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Abstract

Let G be either a /nite cyclic group of prime order or S1. We show that if G acts on a manifold or,
more generally, on a Poincar3e duality space M , then each term of the Leray spectral sequence of the map
M ×G EG → BG satis/es a properly de/ned “Poincar3e duality”. As a consequence of this fact we obtain
new results relating the cohomology groups of M and MG. We apply our results to study group actions on
3-manifolds.
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1. Introduction

If G is either a /nite cyclic group of prime order, Z=p, or S1 acting on a space M then the
G-equivariant cohomology of M can be calculated from the Leray spectral sequence of the map
M ×G EG → BG. If G = S1 and M is a Poincar3e duality space then the components of the second
term of this spectral sequence (the cohomology groups of M) satisfy Poincar3e duality. We show that
if MS1 �= ∅ then each term of this spectral sequence satis/es a properly de/ned “Poincar3e duality.”
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Similarly, all terms of the corresponding Leray–Serre and Cartan spectral sequences satisfy Poincar3e
duality. These statements and similar statements for Z=p-actions will be formulated precisely in
Sections 3.1 and 3.3.

Using the notion of Poincar3e duality for a spectral sequence we prove new results relating the
cohomology of any Poincar3e duality space with a torus or Z=p action, to the cohomology of the
/xed point set of this action, see Theorems 1.1, 1.3, 1.4.

Since this work was motivated by a conjecture concerning group actions on 3-manifolds, we
devote Sections 1.4–1.5 to discuss the consequences and the rami/cations of the above results in
3-dimensional topology.

For the reader who is unfamiliar with group cohomology, equivariant cohomology, spectral se-
quences, or basic facts about group actions we suggest [1,3,7,9,15,23] as good sources of information
on these subjects.

Throughout this paper we will consider paracompact spaces X of /nite cohomological dimen-
sion (over Z) only. If X is a manifold or CW-complex then the cohomological dimension of
X; cdX , is equal to dim X . For more information on cdX see [6]. By H ∗ we will denote the
sheaf cohomology groups with supports in closed sets. Recall that sheaf cohomology theory with
constant coeKcients agrees with Alexander–Spanier and LCech cohomology for paracompact spaces.
Let bi(X ) = dimQHi(X ;Q).

We say that a connected topological space X is a PDK(n)-space (Poincar3e duality space of formal
dimension n with respect to coeKcients in a /eld K) if Hi(X ;K)=0 for i¿n; Hn(X ;K)=K, and
for all 06 i6 n the cup product

Hi(X ;K) × Hn−i(X ;K) ∪→Hn(X ;K) ∼= K

is a non-degenerate bilinear form. We also assume that dimKH ∗(X ;K)¡∞. PDK(n)-spaces will
be usually denoted by letter M .

1.1. Torus actions

We say that a torus T action on a topological space X has /nitely many connective orbit types
(FMCOT) if the set {(Tx)0: x∈X } is /nite. Here Tx denotes the stabilizer of x; {t ∈T : tx = x}, and
(Tx)0 denotes the connected component of identity of Tx. Note that each S1-action has FMCOT.

Theorem 1.1. If a torus T action on a PDQ(n)-space M has FMCOT and

either n is even or

MT �= ∅ and bi(M) = 0 for all even i; 0¡i6 1
2 (n− 1)

(1)

then ∑
i

bi(MT) ≡
∑

i

bi(M) mod 4:

It will be seen in Sections 1.4 and 1.6 that condition (1) is necessary. The proof of Theorem 1.1
is given in Section 4.1.
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The following well-known formulas provide additional information relating X to X T for any torus
action with FMCOT:

�(X T) = �(X ); (2)

∞∑
i=0

bk+2i(X T)6
∞∑
i=0

bk+2i(X ) (3)

for all k, cf. [3, Theorems 3.1.13, 3.1.14]. Here, � denotes the Euler characteristic.

1.2. Z=p-actions

Let Fp denote the /eld of p elements. We are going to see that if Z=p acts on X then the numbers

ti(X ) = dimFp H
2(Z=p; H i(X ; Fp))

play similar role in relating X to X Z=p as the Betti numbers in the study of torus actions. For
example, if X is a /nite dimensional Z=p-CW complex or a /nitistic space then (3) corresponds to

∞∑
i=0

tk+i(X Z=p)6
∞∑
i=0

tk+i(X ); (4)

which holds for all k, see [3, Corollary 4.6.16]. 1

Unlike for S1-actions, the induced Z=p-action on the cohomology groups of X may be non-trivial.
For that reason, the results for Z=p-actions analogous to (2) and Theorem 1.1 can be formulated
and proved only if the action of Z=p on H ∗(X ; Fp) is nice.

De�nition. An action of Z=p on an Fp-vector space N is nice if N decomposes as Fp[Z=p]-module
into T ⊕ F , where T and F are trivial and free Fp[Z=p]-modules, respectively, i.e. T =

⊕
Fp; F =⊕

Fp[Z=p]. (In particular, trivial actions are nice.) We say that Z=p acts nicely on X if the induced
Z=p-action on H ∗(X ; Fp) is nice. Note that if H ∗(X ; Fp) = T ∗ ⊕ F∗ then

ti(X ) = dimFp T
i: (5)

Proposition 1.2 (Proof in Section 4.2). If p �= 2 and Z=p acts nicely on a space X such that
H ∗(X ;Z) has no p-torsion then the following version of the Euler characteristic formula holds:

�t(X Z=p) = �t(X );

where �t(X ) =
∑

i (−1)iti(X ).

For completeness, we recall also the classical formula (see [7, Theorem III.4.3])

�(X ) − �(X Z=p) = p(�(X=Z=p) − �(X Z=p));

which holds if X is a /nite dimensional Z=p-CW complex or a /nitistic space.

1 In order to deduce (4) from [3, Corollary 4.6.16] we need to notice that if Z=p acts on an Fp-vector space N then
all Tate cohomology groups Ĥ i(Z=p; N ) are equal to H 2(Z=p; N ). This can be proved using Herbrand quotient or using
the classi/cation of Fp[Z=p]-modules given in the next section.
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If Z=p acts on a PDFp(n)-space M then ti(M) = tn−i(M) by Corollary 2.2. Moreover, we have
the following counterpart of Theorem 1.1 for Z=p-actions.

Theorem 1.3 (Proof in Section 4.3). Let Z=p act nicely on a PDFp(n)-space M with no p-torsion
in H ∗(M ;Z). If p �= 2, and

either n is even or

MZ=p �= ∅ and tl(M) = 0 for all even 0¡l6 1
2 (n− 1);

(6)

then ∑
i

ti(MZ=p) ≡
∑

i

ti(M) mod 4:

The proof of the above theorem for even n is based on Proposition 1.2 and the standard properties
of Poincar3e duality spaces. For odd n, the proof uses the notion of Poincar3e duality of spectral se-
quences (de/ned in Section 3) applied to the Leray spectral sequence associated with the Z=p-action
on M .

The next result shows the assumption about the lack of p-torsion in H ∗(M ;Z) can be replaced
by the following condition:

Z=p acts on a PDFp(n)-space M such that dkl
r = 0 for all odd

r ¿ 1 and all k¿ n in the Leray spectral sequence of the

map M ×Z=p EZ=p → BZ=p with coeKcients in Fp: (7)

Theorem 1.4 (Proof in Section 4.4). Let p �= 2 and let Z=p act nicely on a PDFp(n)-space M in
such a way that conditions (6) and (7) hold. If MZ=p �= 0 then∑

i

ti(MZ=p) ≡
∑

i

ti(M) mod 4:

We will see in Proposition 3.12 that all nice Z=p-actions on PDFp(n)-spaces for n6 3 satisfy
(7). Furthermore, one can show that if p �= 2 and Z=p acts nicely on a PDFp(n)-space M with
MZ=p �= ∅ then dkl

r = 0 for all odd r ¿ 1 and all odd k¿ n. Motivated by the above results, we
conjectured in the previous version of this paper that condition (7) holds for all nice Z=p-actions on
PDFp(n)-spaces with a non-empty /xed point set for p �= 2. Recently Hanke showed that although
this conjecture is not true in general, it does hold under the additional assumption that H ∗(M;Z)
does not contain Z=p as a direct summand [13].

All other assumptions of Theorem 1.3 are necessary. Examples given in Sections 1.4 and 1.5 show
that condition (6) cannot be dropped. We will also see that Theorem 1.3 fails if the Z=p-action on
M is not nice and n¿ 2. However, a much stronger statement holds for two-dimensional manifolds.

Theorem (Bryan [10]): If Z=p acts on a connected surface F, FZ=p �= ∅, then this action has
2 + dimFp H

1(Z=p; H1(F; Fp)) :xed points.
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1.3. S1-actions on 3-manifolds

Since this paper was motivated by a conjecture concerning group actions on 3-manifolds, we
devote this and the next subsection to present consequences and rami/cations of our results to such
actions.

By the slice theorem, if G = S1 or Z=p acts smoothly on a closed, oriented, smooth manifold M
with /xed points then MG is a disjoint union of closed, orientable submanifolds of even codimension.
Therefore, if dimM = 3 then MG is a union of embedded circles.

By Theorem 1.1 and by (3) we have

Corollary 1.5. If S1 acts smoothly on a connected, closed, orientable 3-manifold M, MS1 �= ∅, then
MS1

is a union of s circles, where:

• s6 1 + b1(M) and
• s ≡ 1 + b1(M) mod 2.

This corollary can be also deduced from the classi/cation of S1-actions on 3-manifolds [16,19].
The statement of the corollary cannot be improved. Namely, given two integers s; b such that

0¡s6 1 + b and s ≡ 1 + bmod 2, there is a 3-manifold M with an S1-action such that b1(M) = b
and MS1

is a union of s circles. Such a manifold can be constructed as follows. Let Fg;s denote a
surface of genus g=(b+1− s)=2 with s boundary components, and let M0 =Fg;s×S1. The boundary
of M0 is a union of s tori and b1(M0)= b1(Fg;s)+ b1(S1)= b+1. Choose s points p1; : : : ; ps ∈ @Fg;s,
each lying in a diAerent component of @Fg;s. Now, attach s solid tori to M0 along their boundaries,
in such a way that the meridian of the ith solid torus is identi/ed with pi×S1. We denote the closed
manifold obtained in this way by M . Note that after attaching the /rst solid torus the /rst Betti
number decreases by 1, but after attaching the next tori, it stays unchanged. Therefore b1(M) = b.
Obviously, the S1-action on M0 extends on M and the /xed point set of the action is composed of
the cores of the solid tori. Hence, MS1

has exactly s components.

1.4. Z=p-actions on 3-manifolds

If Z=p acts on a closed, connected, orientable 3-manifold M then (4) for k =0 implies that MZ=p

is a union of at most 1 + t1(M) circles. Since by Proposition 3.12 Z=p-actions on 3-manifolds with
/xed points always satisfy condition (7), the following result is a special case of Theorem 1.4.

Proposition 1.6. Let p �= 2. If Z=p acts nicely on a closed, connected, orientable 3-manifold M
and if MZ=p is composed of s circles, s �= 0, then s ≡ 1 + t1(M) mod 2.

The above proposition answers in aKrmative a conjecture of Sokolov concerning p-periodic
3-manifolds, i.e. manifolds with a Z=p-action with exactly one circle of /xed points. Sokolov con-
jectured the following statement.

Proposition 1.7. If M is p-periodic then H1(M ; Fp) �= Fp.
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Proof. If H1(M ; Fp) is a one-dimensional vector space then the Z=p-action on H1(M ; Fp) is trivial,
and therefore t1(M) = 1. Hence, MZ=p = ∅ or S1 ∪ S1.

The statement of the above proposition makes an impression that it could be easily proved by
elementary means of algebraic topology, Smith theory, or three-dimensional topology. We do not
know any short proof of it, and we encourage the reader to try to /nd one by himself, in order to
realize that this is not easy. After we proved the above proposition, Przytycki and Sokolov [17] found
a diAerent proof of it, which avoids using equivariant cohomology at the expense of an elaborate
application of surgery theory.

Now we are about to show that Proposition 1.6 does not hold if we drop any of its assumptions.
Observe /rst that any free Z=p-action on S3 is nice and s = 0 and t1(S3) = 0 for such action.
Therefore, the assumption s �= 0 in Proposition 1.6 is necessary.

If p=2 or if the action is not nice then the conclusion of Proposition 1.6 fails as well. To see this,
we need to understand the possible Z=p-actions on H1(M; Fp). If Z=p acts on M then H1(M; Fp)
considered as a module over R=Fp[Z=p] decomposes as a direct sum of indecomposable R-modules.
We will see in Section 2 that each indecomposable R-module is isomorphic to

Vi = R=(t − 1)i = Fp[t]=(t − 1)i

for a unique i between 1 and p. (Here, R = Fp[t]=(tp − 1) = Fp[t]=(t − 1)p.) A Z=p-action on
an Fp-vector space N is nice if N decomposes as an R-module into a sum of V1’s and Vp’s. By
Corollary 2.2, a Z=p-action on a 3-manifold M is nice if and only if the induced Z=p-action on
H1(M; Fp) is nice.

A 3-manifold with a Z=p-action which is not nice can be constructed as follows. Let S3
1 and S3

2 be
two 3-spheres with some (not necessarily the same) Z=p-actions. Choose 3-balls B1 ⊂ S3

1 ; B2 ⊂ S3
2 ,

such that the orbit of Bi;
⋃

g∈Z=p gBi, for i=1; 2, is composed of p disjoint balls (on which Z=p acts
freely). For all g∈Z=p, remove the interiors of the balls gB1; gB2, from S3

1 and S3
2 , respectively.

Next, choose an arbitrary homeomorphism ( : @B1 → @B2 and identify g@B1 with g@B2, for any
g∈Z=p, via g(g−1. This construction gives a closed, orientable 3-manifold Mp, with the cyclic
group, Z=p, acting on it.

The proofs of the following remarks are easy and left to the reader.

Remarks. (i) Mp � (S2 × S1)# · · · #(S2 × S1)︸ ︷︷ ︸
p−1

.

(ii) H1(Mp; Fp) ∼= Vp−1 for any Z=p-action on Mp constructed as above. In particular, none of
the Z=p-actions on M is nice for p �= 2.

(iii) On the other hand, since the only indecomposable F2[Z2]-modules are the trivial module,
V1, and the free module, V2, all Z2-actions on vector spaces over F2 are nice. In particular, any
Z2-action on M2 is nice.

(iv) Since Z=p can act on S3 with (S3)Z=p = S1 or ∅, there exist Z=p-actions on Mp with
MZ=p

p = ∅; S1, and S1 ∪ S1.
(v) By (ii) and (iv) the statement of Proposition 1.6 fails for Z=p-actions which are not nice.
(vi) By (ii) and (iii) the statement of Proposition 1.6 fails for p = 2.
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1.5. More examples

Theorems 1.1 and 1.3 may be useful for studying group actions on products of spheres. On the
other hand, the analysis of examples of such actions shows that all the assumptions of Theorems
1.1 and 1.3 are necessary.

Example 1.8. Bredon in [7, VII, Section 10] constructs a circle action on M = S3 × S5 × S9 with
the /xed point set MS1

being an S7-bundle over S3 × S5 with bi(MS1
) = 1 for i = 0; 3; 5; 10; 12; 15

and bi(MS1
) = 0 for all other i. This circle action does not satisfy the conclusion of Theorem 1.1.

Therefore, condition (1) is necessary.

Example 1.9. There is a Z3-action on M = Sn × Sn, for n = 1; 3 or 7, which is not nice and for
which MZ3 = (point + Sn−1), see [7, VII, Section 9]. This shows that the restriction in Theorem
1.3 to nice actions is necessary. The action can be constructed as follows: Let R be the ring of
complex numbers, quaternions, or Cayley numbers for n = 1; 3; 7, respectively. Let S denote the set
of elements of norm 1 in R; S � Sn, and let M be the space of all triples (x; y; z)∈ S × S × S such
that (xy)z = 1. M is homeomorphic to Sn × Sn and since

(xy)z = 1 ⇔ (yz)x = 1 ⇔ (zx)y = 1

there is an action of Z3 on M by cyclic permutations. The /xed point set of this action is
{x∈R | x3 = 1} � point + Sn−1.

The notation X ∼p Y in the next example means that X and Y are topological spaces with
isomorphic cohomology rings with coeKcients in Fp.

Example 1.10. If n �= m and n; m are both even or both odd, or if the smaller of them is odd
then any action of Z=p on M = Sn × Sm is nice and condition (6) is satis/ed. In this situation
Theorem 1.3 holds, and one can prove that MZ=p is ∼p-equivalent to one of the following spaces:
Sq × Sr; Sq + Sr; P3(2q); (point + P2(2q)); see [7, Theorem VII 9.1]. Here Pn(2q) denotes a space
whose cohomology ring with coeKcients in Fp is Fp[x]=(xn+1), and deg x = 2q.

However, there are known examples of X ∼p Sn×Sm which do not satisfy the assumptions of the
example above (i.e. min(n; m) is even and max(n; m) is odd) and which admit a Z=p-action with
X Z=p ∼p Sq. Therefore (6) is a necessary condition for Theorem 1.3.

2. Classi�cation of representations of Z
/
p

In this section, we present a classi/cation of all representations of Z=p over Fp and over the
ring of integers localized at the prime ideal (p); Z(p). This classi/cation should help the reader
to better understand the possible Z=p-actions on the cohomology groups of X . We will classify
indecomposable modules only, since all other modules are direct sums of these.
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Note that R = Fp[Z=p] is isomorphic to Fp[t]=(tp − 1), and since tp − 1 = (t − 1)p mod p; R =
Fp[t]=(t − 1)p. Therefore,

Vi = R=(t − 1)i = Fp[t]=(t − 1)i

is an R-module for each i = 1; : : : ; p.

Proposition 2.1. (i) V1; : : : ; Vp is the complete list of :nitely generated indecomposable R-modules.
(ii) Each :nitely generated R-module, N , decomposes as a :nite sum

N = Vi1 ⊕ · · · ⊕ Vik ;

where 16 i1; : : : ; ik6p are unique up to a permutation.

Proof. (i) Fp[Z=p]=Fp[t]=(t−1)p is a quotient of the ring of polynomials Fp[t], which is a principal
ideal domain. Every indecomposable module over Fp[Z=p] is also indecomposable over Fp[t] and,
hence, cyclic. Such modules can be easily classi/ed.

(ii) Note that Vk=(t− 1)d =Vmin(k;d). Therefore, the number of components Vd in N is determined
by diAerence in the dimensions of the vectors spaces N=(t − 1)d and N=(t − 1)d+1. (Another way of
proving the uniqueness of the decomposition of N is by applying the Krull–Schmidt Theorem, [12,
14.5].)

Corollary 2.2. If N and N ′ are Fp[Z=p]-modules and ( :N ×N ′ → Fp is a non-degenerate bilinear
Z=p-equivariant form then N and N ′ are isomorphic as modules.

Proof. N ′ is the dual module to N , i.e. N ′ is isomorphic to HomFp(N; Fp), where g∈Z=p sends
f :N → Fp to the homomorphism x → f(g−1x). Since (N1 ⊕N2)′ =N ′

1 ⊕N ′
2, it is enough to assume

that N = Vk . The module V ′
k is generated by the homomorphism given by

f(ti) =

{
1 for i = 0;

0 for 16 i6 k − 1:

Therefore, V ′
k is a cyclic R-module and hence V ′

k = Vi for certain i. Now i = k since dimFp V
′
k =

dimFp Vk .

Note that an Fp[Z=p]-module N is nice if it decomposes into a sum of V1’s and Vp’s.
Later we will need the classi/cation of Z=p-modules over Z(p). By modifying the proof of Theorem

74.3 in [12] one can show the following:

Proposition 2.3. Every indecomposable Z=p-module over Z(p) which is free over Z(p) is either

(i) the trivial module, Z(p), or
(ii) the free module, Z(p)[Z=p], or
(iii) the ring of cyclotomic integers, Z(p)[/p] = Z(p)[x]=(1 + x + · · · + xp−1).

The action of the generator of Z=p on Z(p)[/p] is given by the multiplication by /p.

Note that Z(p) ⊗ Fp = V1; Z(p)[Z=p] ⊗ Fp = Vp, and Z(p)[/p] ⊗ Fp = Vp−1. Hence, if H ∗(M ;Z)
has no p-torsion then H ∗(M ; Fp) decomposes as a sum of V1’s, Vp−1’s, and Vp’s.



A.S. Sikora / Topology 43 (2004) 725–748 733

The following lemma will be needed in Section 3.3.

Lemma 2.4. If p �= 2 and Z=p acts nicely on a space X, with no p-torsion in H ∗(X ;Z) then

Hk(Z=p; H ∗(X ;Z)) =

{
H 2(Z=p; H ∗(X ; Fp)) if k is even;

0 if k is odd

for k ¿ 0.

Proof. By the universal coeKcient theorem, H ∗(X ;Z(p)) is a free Z(p)-module and H ∗(X ; Fp) =
H ∗(X ;Z(p)) ⊗ Fp. Therefore, the sequence

0 → H ∗(X ;Z(p))
·p→H ∗(X ;Z(p)) → H ∗(X ; Fp) → 0

is exact. By applying H ∗(Z=p; ·) to that sequence we get

0 → H 2(Z=p; H ∗(X ;Z(p))) → H 2(Z=p; H ∗(X ; Fp)) → H 3(Z=p; H ∗(X ;Z(p))) → 0:

Now we use the classi/cation of Z=p modules over Fp and Z(p) described above. Since Z(p)[/p]⊗
Fp = Vp−1; H ∗(X ;Z(p)) must be a direct sum of trivial and free Z=p-modules. Therefore,
H 3(Z=p; H ∗(X ;Z(p)))=0 and, hence, H 2(Z=p; H ∗(X ;Z(p)))=H 2(Z=p; H ∗(X ; Fp)). Since localization
at (p) is an exact functor in the category of Z=p-modules,H 2(Z=p; H ∗(X ;Z))=H 2(Z=p; H ∗(X ;Z(p))).
Finally, the statement follows from the fact that Hk(Z=p; ·) is 2-periodic for k ¿ 0.

3. Poincar*e duality on spectral sequences

Throughout this section we will make the following assumptions: Let K be a /eld and n be a
positive integer. Let (E∗∗∗ ; d∗) be a spectral sequence whose each summand, Epq

r , for r¿ 2, is a
/nite dimensional vector space over K and Ekl

2 = 0 for l¡ 0 and l¿n. Assume that E∗∗
r has a

multiplicative structure for r¿ 2, i.e. there is a graded commutative product on each term, E∗∗
r , such

that d∗∗
r is a derivation with respect to that product, and the product on E∗∗

r+1 is induced from the
product on E∗∗

r . Additionally, assume the following condition about the 0th row in E∗∗∗ :
(ZR) E∗0

2 = E∗0∞. Equivalently, the diAerentials d∗; r−1
r :E∗; r−1

r → E∗+r;0
r are 0 for all r¿ 2.

Proposition 3.1. Let r¿ 2; k; k ′ ∈Z and l; l′¿ 0 be such that Ek+k′ ; n
r = Ek+k′ ;0

r =K; l + l′ = n, and
the following K-bilinear maps are non-degenerate

Ekl
r × Ek′ ; l′

r
·→Ek+k′ ; n

r =K; (8)

Ek+r; l−r+1
r × Ek′−r; l′+r−1

r
·→Ek+k′ ; n

r =K; (9)

Ek−r; l+r−1
r × Ek′+r; l′−r+1

r
·→Ek+k′ ; n

r =K: (10)

(A pairing V × W → K is non-degenerate if it induces an isomorphism V → W ∗. In particular,
the pairing {0} × {0} 0→K is non-degenerate.)

Assume additionally that (8) and (9) are non-degenerate for l = n; l′ = 0.
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Under the above assumptions, Ek+k′ ; n
r+1 =K and the pairing

Ekl
r+1 × Ek′ ; l′

r+1
·→Ek+k′ ; n

r+1 =K (11)

is non-degenerate.

Proof. Consider the diagram

Ek−r; l+r−1
r

dk−r;l+r−1
r−−−−−→ Ekl

r
dkl
r−−−−−→ Ek+r; l−r+1

r�
�

�
(Ek′+r; l′−r+1

r )∗
(dk′l′

r )∗−−−−−→ (Ek′l′
r )∗ (dk′−r;l′+r−1

r )∗−−−−−−−→ (Ek′−r; l′+r−1
r )∗

(12)

in which the vertical isomorphisms are induced by the non-degenerate pairings (8)–(10),

Ekl
r � 1 ∼→ (x → 1 · x)∈ (Ek′l′

r )∗;

Ek±r; l∓r+1
r � 2 ∼→(x → 2 · x)∈ (Ek′∓r; l′±r−1

r )∗:

dkl
r followed by the arrow pointing down on the right-hand side of the diagram sends 1∈Ekl

r to
the functional x → dkl

r (1) · x in (Ek′−r; l′+r−1
r )∗, and the arrow pointing down in the middle of the

diagram followed by (dk′−r; l′+r−1
r )∗ sends 1 to x → 1 · dk′−r; l′+r−1

r (x). Since n + r − 1¿n and
1 · x∈Ek+k′−r;n+r−1

r ; 1 · x=0 and, hence, dkl
r (1) · x=±1 ·dk′−r; l′+r−1

r (x). Therefore the right square in
(12) is commutative up to sign. Similarly, we prove that the left square also commutes up to sign.
Since the top and the bottom rows are isomorphic chain complexes, their cohomology is isomorphic,
Hence, we have an isomorphism

Ekl
r+1 � 1 → (x → 1 · x)∈ (Ek′l′

r+1)
∗: (13)

By (ZR), Ek+k′ ;0
r =K implies that Ek+k′ ;0

r+1 =K. Now (13) for l= n implies that Ek+k′ ; n
r+1 =K. Finally,

by (13), the pairing (11) is non-degenerate.

Now, we are going to use Proposition 3.1 to prove the existence of “Poincar3e duality” on spectral
sequences. This duality will be useful for the study of group actions on Poincar3e duality spaces.

Let (E∗∗
r ; d∗) be a term of a spectral sequence with a multiplicative structure such that E∗l

r = 0
for all l¡ 0 and for all l¿n for a certain n. We will consider three types of Poincar3e duality on
(E∗∗

r ; dr):
We say that (E∗∗

r ; dr) satis/es Poincar*e duality, denoted by PK(n), if there exists N such that:

(i) Ek∗
r = 0 for all odd k ¿N ;

(ii) Ek0
r = Ekn

r =K for all even k ¿N ;
(iii) Ekl

r ×Ek′ ; l′
r

·→Ek+k′ ; n
r =K is non-degenerate for all l; l′¿ 0 such that l+ l′ = n and for all even

k; k ′¿N .
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We say that (E∗∗
r ; dr) satis/es weak Poincar*e duality, denoted by WPK(n), if there exists N such

that:

(i) Ekn
r =K for all odd k ¿N , and

(ii) for all k; k ′ ¿N of diAerent parity and for all 06 l6 n and r¿ 2, the pairing Ekl
r ×Ek′ ; n−l

r
·→

Ek+k′ ; n
r = Fp is non-degenerate.

Finally, (E∗∗
r ; dr) satis/es strong Poincar*e duality, SPK(n), if there exists N such that:

(i) Ekn
r =K for all k ¿N ,

(ii) for all k; k ′ ¿N such that at least one of them is even and for all 06 l6 n the pairing
Ekl

r × Ek′ ; n−l
r

·→Ek+k′ ; n
r =K is non-degenerate.

The following statement follows by induction from Proposition 3.1:

Proposition 3.2. Let (E∗∗∗ ; d∗) have a multiplicative structure and satisfy (ZR).

(i) If (E∗∗
r ; dr) satis:es PK(n) for r = 2 then it satis:es PK(n) for all r ¿ 2.

(ii) If (E∗∗
r ; dr) satis:es WPK(n) for r = 2 then it satis:es WPK(n) for all r ¿ 2.

(iii) If (E∗∗
r ; dr) satis:es SPK(n) and r is even then (E∗∗

r+1; dr+1) satis:es SPK(n) as well.

Lemma 3.3. (i) If r¿ 2 and (E∗∗
r ; dr) satis:es PK(n) then there exists N, such that Ekl

r
∼= Ek′l

r ;
rank dkl

r = rank dk′l
r , and rank dkl

r = rank dk′ ; n−l+r−1
r for all even k; k ′ ¿N and all l.

(ii) If r¿ 2 and (E∗∗
r ; dr) satis:es SPK(n) then there exists N, such that Ekl

r
∼= Ek′l

r , for all
k; k ′¿N . Additionally, if r is even then rank dkl

r = rank dk′l
r , and rank dkl

r = rank dk′ ; n−l+r−1
r for all

k; k ′¿ n and 06 l6 n.

Proof. (i) Ekl
r

∼= (Ek;n−l
r )∗ ∼= Ek′l

r implies the /rst claim. Since dr = 0 for r odd, assume that r
is even. Note that the vertical maps in (12) are isomorphisms for k; k ′; l; l′ such that k; k ′ are even
and suKciently big and l + l′ = n. Hence, rank dkl

r = rank dk′−r;n−l+r−1
r for any 06 l6 n, and by

substituting k ′ for k ′ − r we get

rank dkl
r = rank dk′ ; n−l+r−1

r :

By applying this identity twice, we get

rank dkl
r = rank dk′ ; n−l+r−1

r = rank dk′l
r :

The proof of (ii) is analogous.

3.1. Poincar@e duality for spectral sequences for S1-actions

Proposition 3.4 (PD for Leray spectral sequence). If S1 acts on a PDQ(n)-space M and MS1 �= ∅
then the Leray spectral sequence of the map 4:M ×S1 ES1 → BS1 with coeAcients in Q satis:es
condition PQ(n) for all r¿ 2.

Proof. Since all cohomology groups are considered with supports in closed sets, by Bredon [6,
Theorem IV.6.1] we have Ekl

2 = Hk(BS1;Hl(4;Q)), where Hl(4;Q) is the Leray sheaf of 4.
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Since BS1 is simply connected, by the remark following [6, Theorem IV.8.2], Hl(4;Q) is the
constant sheaf with stalks Hl(X ;Q). Hence, Ekl

2
∼= Hk(BS1;Q) ⊗ Hl(M ;Q). The Leray spectral

sequence of 4; (E∗∗∗ ; d∗), has a multiplicative structure—see e.g. [6, IV.6.5] or [22, XII Section 3.2].
An argument similar to that used in the proof of Theorem III.15.11 in [5] shows that E∗∗

2 and
H ∗(BS1;Q) ⊗ H ∗(M ;Q) are isomorphic as algebras. Since H ∗(BS1) = Q[t], where deg t = 2; E∗∗

2
satis/es condition PQ(n). The statement for higher r follows from Proposition 3.2(i) once we show
that (E∗∗∗ ; d∗) satis/es (ZR). To prove it, choose a /xed point x0 ∈M of the action and consider the
diagram

where i is the natural embedding, and the skew arrows represent the identity maps. Let ( WE∗∗∗ ; Wd∗)
denote the spectral sequence of the map id :BS1 → BS1,

WEkl
r =

{
Q for l = 0 and even k¿ 0;

0 otherwise:

The horizontal maps of the diagram above induce morphisms of spectral sequences WE∗∗∗
4∗→E∗∗∗

i∗→ WE∗∗∗ .
Since i∗4∗ is the identity on WE∗∗∗ ; Ek0

r �= 0 for all r¿ 2 and any even k¿ 0. Hence (E∗∗∗ ; d∗) satis/es
condition (ZR).

Similarly, by using [15, Theorem 5.2] and adopting the above argument we prove the following.

Proposition 3.5 (PD for Leray–Serre spectral sequence): If S1 acts on a PDQ(n)-space (with respect
to singular cohomology) M , and MS1 �= ∅, then the Leray–Serre spectral sequence for singular
cohomology of the :bration

M → M ×S1 ES1 → BS1

satis:es PQ(n) for every r¿ 2.

A convenient way of calculating equivariant cohomology of a smooth closed manifold M with an
S1 action on it is by using the Cartan construction, [4, Section 4]: Let D∗∗ be a bigraded R-linear
space whose (2k; l)th summand is the space of S1-invariant, diAerential l-forms on M; D2kl =
5l

inv(M) ⊂ 5l(M) and D2k+1; l = 0 for k¿ 0:
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Let X ∈Vect(M) be the vector /eld on M induced by the S1 action (the in/nitesimal action),
let iX :5k

inv(M) → 5k−1
inv (M) be the map (iX!)(·; : : : ; ·) = !(X; ·; : : : ; ·), and let 7 denote the exterior

derivative of diAerential forms on M . Consider a diAerential d :D∗∗ → D∗∗,

d(!) =

{
7!− iX! for !∈Dkl = 5l

inv(M) for even k;

0 for odd k:

It is not diKcult to see that the exterior product of forms induces a multiplicative structure on
(D∗∗; d). By Theorem 4.13 and the following paragraphs in [4], the cohomology of the total complex
of the above complex is isomorphic to H ∗

S1(M ;R). One can show that the vertical /ltration of this
double complex yields a spectral sequence which satis/es PQ(n).

3.2. Spectral sequences for Z=p-actions

Let Z=p act on a paracompact connected space X . Consider the standard /bration X → XZ=p
4→

BZ=p, where XZ=p =X ×Z=p BZ=p. There are three spectral sequences associated with the Z=p-action
on X involving cohomology of X with coeKcients in a ring R:

(Leray) The Leray spectral sequence of 4, compare [6, IV.6], [23, 5.8.6];
(Serre) The Leray–Serre spectral sequence of the /bration 4 (de/ned for singular cohomology

theory) [15, Chapter 5]; [24, XIII.7].
(Swan) A spectral sequence de/ned as follows: Let (C∗; 7) be the cochain complex of X for

sheaf (or Alexander–Spanier) cohomology with coeKcients in R. There is a natural Z=p-action on
C∗. Let

→ P2 7′→P1 7′→P0 → R

be a projective resolution of the R[Z=p]-module R with the trivial Z=p-action. Then D∗∗ =
HomR[Z=p](P∗; C∗) is a double complex with the diAerential 7v = 7 :Dkl → Dk;l+1 and the dif-
ferential 7h :Dkl → Dk+1; l dual to 7′. We consider the “/rst” spectral sequence associated with
(D∗∗; 7h; 7v) and for the purpose of this paper we will call it the Swan spectral sequence. (In [21]
a similar construction based on complete projective resolutions is considered.) A version of Swan
spectral sequence can be constructed for singular cochains of X and for cellular cochains if X is a
CW-complex.

The total complex of (D∗∗; 7h; 7v) is

Ds =
⊕
k+l=s

Dkl;

d(1) = dh(1) + (−1)kdv(1);

where 1∈Dkl. (Note that d ◦d=0.) The “/rst” spectral sequence is the one induced by the vertical
/ltration of D∗∗.

Proposition 3.6. If (E∗∗∗ ; d∗) is any of the three spectral sequences de:ned above for cohomology
with (constant) coeAcients in R then:

(i) Ekl
2 = Hk(Z=p; Hl(X ;R)), where g∈Z=p acts on Hl(X ;R) by the automorphism induced by

g−1 :X → X .
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(ii) There is a multiplicative structure · on (E∗∗∗ ; d∗) such that 1 · 2 = (−1)k
′l1 ∪ 2 for 1∈Ekl

2 ;
2∈Ek′l′

2 . (Note that Hk(Z=p; Hl(X ;R)) × Hk′(Z=p; Hl′(X ;R)) ∪→Hk+k′(Z=p; Hl+l′(X ;R)) is a
well-de:ned cup-product on cohomology groups with non-constant coeAcients.)

(iii) If E∗∗∗ is the Leray or Leray–Serre spectral sequence then E∗∗∗ converges to H ∗(XZ=p;R).

We do not know if the Swan spectral sequence converges to H ∗(XZ=p;R). We do not know either
under what conditions the above three spectral sequences are isomorphic.

Proof of Proposition 3.6. (Leray) (i) Since all cohomology groups are considered with supports in
closed sets, by Bredon [6, Theorem IV.6.1] we have Ekl

2 = Hk(BZ=p;Hl(4;R)), where BZ=p is
locally contractible and Hl(4;R) is the Leray sheaf of 4. By the remark following [6, Theorem
IV.8.2], Hl(4;R) is locally constant on BZ=p, and by careful retracing the relevant de/nitions, we
see that Leray sheaf is given by the Z=p-action on H ∗(X ;R) described above. (ii) follows from [6,
IV.6.5]. (iii) follows from [6, Theorem IV.6.1].

(Leray–Serre) The statement for Leray–Serre spectral sequence follows from [15, Theorem 5.2].
Compare also [24, XIII.8.10].

(Swan) We have Ekl
1 = HomR[Z=p](Pk; H l(X ;R)), where Z=p acts on Hl(X ;R) as in Proposition

3.6(i). Therefore, Ekl
2 = Hk(Z=p; Hl(X ;R)). If 9 :P∗ → P∗ ⊗ P∗ is a diagonal approximation of

(P∗; 7′) then the cup product Dkl ⊗ Dk′l′ ∪→Dk+k′ ; l+l′ is de/ned for any 1∈Dkl; 2∈Dk′l′ by

Pk+k′ 9kk′−−−−−→Pk ⊗ Pk′ 1⊗2−−−−−→Cl ⊗ Cl′ ∪−−−−−→Cl+l′ :

It has the following properties:

dh(1 ∪ 2) = dh(1) ∪ 2 + (−1)k1 ∪ dh(2);

dv(1 ∪ 2) = dv(1) ∪ 2 + (−1)l1 ∪ dv(2)

for 1∈Dkl; 2∈Dk′l′ . Let 1 ·2 be a new product on D∗∗ equal to (−1)k
′l1∪2, for 1; 2 as above. The

following lemma, whose proof is left to the reader, implies that · de/nes a multiplicative structure
on E∗∗∗ .

Proposition 3.7.

d(1 · 2) = d(1) · 2 + (−1)deg 11 · d(2);

where deg(1) = k + l.

This completes the proof of Proposition 3.6.

Let (P∗; 7′) be the standard resolution of R by free R[Z=p]-modules: let Pk = R[Z=p] for all
k¿ 0 and let 7′ :Pk → Pk−1 be

7′(1) =

{
(t − 1) · 1 for k odd;

N · 1 for k even;

where t − 1; N = 1 + t + · · · + tp−1 are elements of R[Z=p] = R[t]=(tp − 1). Let

9 : (P∗; 7′) → (P∗; 7′) ⊗ (P∗; 7′)
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be the diagonal approximation whose (k; l)-component 9kl :Pk+l → Pk ⊗ Pl is given by

9kl(1) =




1 ⊗ 1 if k even;

1 ⊗ t if k odd; l even;∑
06i¡j6p−1

ti ⊗ tj if k; l odd;

cf. [9, Ex. V.1]. Therefore, after identifying Dkl = HomR[Z=p](Pk; H l(X ;R)) with Hl(X ;R) we have

1 ∪ 2 =




1 ∪X 2 if k is even;

1 ∪X t2 if k is odd; k ′ is even;∑
06i¡j6p−1

ti1 ∪X tj2 if k; k ′ are odd;
(14)

where ∪X denotes the cup product on H ∗(X ;R) and ∪ denotes the product on D∗∗ de/ned before.
(Recall that 1 · 2 = (−1)k

′l1 ∪ 2, for 1∈Dkl; 2∈Dk′l′ .)

Lemma 3.8. If R is Z or Fp and the Z=p-action on X has a :xed point then all three spectral
sequences considered above satisfy condition (ZR) for K= Fp.

Proof. Let E∗∗∗ be the Leray or Leray–Serre or Swan spectral sequence associated with the Z=p-action
on X , let x0 ∈X Z=p and let WE∗∗∗ be the corresponding spectral sequence associated with the trivial
Z=p-action on {x0}. The Z=p-equivariant maps: {x0} ,→ X and X → {x0} induce maps

( WE∗∗
r ; Wdr) → (E∗∗

r ; dr) → ( WE∗∗
r ; Wdr); (15)

whose composition is the identity on WE∗∗
r for r¿ 1. Since X is assumed connected and R = Z or

Fp; Ek0
2 = Hk(Z=p; R) is either 0 or Fp. Hence, if (ZR) is not satis/ed then Ek0

2 = Fp and Ek0∞ = 0
for some k. This implies that WEk0

2 = Fp, and since (15) is the identity map, WEk0∞ = 0. This leads to
contradiction since WE∗∗

2 has only one non-zero row and WE∗∗∞ = WE∗∗
2 .

3.3. Poincar@e duality for spectral sequences for Z=p-actions

Let Z=p act on a PDFp(n)-space M with a /xed point and let (E∗∗∗ ; d∗) be either the Leray or
Swan spectral sequence associated with that action with coeKcients in Fp.

Proposition 3.9. (E∗∗
r ; dr) satis:es WPFp(n) for r¿ 2.2

Proof. Let k; k ′ be of diAerent parity, and let 06 l6 n; l′ = n− l. Since Z=p ⊂ Q=Z, and

Hl(M ; Fp) = Hom(Hl′(M ; Fp);Z=p) = Hom(Hl′(M ; Fp);Q=Z)

2 V. Puppe pointed to us that a similar result is hidden in the proof of the main theorem of [8].
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as Fp[Z=p]-modules, the duality theorem for Tate cohomology, [9, Corollary VI.7.3], implies that

Hk(Z=p; Hl(M ; Fp)) × Hk′(Z=p; Hl′(M ; Fp)) → Hk+k′(Z=p; Hn(M ; Fp)) = Fp
is non-degenerate. 3 Therefore, by Proposition 3.6, E∗∗

2 satis/es the weak Poincar3e duality. Now the
proposition follows from Lemma 3.8 and Proposition 3.2(ii).

In order to say more about the multiplicative properties of (E∗∗∗ ; d∗) we need to assume that the
Z=p-action on M is nice, H ∗(M ; Fp) = T ∗ ⊕ F∗. Now Ekl

2 = Hk(Z=p; Hl(M ; Fp)) = T l for k ¿ 0.
Since the Z=p action on T ∗ is trivial, by (14) and Proposition 3.6 for p �= 2 we have

1 · 2 =

{
(−1)k

′l1 ∪ 2 if k or k ′ is even;

0 if k; k ′ are odd
(16)

for 1∈Ekl
2 ; 2∈Ek′l′

2 . (Recall that 1 · 2 = (−1)k
′l1 ∪ 2. Furthermore, for k; k ′ odd we have 1 ∪ 2 =∑

06i¡j6p−1 1 ∪X 2 = 0 since
(p

2

) ≡ 0 mod p.)

Lemma 3.10. If aZ=p-action on M is nice and k or k ′ is even then the product · given by (16) is
non-degenerate.

Proof. Since for k �≡ k ′ mod 2 this follows from Proposition 3.9, we can assume that k; k ′ are even.
Let Hl(M ; Fp)=T l⊕Fl; H l′(M ; Fp)=T l′ ⊕Fl′ , and let 11; : : : ; 1s be generators of the summands of
Fl=Fp[Z=p]⊕· · ·⊕Fp[Z=p]. Let Fl

i be the Fp-vector subspace of Fl generated by elements (t−1)i1j

for j = 1; : : : ; s. Note that Fl = Fl
0 ⊕ · · · ⊕ Fl

p−1. Similarly we decompose Fl′ into Fl′
0 ⊕ · · · ⊕ Fl′

p−1.
Since M is a PDFp(n)-space, the matrix representing the product

(T l ⊕ Fl
p−1) × (T l′ ⊕ Fl′

0 ⊕ · · · ⊕ Fl′
p−1)

∪→Fp
is of maximal rank, dimFp T

l + s. All columns of this matrix corresponding to spaces Fl′
i for i¿ 0,

are 0. Indeed, if 2∈T l ⊕ Fl
p−1 = (Hl(M ; Fp))Z=p and 2′ ∈Fl′

i for i¿ 0 then there exists 2′′ ∈Fl′
i−1

such that 2′ = (t − 1)2′′. Since

2 ∪ 2′′ = t(2 ∪ 2′′) = 2 ∪ t2′′;

we have 2 ∪ (t − 1)2′′ = 2 ∪ 2′ = 0. Therefore, the matrix of the cup product on

T l ⊕ Fl
p−1 × T l′ ⊕ Fl′

0

is non-degenerate. By an argument similar to the above, 2 ∪ 2′ = 0 for any 2∈Fl
p−1 and 2′ ∈T l′ .

Hence, this matrix has a form

T l′ Fl′
0

T l

Fl
p−1

(
A B

0 C

)
:

Therefore, the matrix A associated with T l × T l′ ∪→Fp is non-degenerate.

3 Recall that k and k ′ have diAerent parity.
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The above lemma shows that E∗∗
2 satis/es SPFp(n) for nice Z=p-actions. If p = 2 then it can

be shown by induction on r and by using Proposition 3.1 that E∗∗
r satis/es SPFp(n) for all r¿ 2.

However, we do not know if E∗∗
r satis/es SPFp(n) for p �= 2 in general. This problem stems from

the fact that the implication of Proposition 3.2(iii) does not hold for odd r. Therefore, for certain
applications it is necessary to assume condition (7).

Lemma 3.11. If condition (7) holds for a given Z=p-action on M then (E∗∗
r ; dr) satis:es SPFp(n)

for each r¿ 2.

Proof. The statement follows from Proposition 3.2(iii) and Lemmas 3.8 and 3.10.

Proposition 3.12. Condition (7) holds for n6 3. Consequently, for any nice Z=p-action on a
PDFp(n)-space for n6 3 each term of the induced Leray spectral sequence satis:es SPFp(n) for
all r.

Proof. For n = 1 the statement is obvious. For n = 2 the statement is a consequence of condition
(ZR), cf. Lemma 3.8. Therefore, assume that n = 3. Since dr = 0 for r¿ 5, it suKces to show
that dkl

3 = 0 for k¿ n. For l = 2 it follows from Lemma 3.8. Hence, assume that l = 3 and that
dkl

3 (!) = 1 �= 0 for some !∈Ek3
3 = Fp. Since 1∈Ek+3;1

3 , by the weak Poincar3e duality there exists
2∈Ek+2;2

3 such that 1 · 2 �= 0. By Lemma 3.8, d3(2) = 0 and hence we get a contradiction:

0 = d3(!2) = d3(!) · 2 + ! · d3(2) = 1 · 2 �= 0:

The next result concerns Poincar3e duality for spectral sequences with integral coeKcients.

Proposition 3.13. If Z=p acts nicely on a PDFp(n)-space M, with no p-torsion in H ∗(M ;Z) and
if MZ=p �= ∅ then the Leray and the Swan spectral sequences for that action and for R=Z satisfy
Poincar@e duality, PFp(n), for all r¿ 2.

Proof. The statement for r =2 follows from Lemmas 2.4 and 3.10. For r ¿ 2 the statement follows
from Lemma 3.8 and Proposition 3.2(i).

4. Proofs of the main results

Lemma 4.1. Let (E∗∗∗ ; d∗) be a spectral sequence whose terms (E∗∗
r ; dr) for r¿ 2 are vector spaces

over a :eld K; charK �= 2, and satisfy either PK(n) or SPK(n). In the latter case we assume that
dr = 0 for odd r. If

(i) n is even, or
(ii) Ekl

2 = 0 for all even l; 0¡l6 1
2 (n− 1), and for all suAciently large k

then ∑
l

dimK Ekl
∞ ≡

∑
l

dimK Ekl
2 mod 4

for all suAciently large k.
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Proof. It is enough to prove that∑
l

dim Ekl
r+1 ≡

∑
l

dim Ekl
r mod 4

for all r¿ 2 and suKciently large k. Since E∗∗
r =E∗∗

r+1 for r odd, assume that r is even. By Lemma
3.3, rank dkl

r = rank dk−r; l
r , for all suKciently large k. Therefore,∑

l

dim Ekl
r+1 =

∑
l

dimKer dkl
r −

∑
l

dim Im dk−r; l+r−1
r

=
∑
l

dim Ekl
r −

∑
l

rank dkl
r −

∑
l

rank dk−r; l+r−1
r

=
∑
l

dim Ekl
r − 2

∑
l

rank dkl
r :

Therefore, we need to prove that∑
l

rank dkl
r ≡ 0 mod 2:

By Lemma 3.3,∑
l

rank dkl
r = 2 ·

∑
l¡n−l+r−1

rank dkl
r +

{
rank dkl0

r if l0 = n− l0 + r − 1;

0 if there is no such l0:

For n even, there is no such l0 and the proof is completed. Hence, assume that n is odd. If l0 is
odd then l0 − r + 1 is even and l0 − r + 16 1

2 (n − 1). Hence, Ek+r; l0−r+1
r = 0 by the assumption

of the lemma, and therefore dkl0
r :Ekl0

r → Ek+r; l0−r+1
r is 0. Therefore assume that l0 is even. Since

dkl
r = 0 for odd k, assume also that k is even. Consider the bilinear form

( :Ekl0
r × Ekl0

r → E2k+r;n
r =K;

((1; 2) = dr(1) · 2. We have

dr(1) · 2 + (−1)k+l01 · dr(2) = dr(1 · 2) = 0:

Since deg(1) = k + l0 is even, 1 · dr(2) = dr(2) · 1 and

dr(1) · 2 + dr(2) · 1 = 0:

Therefore ( is skew-symmetric, and it has an even rank. But rank ( = rank dkl0
r , since 1∈Ekl0

r ,
dr(2)∈Ek+r; l0−r+1

r and the product Ekl0
r × Ek+r; l0−r+1

r → E2k+r;n is non-degenerate.

4.1. Proof of Theorem 1.1

The following lemma shows that it is suKcient to prove Theorem 1.1 for circle actions.

Lemma 4.2. If an action of a torus T on X has FMCOT then there exists S1 ⊂ T such that
X S1

= X T.
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Proof. The condition FMCOT implies that the set {(Tx)0: x∈X } is /nite. Denote its elements
diAerent than T by T1; : : : ; Tn. Consider S1 ⊂ T which does not lie inside Ti for any i. Then
S1 ∩Ti is /nite for 16 i6 n. Since each Ti has only countably many /nite extensions in T , the set

S1 ∩
(⋃

x∈X\X T Tx

)
is at most countable. Therefore, there exists t ∈ S1 such that the only points of

X /xed by t are the elements of X T. Hence X S1
= X T.

Assume now that T =S1. The proof of Theorem 1.1 for n even follows immediately from (2), the
lemma below, and the fact that MT has /nitely many components, each of which is a PDQ(m)-space,
for m even (see [3, Theorem 5.2.1, Remark 5.2.4], cf. [11]).

Lemma 4.3. If n is even and M is a PDQ(n)-space, then
∑

i b
i(M) ≡ �(M) mod 4.

Proof. Since bi(M) = bn−i(M), the diAerence between the left and the right-hand side of the above
identity is

2
∑
odd i

bi(M) = 4
∑

odd i¡n=2

bi(M) + 2

{
bn=2(M) if n=2 is odd;

0 otherwise:

This completes the proof for n=2 even. If n=2 is odd then the pairing

Hn=2(M ;Q) × Hn=2(M ;Q) ∪→Hn(M ;Q) =Q

is non-degenerate and skew-symmetric. Hence bn=2(M) is even.

Assume now that n is odd and that an action of S1 on a PDQ(n)-space M satis/es all assumptions
of Theorem 1.1.

By Proposition 3.10.9 and Corollary 3.10.12 in [3], Hi
S1(M;MS1

;Q) = 0 for i¿ cdM . There-
fore, the long exact sequence of the equivariant cohomology groups for the pair (M;MS1

) gives an
isomorphism

Hs
S1(M ;Q) = Hs

S1(MS1
;Q) (17)

for s¿cdM .
H ∗

S1(MS1
;Q) = H ∗(MS1

;Q) ⊗ H ∗(BS1) and H ∗(BS1) =Q[t], where deg t = 2. Therefore,

dimQHs
S1(MS1

;Q) + dimQHs+1
S1 (MS1

;Q) =
∑

i

dimQHi(MS1
;Q): (18)

The Leray spectral sequence (E∗∗∗ ; d∗) of the map M ×S1 ES1 → BS1 with coeKcients in Q
converges to H ∗

S1(M ;Q). By Proposition 3.4, (E∗∗
r ; dr) satis/es condition PQ(n) for all r¿ 2. Since

by Lemma 3.3(i) the ranks of entries in E∗∗∞ are 2-periodic, we have

dimHs
S1(M ;Q) + dimHs+1

S1 (M ;Q) =
∑
k+l=s
k even

dim Ekl
∞ +

∑
k+l=s+1
k even

dim Ekl
∞ =

∑
l

dim Ek0l∞
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for suKciently large s and suKciently large even k0. By Lemma 4.1 the above expression is equal
mod 4 to

∑
l dim Ek0l

2 =
∑

l dimHl(M ;Q). Hence,

dimHs
S1(M ;Q) + dimHs+1

S1 (M ;Q) ≡
∑
l

dimHl(M ;Q) mod 4:

This equality together with (17) and (18) implies Theorem 1.1.

4.2. Proof of Proposition 1.2

The following three lemmas will be needed in the proof of Proposition 1.2 and of Theorem 1.3:

Lemma 4.4. If Z=p acts on a paracompact space X of :nite cohomological dimension then the
embedding i :X Z=p → X induces an isomorphism i∗ :Hs

Z=p(X ;A) → Hs
Z=p(X Z=p;A) for s¿cdX ,

where A is an arbitrary group of (constant) coeAcients.

Proof. By Proposition 3.10.9 in [3], H ∗
Z=p(X; X Z=p;A) � H ∗(X=(Z=p); X Z=p=(Z=p);A). Since by

Quillen [18, Proposition A.11], cd(X=(Z=p))6 cdX , we have Hs(X=(Z=p); X Z=p=(Z=p);A) = 0 for
s¿cdX . Now the proposition follows from the long exact sequence for the equivariant cohomology
of the pair (X; X Z=p).

Lemma 4.5 (KYunneth formula for sheaf cohomology). If R is a principal ideal domain, Y is a
CW-complex and X is a paracompact space such that Hl(X ;R) is :nitely generated R-module
for each l, then there exists a split exact sequence

0→
⊕
k+l=s

H k(X ;R) ⊗ Hl(Y ;R) → Hs(X × Y ;R)

→
⊕

k+l=s+1

TorR(Hk(X ;R); H l(Y ;R)) → 0:

Proof. By Hatcher [14, Proposition A.4] (cf. [20, Ex. Ch7 E5]) Y is a locally contractible space.
By the remark following [6, Theorem IV.8.2], the Leray sheaf of the projection 4 :X × Y → Y is
the constant sheaf with the stalk H ∗(X ;R). Therefore, the statement of proposition follows from [6,
Ex. IV.18].

Lemma 4.6. If Z=p acts trivially on X then

Hs
Z=p(X ;Z) ∼=

⊕
l≡smod 2

Hl(X ; Fp)

for s¿cdX .

Proof. By Lemma 4.5, Hs
Z=p(X ;Z) is isomorphic to⊕

k+l=s

H k(BZ=p;Z) ⊗ Hl(X ;Z) ⊕
⊕

k+l=s+1

TorZ(Hk(BZ=p;Z); H l(X ;Z)):
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Since for k ¿ 0 Hk(BZ=p;Z) is either Fp or 0 depending if k even or odd,

Hs
Z=p(X ;Z) =

⊕
l≡smod 2

Hl(X ;Z) ⊗ Fp ⊕
⊕

l≡s−1 mod 2

TorZ(Hl(X ;Z); Fp)

for s¿cdX . But by the universal coeKcient theorem for cohomology, the right side is isomorphic
to
⊕

l≡smod 2 Hl(X ; Fp).

For the proof of Proposition 1.2 we will need the following version of the notion of Euler
characteristic for double complexes: if D∗∗ is a double complex of vector spaces over a /eld K then
let

�(D∗∗) = lim
N→∞

1
N

∑
06k6N

l∈Z

(−1)k+l dimKDkl

if this limit exists.

Proposition 4.7. If (E∗∗∗ ; d∗) is a spectral sequence such that (a) Ekl
r are vector spaces over a :eld

K and dimK Ekl
r 6 c for all k; l, for a certain c, (b) E∗l

r = 0 for all l¡ 0 and l¿n for some n,
(c) �(E∗∗

r ) exists, then:

(i) E∗∗
r+1 satis:es conditions (a), (b), (c) as well, and

(ii) �(E∗∗
r+1) = �(E∗∗

r ).

Proof. The only non-trivial statement of the proposition is that �(E∗∗
r+1) exists and it is equal to

�(E∗∗
r ). Consider the cochain complex (C∗

kl; r ; dr), where Ci
kl; r = Ek+ir; l−i(r−1)

r for i∈Z. Note that
under the above assumptions the sums∑

06k6N
l∈Z

(−1)k+l dimK Ekl
r

and ∑
06k6N

06l6r−1

(−1)k+l dimK �(C∗
kl; r)

diAer by a /nite number of terms of the form (−1)k+l dimK Ekl, and that the number of such terms
does not depend on N . Since dimK Ekl

r 6 c, the diAerence between the above two sums is bounded
uniformly in N and hence

�(E∗∗
r ) = lim

N→∞
1
N

∑
06k6N

06l6r−1

(−1)k+l dimK �(C∗
kl; r): (19)

Since �(C∗
kl; r) = �(C∗

kl; r+1), the proof follows from (19) and the analogous equation for r + 1.

Let p �= 2 and let Z=p act nicely on a space X with no p-torsion in H ∗(X ;Z), and let (E∗∗∗ ; d∗)
be the associated Leray spectral sequence with coeKcients in Z. Since Ekl

2 =Hk(Z=p; Hl(X ;Z)), by
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Lemma 2.4, �(E∗∗
2 ) = 1

2 �t(X ). Therefore, by Proposition 4.7, �(E∗∗∞) exists and

�(E∗∗
∞) =

1
2
�t(X ): (20)

By an argument similar to that used in the proof above,

�(E∗∗
∞) = lim

N→∞
1
N

∑
06s6N

(−1)s
∑
k

dimFp E
k;s−k
∞ :

By Lemmas 4.4 and 4.6,∑
k

dimFp E
k;s−k
∞ ∼= Gr Hs

Z=p(X ;Z) ∼= Gr Hs
Z=p(X Z=p;Z) ∼=

⊕
l≡smod 2

Hl(X Z=p; Fp)

for s¿cdX . Hence,

�(E∗∗
∞) =

1
2
�(H ∗(X Z=p; Fp)):

Since H 2(Z=p; Hl(X Z=p; Fp)) = Hl(X Z=p; Fp),

�(E∗∗
∞) =

1
2
�t(X Z=p):

Now, by (20), the proof is completed.

4.3. Proof of Theorem 1.3

Let Z=p act on a PDFp(n) space M in such a way that the assumptions of Theorem 1.3 are
satis/ed. If n is even, than Theorem 1.3 can be given a proof analogous to that for S1-actions.
Indeed, by Theorem 5.2.1 and Remark 5.2.4 in [3] (cf. [11]), MZ=p has /nitely many components,
each of which is a PDFp(m)-space, for m even. Therefore, by Proposition 1.2 it is enough to prove
that

∑
i t

i(M) ≡ �t(M) mod 4. As in the proof of Lemma 4.3, it is suKcient to show that tn=2(M)
is even if n=2 is odd. By Lemma 3.10, the cup product on H 2(Z=p; Hn=2(M ; Fp)) is non-degenerate
and, since it is skew-symmetric, tn=2(M) = dimFp H

2(Z=p; Hn=2(M ; Fp)) is even.
Assume now that n is odd and MZ=p �= ∅. Consider the Leray spectral sequence, (E∗∗∗ ; d∗), with

coeKcients in Z associated with the Z=p-action on M . Since (E∗∗∗ ; d∗) converges to H ∗
Z=p(M ;Z),

there is a /ltration of H ∗
Z=p(M ;Z) such that

Gr Hs
Z=p(M ;Z) =

⊕
i

FiH s
Z=p(M ;Z)=Fi+1Hs

Z=p(M ;Z) =
⊕
k+l=s

Ekl
∞:

Since Hl(M ;Z) is /nitely generated, Ekl
2 = Hk(Z=p; Hl(M ;Z)) is a /nite dimensional vector space

over Fp for k ¿ 0.

Corollary 4.8. If s¿cdX then Hs
Z=p(M ;Z) is a :nite p-group and Gr Hs

Z=p(M ;Z) is a :nite di-
mensional vector space over Fp.

By Proposition 3.13, (E∗∗∗ ; d∗) satis/es Poincar3e duality PFp(n). Therefore, by Lemma 3.3(i), we
have

dimFp Gr Hs
Z=p(M ;Z) + dimFp Gr Hs+1

Z=p (M ;Z) =
∑
l

dimFp E
kl
∞
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for suKciently large s and k; k even. By the assumptions of Theorem 1.3 and by Lemma 2.4, Ekl
2 =0

for all even l; 0¡l6 1
2 (n− 1) and for k ¿ 0. Therefore, by Proposition 3.13, the assumptions of

Lemma 4.1 are satis/ed and the sum above equals to
∑

dimFp E
kl
2 mod 4. Therefore, by Lemma 2.4,

dimFp Gr Hs
Z=p(M ;Z) + dimFp Gr Hs+1

Z=p (M ;Z) ≡
∑
l

tl(M) mod 4 (21)

for suKciently large s.
By Lemmas 4.4 and 4.6, the left-hand side of (21) is equal to

∑
l dimFp H

l(MZ=p; Fp). Hence
by (5),∑

l

tl(MZ=p) =
∑
l

dimFp H
l(MZ=p; Fp) ≡

∑
l

tl(M) mod 4:

4.4. Proof of Theorem 1.4

Let Z=p act on M such that all assumptions of Theorem 1.4 are satis/ed. The proof of Theorem
1.4 is analogous to the proof of Theorem 1.3, except that Fp is the ring of coeKcients this time. Let
(E∗∗∗ ; d∗) be the Leray spectral sequence with coeKcients in Fp associated with the Z=p-action on
M . It converges to Hs

Z=p(M ; Fp). Since Hs
Z=p(M ; Fp) is a vector space over Fp; Gr Hs

Z=p(M ; Fp) ∼=
Hs
Z=p(M ; Fp) for any /ltration of Hs

Z=p(M ; Fp), and hence

Hs
Z=p(M ; Fp) ∼=

∑
k+l=s

Ekl
∞:

By Lemmas 3.11 and 3.3(ii) the dimensions of Ekl
r over Fp do not depend on k for large k. Therefore,

by Lemma 4.1

dimFp H
s
Z=p(M ; Fp) =

∑
l

dimFp E
k0l∞

≡
∑
l

dimFp E
k0l
2 =

∑
l

tl(M) mod 4 (22)

for s¿cdM and large k0.
On the other hand, by Lemma 4.5

Hs
Z=p(MZ=p; Fp) ∼=

⊕
k+l=s

H k(BZ=p; Fp) ⊗ Hl(MZ=p; Fp) =
⊕

l

H l(MZ=p; Fp):

Therefore,

dimFp H
s
Z=p(MZ=p; Fp) =

∑
l

dimFp H
l(MZ=p; Fp) =

∑
l

dimFp t
l(MZ=p): (23)

By Lemma 4.4, the left-hand sides of (22) and (23) are equal, and hence the proof is completed.
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