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The principal result of this paper establishes the validity of a conjecture by
Graham and Rothschild. This states that, if the natural numbers are divided
into two classes, then there is a sequence drawn from one of those classes such
that all finite sums of distinct members of that sequence remain in the same
class.

1. INTRODUCTION

Graham and Rothshild have asked [2] if, whenever N = 4, U 4,,
there must be some i in {1, 2} and some sequence {x,>,. , such that
> neF Xn € A; whenever F is a non-empty finite subset of N. This question
was attributed to them as a conjecture by Erdos in [1]. The principal
result of this paper establishes that this statement is true for any finite
partition of N.

In an earlier paper [3] this author established the equivalence of this
conjecture with the existence of an ultrafilter p on N such that

{XxXeN:A—xep}ep,

whenever A4 € p, provided the continuum hypothesis holds. Thus the
existence of this ultrafilter is obtained as a corollary. (The fact that this
ultrafilter and the conjecture are related was suggested by F. Galvin.).

Section 2 consists of some technical lemmas. The main results are in
Section 3.

2. SoME PRELIMINARY LEMMAS

The notation F C; 4 means that F is a non-empty finite subset of 4.

2.1. DerINITION. Let {x, .., be a sequence in N. FS((xn_;) =
{Znef Xy + Fgf N}
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We shall also write without confusion FS({x,>,_;) when re N. The
following lemma is proved in [3, Lemma 2.3].

2.2. LeMMA. If {x,>n._, is any sequence in N, then there exists a sequence
(Ynoma such that FS({yn>n_) CFS((xp>n-,) and 2°|y,,, whenever
A S

The importance of this lemma lies in the fact that, if y, and y,, are
written in binary notation and n == m, then no carrying occurs in the
addition of y, and y,, . In particular, then, if FC; N and c is the largest
element of F and 2° < 3 ,.r y, then indeed 2¢ < y, .

2.3. DerFINITION. Let {x,>,_, be a sequence in N such that 2°{ x,
whenever 25-! < x,, . The natural map, 7, for FES({x,>,.,) is defined by
the rule 73 cr X)) = Xpep 2¥L

Since every natural number has a unique binary expansion, and since
Xpiq > Yo, x; for every n, = is easily seen to be one-to-one and onto N.
When 4 C N we shall use the notational convention that

7(4) = {r(x): x € A " FESKxu>m1)}.

A technique frequently used in this paper is to note that 7 is almost an
isomorphism. This statement is made precise in the following lemma.

2.4. LeMMA. Let<{x,>n_, be a sequence in N such that 2° | x, ., whenever
28 < x, . Let {y, : n < r} be a subset of FS({x,),.1) and, for each n <r,
let z, = 7(y,) where 7 is the natural map for FS({x,>p.,) andr € N U {c0}.
Then the following two conditions are equivalent and each implies that
> ner Zn = T(Xper Vn) Whenever FC;{xe N:1 < x <r}:

(1) For each n less than r — 1, every element of F,, is smaller than every
element of Fy , where y, = 3 icp X: .

(2) For each n less thanr — 1, 2% | z,,,, whenever 27t < z,, .

Proof. (1) implies (2). Let a be the largest element of F, and let b be
the smallest element of F,,,, . Then z, < 2% and, since @ < b, 2% | 2t for
every tin F,; .

(2) implies (1). LetaeF,and beF, . Then 2** < z,502%|z,,,.
But z,,, is the sum of distinct powers of 2 so 2¢ divides each of them. In
particular 22| 2°~! and hence a < b.
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Finally, note that whenever (1) is satisfied and F C,{xeN:1 <x <r}
then {F, : n € F} forms a pairwise disjoint family. Let G = J,er F,, . Then

Y=Y (3 2=y

nef neF 'teF, teG
“r(g )= (5 (2 ) -+ (30)

2.5. LeMMA. Let (x>, _q be a sequence in N such that 2° | x,,; whenever
2571 < x,, . Let = be the natural map for FS({(x,>;_,) and let {y,>m
any sequence in N such that FS({ yn>n 1) © FS(Kx,00_1). Then there exlsts
a sequence {zZ,>n_q such that FS({z,>7 ) C FSK ypomy) and 7(3pep 2,) =
> ner 7(2y) wheneuer FC, N.

Proof. By Lemma 2.2 there exists a sequence {z,>,., such that
FS(zpop 1) C FSK Ynomey) and 2° | z,., whenever 251 < z,, . In particular
ES(zpom 1) CES((xp>e_y) so, by Lemma 2.4, it suffices to show that
every element of F, is less than every element of F,,,, , where z, = 3 . F, Xt
Let @ be the largest element of F,, and let b be the smallest element of F,, ., .
Suppose that b < g and let s be the largest integer such that 2! < x, .
Then 25t < x, <z, so 28} z,,,. Also 2| x, for every ¢ in F, ;\{b}
since b is the smallest element of F,; . But x, = z,,., — > {x; : f € F,, ,\{b}}
s0 2% | x;, and hence 2° < x; , a contradiction.

2.6. LeMMA. Let ke N and let {A(i,n):i€{l,2,.. .k} and ne N} be a
collection of sets such that A(i,n + 1) C A(i, n) whenever ic{l,2,..., k}
and n € N. Then there exist a subset S of {1, 2,..., k}, a sequence {x,,>m_; in
N, and an element M of N such that whenever n = M and {y,>m_, is @
sequence With FS({ Ym>m-1) C FS(Xpom_1) then FSK ¥y om_1) N A(i, n) = @
if and only ifi € S.

Proof. The proof is by induction on k. Let k£ = 1. If there are any n
and any sequence (X, m_p such that FS((x, m,_1) N A, n) = &, let
M=n8= @, and let {x,>,.., be as given. Otherwise let M = 1,
S = {1} and let {x,,>,,_; be any sequence whatever.

Now assume valid for k — 1 and let <{x,,>;._, , S, and M’ be as given
for {A(i,n) :ie{l,2,.,k — 1} and ne N}. If there are some M" > M’
and < ypom_; such that FS({y,om_1) C FS(Kx, >m_q) and

FS(C Ymom=) N Alle, M") = &,

let M — M”, S =5, and <xm>;‘z‘1 — <ym>;=1 . Otherwise let M = M/,
S =8 Uk}, and {Xpomoy = (X Ppmer -
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2.7. DeErFINITION. Let a be a finite partition of N, (« = {4,}],). Let
neNandletk <n.

(a) E/(k,n) = {xe N :x = n and there is some i in {1, 2,..., a} such
that {k, x, x + k} C 4.}

(b) Fy(k,n) = F,'(k, n\U;1 F/(j, n), if k > L E(1,n) = E/(1, ).

(©) Let ie{l,2,.. a} Ufi,n) = (A4; " {xeN:x > n)\U, 1 E(k, n).

If, for any n, Uk LFdk,n) = {xe N:x > n}, the proof of the main

theorem is quite easy. This is not, unfortunately, always the case. The
result we now seek is that we can find a sequence {x,,;,_, with

FS(x%0 € U Fulk, )
k=1

for some n. This result will be Lemma 2.10. This, together with the fact,
guaranteed by Lemma 2.4, that the natural map 7 for FS({xy),,_1) 15
“nearly” an isomorphism onto N will allow us to complete the proof. The
following, exceedingly technical, lemma allows us to choose the desired
sequence.

2.8. LEMMA. Let o = {A;};, be a partition of N. Assume that for each
nin N and sequence < y,.>%_, in N one has FS( yn>2 NUnoy Fuk, n) +# 2.
Then there exists i in {1, 2,..., a} such that for each n in N U {0} there exist
x, and M, in N and a sequence {x, ,>._, in N such that for eachp > M,
there exists a set U(n, p) satisfying:

(1) for each m, if 2571 < x, ,, then 28| X ;v
) ifp > M, and { y,,>,._, is a sequence with

FSK Ymom=r) € FS(<xn,m>:z=]);
then
FS(Ymom=1) N Uln, p) # &;

BYifp =M, , then Un,p +1)C Un,p)and Un,p) C A, ;

@) ifn>=1,then M, > M,_,and M, > Y | x; ;

B)ifn=landp = M,, then Un,p) CUn — 1, p);

(6) ifn =z landp = M,andx e Un, p), thenx + x,€ Un — 1, M,_,)

Proof. Let M, S, and {(w, >, _, be as guaranteed by Lemma 2.6 for the
family {U,(i, m) : i€{l,2,...,a} and me N}. By the hypothesis of the

current lemma, S # @. (For if FS(<wm>m:1) N Ui, M) = & for each i
in {1, 2,..., a}, then FSKw,>m_) C Uk 1 L F(k, M))LetieS.
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We now define x,, M, , {x,mym_, and, for each p = M, , Un, p)
inductively on n. Let x, = 1. (No requirements of the lemma affect x, .)
Let My, = M, let {x,..00_, be a sequence with FS({Xg.m)me1) © ES(Whmome1)
such that 27| x4 ., whenever 251 < x, ,, (there is such a sequence by
Lemma 2.2), and for each p > M, let U(0, p) = Uy, p). (Where M and
{Wnrm-q are as in the paragraph above.)

Conditions (4), (5), and (6) are satisfied vacuously, and {(xg . ..., Was
chosen specifically to satisfy condition (1). Condition (2) is satisfied by
Lemma 2.6, since U(0, p) = U,(i, p), i€ S, and

FS(<xo.m>:roz=1) C ES(Wpmom=)-

Condition (3) is satisfied because U(0, p) = U.(i, p).

We assume we have chosen x; , My, <Xy >m_; , and, foreachp = M, ,
U(k, p) satisfying each of the six conditions for every k << n. Let = be the
natural map for FS({x,_1.m>m-y) and letp = M, _,. Considerr(U(n - 1, p)).
We claim that for each sequence <{z,,>,._; in N one has

FS((zZmomay) O 7U( — 1, p)) # @.

For, indeed, if there is a sequence with FS((z,,>n_,) N 7(U(n -1, p)) = o,
then, by Lemma 2.2, we may suppose that 28| z,,,; whenever 2°-1 < z,, .
Consequently, if y,, = 77Y(z,,) for each m, we have by Lemma 2.4 that
ES({Ymrp) N Un — 1, p) = @, an impossibility since

FS(< ym>::z=1) Q FS(<xn—1,m>::L=l)

(also by virtue of Lemma 2.4) and condition (2) holds at » — 1. The
claim is thus established.

Thus, in particular, there exists some b in N such that, for every x in N,
x4+ Lx+2.,x+bnr(Un—1,M,,) # @. (For, if there were
no bound on the gaps in 7(U(n — 1, M,_,)), one could choose a sequence
{Zmm=y Inductively by picking z,, such that

m—1
Zms Zm + Lees 2 + Y. iy O (U — DM, 1)) = @.
r=1

For this sequence we would have FS({z,, >, ) N 7(U(n — 1, M,_)) = @.)
Let M,’ be the larger of M,_; and Z;:ll x; + 771(b) + 1 and let r be the
largest integer such that 27~' < b. For each j in {l, 2,..., b} and for each
p = M, define V(j,p) = {xe(Urn — 1,p)): 27| x and

x +jer(Un — 1, M)}
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Let V(0, p) = {xe=(U(n — 1, p)) : 2" t x}. Note that
b
=0

Also since condition (3) holds at # — 1 we have that V(j, p) 2 V{(j,p+ 1)
whenever p > M,

For p < M, let V(j,p) = V(j, M,’). Then by Lemma 2.6 there exist
a subset S of {0, 1,..., b}, a sequence < y,>n_, , and an element M, of N
such that, if p == M, and j € S" and <{z,,>,._, is any sequence with

FS(zZmdm=1) € FS( Ympm=a);

then FS({z,>m_1) O V{j, p) #* @. We may assume, by Lemma 2.2, that
25| y,,., whenever 251 <{ y,, . Note that 8" #* g. Otherwise, we would
have that ESKyuoma) N W(Un — 1, p) = @ since

b
(U(n — 1, p)) = U0 V(j, p)-
P
But that has already been established to be impossible. Note also that
0¢S since, for all but finitely many terms of <Vm m_1,2" | ¥m. Let
weS’, let x, = rw), and let M, be the larger of M,  and M, . For
each mlet x, ., = 74 ,)and foreachp = M, let U(n, p) = 7YV (w, p)).
To see that condition (1) is satisfied note that, since x,, ,, = 771(y,,) for
each m, X, , € FS((X,_1..052,)- For each m we have that 2¢ | y,,.; whenever
2s-1 < y,, so by Lemma 2.4 and condition (1) applied to FS({x,_1,> 1)
we have that each element of F,, is less than each element of F,,,, , where
Xnm = 2.teF, Xn_1,¢- LThUS, letting ¢ be the largest element of F,,, , we have
that, if 2°' < x,,., , then 257! < x,_, . . Therefore, since condition (1)
holds at » — 1, 2¢| x,,_, , for every t in F,,,; . That is, 28| x,, 4 .
To see that condition (2) holds let <z,,>,._, be a sequence with

FES(Kzmym—) & FSKXpmdm=1)

and suppose that FS((z, m-y) N U(n,p) = . Then by Lemma 2.5 we
may assume that, whenever FC; N, 7(Qper Zm) = 2Zmer 7(Zw). Thus
FS(((zm)om—1) N VW, p) = & while FSK7(zn)dn-1) & FSCYmimaa), 2
contradiction. (The latter inclusion comes from the fact, a consequence of
Lemma 2.4, that FS(K7(Xy, 7)) m=1) & FSK Viirm=1))

The verification of conditions (3), (4), and (5) is trivial. To see that
condition (6) holds let x € U(n, p). Then +(x) e V(w, p) so 27| 7(x) and
+x) +~wer(Un — 1, M,_5)). But w < b so if 2572 <{ w then 5 < r so
2¢| r(x). Thus, by Lemma 2.4, x + 7 w) = x + x,e Un — 1, M,,_,)
as desired. The induction is complete.
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2.9. LeMMmA. Let o = {A;};_, be a partition of N. If, for each n in N and
sequence { Ymym_y in N one has FS({ ym/\;'f’,,l)\UZj F(k,u) = &, then there
are some i in {1, 2,..., a} and some sequence {x,>,_, in N such that
FS(Xppp) N A; = .

Proof. Letiand {x,>7 ; be as given by Lemma 2.8. Let FC, N and
let ¢ and r be, respectively, the smallest and largest elements of F. Let
x € U(r, M,). We show by induction on the number of elements in F that
X+ Dner Xp € U(t — 1, M;_y). In case F has one element we have by
condition (6) of lemma 2.8 that x + x, e U(r- 1, M,_,)) = Ut -1, M,_,).
Now assume F has more than one element and let G = F\{t}. Let ¢’ be the
smallest element of G. By induction, x + 3¢ x, € U(t' — 1, M,-_,). By
condition (5) applied as often as needed x + Y ¢ x, € U(t, My_y). (Of
course, if ¢ = ¢’ — 1, condition (5) is not needed.) Then, by condition (6),
X + X nec Xn + x,€ U(t — 1, M,_;). The induction is complete.

By condition (3) of lemma 2.8 we have that x + >, X, € 4, and
xed;. But xe U(r, M,) so by repeated application of condition (5)
xe U, M,) = Ui, M,). Thus x¢ F,/(C,cr x. , M,). (By condition (4)
M, >3 ,..rx,.) Thus it is not the case that

:Z Xp, X, X Zx,,ggAi.

ner neF

That is, 3 ,cr X, ¢ 4; as desired.

2.10. LeMMA. Let o = {A;}}, be a partition of N. Then there exist n in
N and a sequence (x>, _, in N such that FS({x,>>_,) C U:;i F(k, n).

Proof. The proof is by induction on a, the number of elements of «.
If @ = 1 the result is trivial. Assume the lemma is valid for any partition
with @ — 1 elements.

Suppose the conclusion fails. Then by Lemma 2.9 we have some 7 in
{1, 2,..., a} and some sequence { ¥,,>m_; Such that FS({ y,om_ ) N 4; = &.
We may assume, by Lemma 2.2, that 2¢ | y,,,; whenever 251 < y,, . Let r
be the natural map for FS({ ymom-1) and let B = {7(4,) : je{l, 2,..., a} and
J 5~ i}. Then, since 7{4,) = @, B is a partition of N with a — 1 elements.
Consequently there exist r in N and {(z,,>n_, such that FS({z,»>%_,) C
U;;i Fy(k,r). We may assume, by Lemma 2.2, that 2| z,,,;, whenever
251 < z,, . We also assume that 2° | z,, whenever 251 < r,

Now, let » = 7~!(r) and let x,, = 773(z,,) for each m. We claim that
FS((xm>2_1) € Uny Fulk, n). To see this, let £ C, N. Then, by Lemma 2.4,
T omer X¥m) = 2omer Zm » ThUs 7(Xmer X)) € Fg(k, r) for some & << r. That
18, {k, T mer Xm)s T mer Xm) + k} C 7(A;) for some jin {1, 2,..., a}. Thus,
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immediately 7Y (k) € 4; and I ,cr X € A; . But k < r so, if 251 < k, we
have 2*! < r so that 2% ] z, for each m. Thus 2° | X,cr Zm,
80 2° | 7(Tyner Xm)- Thus, by Lemma 2.4, 3, . x,, + 771(k) € 4; . Noting
finaily that

Z X = T_I(r) =n,

meF
we have 3 .5 X, € F,’ (+74(k), n) as desried.

Lemma 2.12 is the only result needed to prove the main theorem. It uses
in its proof the following lemma, which is a partial generalization of
Corollary 4 of [2]. Graham and Rothschild attribute the result there to
J. Folkman (in a personal communication), R. Rado [4], and J.Sanders [5].

2.11. LEMMA. For every partiton o of N with o« = {A,};_, , there exists
a function f, : N — N such that, for each r in N, there exist i in {1, 2,..., a}

and {y;>]_; satisfying:

() FSCyia) & 45
@) fje{l, 2, r — 1 and 27 < y; , then 2°| y;p
() ifje{l, 2,..., r}, then y; < fu(j).

Proof. For each a choose p(x) in N and a sequence {x,_,, s, such that
ES(xamd2 ) C UM Fuk, p(a)) and 2¢| x, .y, whenever 29-1 < x, ,, .
We can assume in addition that, for each m, 2° | x, ,, whenever 257 < p(a).
Let 7, be the natural map for FS({x, > m_1) and let B(o) = {,(F,(k, p(a})):
ke{l,2,.., p(c) — 1}}. Then B(«) is a partition of V.

We define f,(n) inductively on » for every « at once. Let £,(1) = p(a) — 1
and let £i(n + 1) = 7. X fy(n)).

Now, with f, defined for every finite partition « of N we prove the lemma
inductively on r. If r = 1, let p; = 1 and let i be the element of {1, 2,..., a}
that 1 € A;. Condition (2) holds vacuously and (1) and (3) are trivial,
since p(x) = 2.

Let » > 1 and assume the lemma is valid for every partition « at # — 1.
Let {w;>i71 and let £ in {1, 2,..., p(o) —1} be as guaranteed by the lemma
for the partition B(x) at r — 1. Let i be that element of {l, 2,..., a} such
thatk € 4; . Lety; = k and, forje{2,..., r}, lety; = 77} (w,;_y).

To verify condition (1), first let FC {2,..., r}. Then, by Lemma 2.4 and
condition (2) for B(a), 7.(Xjer ¥;) = Licr Wi - But

Z Wiq € Ta(sz(ks P(a))) SO z Vi € Fa(k5 p(o‘))

jeF jeF

Thus ¥ ;cr v € A; and y, + 3,5 v; € A; . Finally, since y; € 4; condition
(1) is satisfied.
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To see condition (2) note that, if 25—1 < y, , then 251 << p(a) 50 28 | X, 1,
for every m. Consequently 2¢ | y, . Now let j € {2,..., r — 1}. By Lemma 2.4
every element of F; is less than every element of F;,, where y; = 3 . Fy Xat -
Let ¢ be the largest element of F;. If 21 < y;, then 2°!' < x,, sO
2% | x,.; for every ¢ in F;,; and consequently 2¢ | y;., .

Now consider condition (3). First y; = &k < p(o) — 1. Now let
je{2,..,r}.Then w,_; < fa(j — 1)andr, is order preservingso y; << fo(j).

2.12. LemmA. For every partition o of N, with o = {A;}5_, , there exist
a function f, : N — N and an i in {1, 2,..., a} such that, for every r in N,
there exists {y;i_, such that FS({y;»)i_y C A, and y; < f(j) whenever
je{l,2,..,r}.

Proof. Let f, be as in Lemma 2.11. For each r in N let i(r) be that
element of {1, 2,..., @} whose existence is guaranteed by Lemma 2.11. Let
ie€{l,2,..., a} such that i = i(r) for infinitely many r’s.

Now let r € N and let ¥’ € N such that ¥’ > rand i = i(r'). If {p,>’_, is
as guaranteed by Lemma 2.11, then <{y;>7_; will work here.

3. THE MAIN RESULTS

The proof now rests only on the compactness of the product space
{0, 1}*. For an element s of {0, 1}V we define a sequence {x,, >, in
N U {0} by agreeing that x,,, = k where & is the mth element of N such
that s, = 1. If s has fewer than m non-zero coordinates, we agree that
Xem = 0.

3.1. THEOREM. Let « be a finite partition of N with o = {A,}7_, . There
exist i in{l, 2,..., a} and a sequence X, m_, such that FS(x,>m_) C 4;.

Proof. Letiand f, be as guaranteed by Lemma 2.12. For each r and m
in N let A,, ={{0, 1}V :{x,, ke{l,2,..,n}C{l,2,..,m} and
FS(Kx,0%1) € A;}. Since whether or not s€ 4, ,, is determined by the
first m coordinates of s, A, ,, is closed. Now let n € N and let { y;>} , be as
guaranteed by Lemma 2.12. Let s€{0, 1} such that s, = 1 for j in
{1, 2,..., n} and s, = 0 otherwise, then s € ();-; 4, ; (- J

We thus have that {4, ,, :ne N and m = f (n)} is a family of closed
sets in {0, 1}V with the finite intersection property. Consequently there
exists s in (Vg Ans (- Let xp = X, for every m. Let FC, N and let n
be the largest element of F. Then 5 € A, ¢ (n) SO XLimer Xm € 4; . The proof
is complete.
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3.2. CoroLLARY (Continuum Hypothesis). There exists an ultrafilter
pon N such that {x : A — x € p} € p whenever A € p. (Where

A—x={yeN:x+yecAd})

Proof. This statement was shown in [3] to be equivalent, in the presence
of the continuum hypothesis, to Theorem 3.1.

The author is grateful to R. Graham and B. Rothshild for pointing out
that the following generalization of [2, Corollary 3] might also be obtained
in this manner.

3.3. COROLLARY. Let IT = {F: FC,N}. If IT = \J;_, I';, then there
are a sequence {F,>>_, inIT and an i in {1, 2,..., a} such that ,ec Fn € I';
whenever G C; N.

Proof. Define o : IT — N by the rule o(F) = 3, 2"L. Then o is one-
to-one and onto. Let, for each i in {1, 2,...,a}, 4; = o(I;). Then, by
Theorem 3.1, there exist fin {1, 2,..., a} and {x,>,_; such that

FS((Xnppa1) € 45

By Lemma 2.2 we may suppose that 2¢ | x,,,, whenever 25°1 < x,, .
Let F, = o~Y(x,), for each n in N. Then {F, : n€ N} form a pairwise
disjoint collection. Thus, if G C; N, we have that

U(U Fn) :Zgzt‘l;te UFl=7Y (Z 2t—1)

neG neG neG teF,
neF neG

Thus Unec Fr € 07%(A4;) = I'; as desired.

The following very restricted partial generalizations of corollaries 1 and 2
of [2] are proved in a similar fashion, as was also noted by Graham and
Rothschild.

3.4. COROLLARY. Let A be an Ry-dimensional affine space over the field
of 2 elements. If A = J;., B;, then there are an Rydimensional affine
subspace A’ of A and aniin{l, 2,..., n} such that A’ C B, .

3.5. COROLLARY. Let V be an R,-dimensional vector space over the
field of 2 elements and let I1 be the set of one-dimensional subspaces of V. If
IT = ;. T;, then there are an Ry-dimensional subspace V' of V and an i
in {1, 2,..., n} such that every one-dimensional subspace of V' is an element
of T;.
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It should be remarked finally that Theorem 3.1 and Corollary 3.3 are
not, strictly speaking, generalizations of Corollaries 4 and 3 of [2], respec-
tively. For there is no bound given on x; valid for all partitions with a
given number of elements. Indeed, no such bound can be obtained, for
one can let the first cell of a partition consist of arbitrarily long initial
segments of N,
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