phase, has
appeared very successful in reproducing the current cosmological
data through the �CDM model [2]. Many models of inflation have
been proposed and studied so far, e.g. see [3], which are all com-
patible with the current data. Inflationary models are generically
single or multi scalar field theories with standard or non-standard
kinetic terms and a potential term, which are minimally or non-
minimally coupled to gravity. Generically, in these models infla-
tionary period is driven by a “slowly rolling” scalar field (inflaton
field) whose kinetic energy remains small compared to the poten-
tial terms.

Toward the end of inflation the kinetic term becomes compara-
ble to the potential energy, and inflaton field(s) start a (fast) oscil-
lation around the minimum of their potential losing their energy
to other fields present in the theory, the (p)reheating period. The
energy of the inflaton field(s) should eventually be transferred to
standard model particles, reheating, where standard FRW cosmolo-
gies take over. Therefore, to have a successful cosmology model
one should embed the model into particle physics models. With
the current data the scale of inflation (or Hubble parameter H
during inflation) is not restricted well enough, it can range from
1014 GeV to the Bing Bang Nucleosynthesis scale 1 MeV. However,
larger H , H � 10 GeV, is preferred within the slow-roll inflationary
models with preliminary particle or high energy physics considera-
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tions. It is hence natural to tune the inflationary model within the
existing particle physics models suitable for similar energy scales.

Most of successful inflationary scenarios so far use scalar
field(s) as the inflaton, because turning on time dependent scalar
fields does not spoil the homogeneity and isotropy of the cos-
mology. Although it is relatively easy to write down a potential
respecting the slow-roll dynamics conditions, it is generically not
easy to argue for such potentials and their stability against quan-
tum corrections within particle physics models. For example, the
Higgs sector in the ordinary electroweak standard model mini-
mally coupled to Einstein gravity does not support a successful
inflationary model, e.g. see [4]. The situation within beyond stan-
dard model theories seems not to be better.

Vector gauge fields are commonplace in all particle physics
models. However, their naive usage in constructing inflationary
models is in clash with the homogeneity and isotropy of the back-
ground. It has been argued that this obstacle may be overcome by
introducing many vector fields which contribute to the inflation,
such that the anisotropy induced by them all average out [5]. Al-
ternatively one may introduce three orthogonal vector fields and
retain rotational invariance by identifying each of these fields with
a specific direction in space [5]. Nonetheless, it was shown that it
is not possible to get a successful vector inflation model in a gauge
invariant setting [5]. Lack of gauge invariance, once quantum fluc-
tuations are considered may lead to instability of the background
and may eventually invalidate the background classical inflationary
dynamics analysis [6].

Here, we construct a new class of vector inflation models and
to avoid the above mentioned possible instability issue we work
in the framework of gauge field theories. In addition, to remove
the incompatibility with isotropy resulting from gauge fields we
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introduce three gauge fields. We choose these gauge fields to rotate
among each other by SU (2) non-Abelian gauge transformations.
Explicitly, the rotational symmetry in 3d space is retained because
it is identified with the global part of the SU (2) gauge symmetry.
In our model we need not restrict ourselves to SU (2) gauge theory
and, since any non-Abelian gauge group has an SU (2) subgroup,
our gauge-flation (non-Abelian gauge field inflation) model can
be embedded in non-Abelian gauge theories with arbitrary gauge
group. Another advantage of using non-Abelian gauge theories is
that, due to the structure of non-Abelian gauge field strength, there
is always a potential induced for the combination of the gauge field
components which effectively plays the role of the inflaton field.

In the above discussions we have only committed ourselves
to the gauge invariance and have not fixed a specific gauge the-
ory action. This action will be fixed on the requirement of having
a successful inflationary model. We study one such gauge-flation
model but gauge-flation models are expected not to be limited to
this specific choice. In this Letter we consider a simple two param-
eter gauge-flation model and study classical inflationary trajectory
for this model as well as the cosmic perturbation theory around
the inflationary path. We then use the current data for constraining
the parameters of our model and show that our model is compati-
ble with the current data within a natural range for its parameters.

1. The inflationary setup

Consider a 4-dimensional su(2) gauge field Aa
μ , where a,b, . . .

and μ,ν, . . . are respectively used for the indices of the gauge al-
gebra and the space–time. We will be interested in gauge invariant
Lagrangians L(F a

μν, gμν) which are constructed out of metric gμν

and the strength field F

F a
μν = ∂μ Aa

ν − ∂ν Aa
μ − gεa

bc Ab
μ Ac

ν, (1)

where εabc is the totally antisymmetric tensor. We work with FRW
inflationary background metric

ds2 = −dt2 + a(t)2δi j dxi dx j, (2)

where indices i, j, . . . label the spatial directions.
The effective inflaton field is introduced as follows: We will

work in temporal gauge Aa
0 = 0 and at the background level, as in

any inflationary model, we only allow for t dependent field config-
urations [7]

Aa
μ =

{
φ(t)δa

i , μ = i,
0, μ = 0.

(3)

With this choice we are actually identifying our gauge indices with
the spatial indices. That is, we identify the rotation group SO(3)

with the global part of the gauge group, SU (2). Therefore, the rota-
tional non-invariance resulted from turning on space components
of a vector is compensated by (the global part of) the gauge sym-
metry. φ(t) is not a genuine scalar, while

ψ(t) = φ(t)

a(t)
(4)

is indeed a scalar. (Note that for the flat FRW metric ea
i = a(t)δa

i ,
where ea

i are the 3d triads.) The components of the field strengths
in the ansatz are

F a
0i = φ̇δa

i , F a
i j = −gφ2εa

i j . (5)

After fixing the gauge and choosing Aa
0 to be zero, system has

nine other degrees of freedom, Aa
i . However, in the ansatz (3) we

only keep one scalar degree of freedom. We should hence first
discuss consistency of the reduction ansatz (3) with the classical
dynamics of the system induced by L(F a
μν, gμν). It is straightfor-

ward to show that the gauge field equations of motion Dμ
∂L

∂ Fμν
=

0, where Dμ is the gauge covariant derivative, i) allow for a so-
lution of the form (3) and, ii) once evaluated on the ansatz (3)
become equivalent to the equation of motion obtained from the
“reduced Lagrangian” Lred(φ̇, φ;a(t)),

d

a3 dt

(
a3 ∂Lred

∂φ̇

)
− ∂Lred

∂φ
= 0, (6)

where Lred is obtained from inserting (5) and metric (2) into the
original gauge theory Lagrangian L. Moreover, one can show that
the energy momentum tensor, Tμν , computed over the FRW back-
ground (2) and the gauge field ansatz (3) takes the form of a
homogeneous perfect fluid

T μ
ν = diag(−ρ, P , P , P ),

which is the same as the energy momentum tensor obtained from
the reduced Lagrangian Lred . That is,

ρ = ∂Lred

∂φ̇
φ̇ −Lred, P = ∂(a3Lred)

∂a3
. (7)

All the above is true for any gauge invariant Lagrangian L =
L(F a

μν ; gμν). To have a successful inflationary model, however,
we should now choose appropriate form of L. The first obvious
choice is Yang–Mills action minimally coupled to Einstein gravity.
This will not lead to an inflating system with ρ + 3P < 0, because
as a result of scaling invariance of Yang–Mills action one imme-
diately obtains P = ρ/3 and that ρ � 0. So, we need to consider
modifications to Yang–Mills. As will become clear momentarily one
such appropriate choice is

S =
∫

d4x
√−g

×
[
− R

2
− 1

4
F a

μν Fa
μν + κ

384

(
εμνλσ F a

μν F a
λσ

)2
]

(8)

where we have set 8πG ≡ M−2
pl = 1 and εμνλσ is the totally an-

tisymmetric tensor. This specific F 4 term is chosen because the
contribution of this term to the energy momentum tensor will
have the equation of state P = −ρ , making it perfect for driving
inflationary dynamics. Some other possible non-Abelian gauge field
cosmological scenarios may be found in [8,9]. (To respect the weak
energy condition for the F 4 term, we choose κ to be positive.) The
reduced (effective) Lagrangian is obtained from evaluating (8) for
the ansatz (3):

Lred = 3

2

(
φ̇2

a2
− g2φ4

a4
+ κ

g2φ4φ̇2

a6

)
. (9)

Energy density ρ and pressure P are then given by

ρ = ρYM + ρκ, P = 1

3
ρYM − ρκ, (10)

where

ρYM = 3

2

(
φ̇2

a2
+ g2φ4

a4

)
, ρκ = 3

2
κ

g2φ4φ̇2

a6
. (11)

Recalling the Friedmann equations

H2 = 1

2

(
φ̇2

a2
+ g2φ4

a4
+ κ

g2φ4φ̇2

a6

)
,

Ḣ = −
(

φ̇2

2
+ g2φ4

4

)
, (12)
a a
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the slow-roll parameter ε is

ε = − Ḣ

H2
= 2ρYM

ρYM + ρκ
. (13)

To obtain a slow-roll inflationary phase initial conditions and pa-
rameter κ should be chosen so that ρκ dominates over ρYM dur-
ing inflation. As slow-roll inflation progresses the contribution of
Yang–Mills term ρYM to the energy momentum tensor grows and
eventually at around ρYM = ρκ inflation ends. To have a consis-
tent slow-roll inflation, it is not sufficient to have small ε; for any
physical quantity X , Ẋ

H X should remain small. In particular, de-
manding the effective scalar inflaton field ψ to be slowly varying,

i.e. δ ≡ − ψ̇
Hψ

� 1 and δ̇/(Hδ) � 1, yields

ε � ψ2(1 + γ ), η � ψ2, (14a)

δ � γ

6(γ + 1)
ε2, κ � (2 − ε)(1 + γ )3

g2ε3
, (14b)

in the leading order in ε . In the above

γ = g2ψ2

H2
or equivalently H2 � g2ε

γ (γ + 1)
, (15)

γ is a slowly varying positive parameter of order one. Since δ ∼ ε2

(cf. (14b)), ψ is varying slower than ε and hence from (15) we
learn that during slow-roll regime

ε

εi
� γ + 1

γi + 1
,

γ

γi
� H2

i

H2
, (16)

where εi , γi and Hi are the values of these parameters at the be-
ginning of inflation. Number of e-folds Ne at the end of inflation,
marked by ε f = 1, is then given by

Ne =
t f∫

ti

H dt = −
H f∫

Hi

dH

εH
� γi + 1

2εi
ln

γi + 1

γi
. (17)

The values of ψ at the beginning and end of inflation are related
as ψ6

f � 1
2 ψ6

i , where (14b) has been used and by the � sign we
mean equality to the leading order in slow-roll parameter ε . Notice
that all the dimensionful quantities, like κ , ψ and H , are measured
in units of Mpl.

2. Gauge-flation cosmic perturbation theory

So far we have analyzed dynamics of the homogeneous effec-
tive scalar inflaton field ψ , while consistently turning off the other
gauge field components. To compare our model with the data we
should work out the power spectrum of curvature perturbations
and their spectral tilt for which we need to study cosmic pertur-
bation theory in gauge-flation. In general small fluctuation around
the ansatz (3) can be parameterized by 12 fields δAa

μ . Decompos-
ing μ index into time and spatial parts and identifying the gauge
index a with the spatial index i, these 12 fields give rise to four
scalars, three divergence-free vectors and a divergence-free, trace-
less symmetric tensor:

δAa
0 = δak∂kẎ + δa

j u j,

δAa
i = δa

i Q + δaj∂i j(M + ∂i v j + ti j) + εa
i

j(gφ∂ j P + w j),

where ∂i denotes partial derivative with respect to xi , the scalars
are parameterized by Y , Q , M , P , vectors by ui , vi , wi and the
tensor by ti j . As we see, we are indeed dealing with a multi-field
inflationary model. Among the scalars, Q can be identified with
the fluctuation of the inflaton field φ.

The other field active during inflation is metric whose fluctu-
ations are customarily parameterized by four scalars, two diver-
gence-free vectors and one tensor:

ds2 = −(1 + 2A)dt2 + 2a(∂i B − Si)dxi dt

+ a2((1 − 2C)δi j + 2∂i j E + 2∂(i W j) + hij
)

dxi dx j.

In the first order perturbation theory which we are interested in,
scalar, vector and tensor fluctuations do not couple to each other.
Among 12 gauge field perturbations and 10 metric perturbations
one scalar and one vector mode of the gauge field, and two scalars
and one vector of the metric modes are gauge degrees of freedom.
We hence remain with five gauge invariant scalar, three massless
vector and two massless tensor modes.

Equations of motion for the perturbations can be obtained
from perturbed Einstein equations δGμν = δTμν , which decom-
poses into four equations for scalar modes, two for vector modes
and one equation for tensor modes [10]. The equation of motion
for the remaining scalar, vector and tensor mode ti j is provided
through perturbed gauge field equations.

A thorough analysis reveals that amplitude of vector perturba-
tions are exponentially suppressed, as in the ordinary scalar-driven
inflationary models [8]. Although the tensor mode perturbations
in the gauge field sector ti j are suppressed at the superhorizon
scales, their presence leads to parity violating terms in the second
order action governing the metric tensor perturbations hij [8]. This
happens due to the fact that one of two modes of ti j (say, the
right-handed circular polarization) just before the horizon-crossing
undergoes a tachyonic growth for a short period and as a result
the right-handed circular polarization of hij becomes large at su-
perhorizon value. On the other hand, the left-handed polarization
of ti j remains small at horizon-crossing and has negligible effect
on the superhorizon value of its corresponding hij polarization.

The power spectra for the left and right gravitational wave
modes are obtained as [8]

PT R � P R

(
H

π

)2∣∣∣∣
k=aH

and PT L � P L

(
H

π

)2∣∣∣∣
k=aH

,

where P R and P L are functions of the parameters γ , ψ (Fig. 1).
The power spectrum of the tensor modes, is then given as PT =
PT R +PT L .

The full analysis of cosmic perturbation theory in our model
has many new and novel features compared to the standard scalar-
driven inflationary models, a detailed analysis of which is pre-
sented in [8], in the following table we summarize the results:

Power spectrum of curvature perturbations PR
1

8π2ε

( H
Mpl

)2

Spectral tilt ns − 1 −2(ε − η)

Tensor-to-scalar ratio r 8(P R + P L)ε

Power spectrum of anisotropic inertia a2π S Pa2π S
ε

8π2

( H
Mpl

)2

A specific feature of gauge-flation is that it predicts a non-zero
power spectrum for the scalar anisotropic inertia a2π S [10], with
the ratio

Pa2π S

PR
= ε2. (18)

Note that a2π S is identically zero in all the scalar-driven inflation-
ary models in the context of Einstein GR.
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Fig. 1. In the left panel we have depicted P R + P L . In the standard scalar-driven inflationary models P R = P L = 1. In the right panel the parity violating factor P R −P L
P R +P L

versus γ

for ψ = 10−2 and ψ = 0.12 is shown. The power spectra have been calculated at kτ = −0.01, long enough after modes have crossed the horizon and behave quite classically.
As we see in the right panel, for very small and very large γ values P R � P L .

Fig. 2. The left panel shows 1σ and 2σ contour bounds of 7-year WMAP+BAO+H0. The yellow area (region with lighter color) represents the gauge-flation predictions for
ψ ∈ (0.01,0.12) range. The region with enough number of e-folds restricts us to the ns > 0.98 region, that is on the right-side of the Ne = 50 line [8]. Therefore, the allowed
region is the highlighted region between Ne = 50 and ns = 1 lines. The shaded region in right panel shows the allowed values for ε and ψ .
3. Confronting gauge-flation with the data

To this end, we depict the results of our model on the allowed
region of the ns–r graph:

From the left panel of Fig. 2, we learn that in the allowed region
the value of γ is restricted as γ ∈ (0.1–8) which determines the
value of κ and g

g � (0.15–3.7) × 10−3,

Λ ∼ (
10−5–10−4)Mpl, κ ≡ Λ−4. (19)

Restricting ourselves to 1σ contour in Fig. 2, we find stringent

bounds on r, nR ,
Pa2π S

PR
and H

0.05 < r < 0.15, H � (3.4–5.4) × 10−5Mpl, (20)

0.98 � ns � 0.99,
Pa2π S

PR
� (3.6–22) × 10−5, (21)

while within the 1σ contour, we have 0.5 < γ < 4 and the gauge
field value during inflation turns out to be sub-Planckian ψ �
(0.4–1) × 10−1 Mpl.
4. Discussion

We showed that non-Abelian gauge field driven inflation, gauge-
flation, can lead to a successful slow-roll inflation model with spe-
cific features. In the model we considered the theory has two
parameters, gauge coupling g and the coefficient of the (F F̃ )2

term κ . The value for the gauge coupling g required by the CMB
data is of order 10−3, while Λ, the scale associated with κ ∼ Λ−4,
is of order 1014 GeV. These two parameters are in the natural
range for perturbative beyond standard models of particle physics.
Moreover, the κ-term may be obtained by integrating out axionic
fields where Λ is associated with scale of the axion potential [11,
12]. For this procedure to be theoretically meaningful we need
Λ � H , which is respected by the best-fit values of our model.

Current data tightly restricts the values of our parameters. In
particular, noting Fig. 2, our model predicts that the tensor-to-
scalar ratio r is restricted to be in 0.02 < r < 0.15 range, which
is well within the range to be probed by the Planck satellite. As
another prediction, while gauge-flation has always a red spectral
tilt, the tilt has a lower bound ns > 0.98.

Finally we point out a specific feature of our model not shared
by usual scalar-driven inflationary models: gauge-flation predicts a

non-zero scalar anisotropic inertia (a2π S 
= 0), and
Pa2π S ∼ 10−4.

PR
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It would be interesting to explore observational prospects this ra-
tio, which we postpone to future works.

Note added

More than a year after appearance of the original version of this work on the
arXiv, the paper [13] appeared which prompted us to recheck and correct the tensor
mode sector of gauge-flation cosmic perturbation theory. A more detailed analysis
may be found in [8,9].
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