Finite Sums from Sequences Within Cells of a Partition of N

Neil Hindman
California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032
Communicated by the Managing Editors

Received October 1, 1972

Abstract

The principal result of this paper establishes the validity of a conjecture by Graham and Rothschild. This states that, if the natural numbers are divided into two classes, then there is a sequence drawn from one of those classes such that all finite sums of distinct members of that sequence remain in the same class.

1. Introduction

Graham and Rothshild have asked [2] if, whenever $N=A_{1} \cup A_{2}$, there must be some i in $\{1,2\}$ and some sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ such that $\sum_{n \in F} x_{n} \in A_{i}$ whenever F is a non-empty finite subset of N. This question was attributed to them as a conjecture by Erdös in [1]. The principal result of this paper establishes that this statement is true for any finite partition of N.

In an earlier paper [3] this author established the equivalence of this conjecture with the existence of an ultrafilter p on N such that

$$
\{x \in N: A-x \in p\} \in p
$$

whenever $A \in p$, provided the continuum hypothesis holds. Thus the existence of this ultrafilter is obtained as a corollary. (The fact that this ultrafilter and the conjecture are related was suggested by F. Galvin.).

Section 2 consists of some technical lemmas. The main results are in Section 3.

2. Some Preliminary Lemmas

The notation $F \subseteq_{f} A$ means that F is a non-empty finite subset of A.
2.1. Definition. Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be a sequence in $N . F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=$ $\left\{\sum_{n \in F} x_{n}: F \subseteq_{f} N\right\}$.

We shall also write without confusion $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{r}\right)$ when $r \in N$. The following lemma is proved in [3, Lemma 2.3].
2.2. Lemma. If $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is any sequence in N, then there exists a sequence $\left\langle y_{n}\right\rangle_{n=1}^{\infty}$ such that $F S\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)$ and $2^{s} \mid y_{n+1}$ whenever $2^{s-1} \leqslant y_{n}$.

The importance of this lemma lies in the fact that, if y_{n} and y_{m} are written in binary notation and $n \neq m$, then no carrying occurs in the addition of y_{n} and y_{m}. In particular, then, if $F \complement_{f} N$ and c is the largest element of F and $2^{s} \leqslant \sum_{n \in F} y_{n}$ then indeed $2^{s} \leqslant y_{c}$.
2.3. Defintion. Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be a sequence in N such that $2^{s} \mid x_{n+1}$ whenever $2^{s-1} \leqslant x_{n}$. The natural map, τ, for $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)$ is defined by the rule $\tau\left(\sum_{n \in F} x_{n}\right)=\sum_{n \in F} 2^{n-1}$.

Since every natural number has a unique binary expansion, and since $x_{n+1}>\sum_{i=1}^{n} x_{i}$ for every n, τ is easily seen to be one-to-one and onto N. When $A \subseteq N$ we shall use the notational convention that

$$
\tau(A)=\left\{\tau(x): x \in A \cap F S\left(\left\langle x_{n}\right\rangle_{n-1}^{\infty}\right)\right\} .
$$

A technique frequently used in this paper is to note that τ is almost an isomorphism. This statement is made precise in the following lemma.
2.4. Lemma. Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be a sequence in N such that $2^{s} \mid x_{n+1}$ whenever $2^{s} \leqslant x_{n}$. Let $\left\{y_{n}: n<r\right\}$ be a subset of $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)$ and, for each $n<r$, let $z_{n}=\tau\left(y_{n}\right)$ where τ is the natural map for $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)$ and $r \in N \cup\{\infty\}$. Then the following two conditions are equivalent and each implies that $\sum_{n \in F} z_{n}=\tau\left(\sum_{n \in F} y_{n}\right)$ whenever $F \complement_{f}\{x \in N: 1 \leqslant x<r\}$:
(1) For each n less than $r-1$, every element of F_{n} is smaller than every element of F_{n+1}, where $y_{n}=\sum_{t \in F_{n}} x_{t}$.
(2) For each n less than $r-1,2^{s} \mid z_{n+1}$ whenever $2^{s-1} \leqslant z_{n}$.

Proof. (1) implies (2). Let a be the largest element of F_{n} and let b be the smallest element of F_{n+1}. Then $z_{n}<2^{a}$ and, since $a<b, 2^{a} \mid 2^{t-1}$ for every t in F_{n+1}.
(2) implies (1). Let $a \in F_{n}$ and $b \in F_{n+1}$. Then $2^{a-1} \leqslant z_{n}$ so $2^{a} \mid z_{n+1}$. But z_{n+1} is the sum of distinct powers of 2 so 2^{a} divides each of them. In particular $2^{a} \mid 2^{b-1}$ and hence $a<b$.

Finally, note that whenever (1) is satisfied and $F \subseteq_{f}\{x \in N: 1 \leqslant x<r\}$ then $\left\{F_{n}: n \in F\right\}$ forms a pairwise disjoint family. Let $G=\bigcup_{n \in F} F_{n}$. Then

$$
\begin{aligned}
\sum_{n \in F} z_{n} & =\sum_{n \in F}\left(\sum_{t \in F_{n}} 2^{t-1}\right)=\sum_{t \in G} 2^{t-1} \\
& =\tau\left(\sum_{t \in G} x_{t}\right)=\tau\left(\sum_{n \in F}\left(\sum_{t \in F_{n}} x_{t}\right)\right)=\tau\left(\sum_{n \in F} y_{n}\right) .
\end{aligned}
$$

2.5. Lemma. Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be a sequence in N such that $2^{s} \mid x_{n+1}$ whenever $2^{s-1} \leqslant x_{n}$. Let τ be the natural map for $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)$ and let $\left\langle y_{n}\right\rangle_{n=1}^{\infty}$ be any sequence in N such that $F S\left(\left\langle\nu_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)$. Then there exists a sequence $\left\langle z_{n}>_{n=1}^{\infty}\right.$ such that $F S\left(\left\langle z_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq F S\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right)$ and $\tau\left(\sum_{n \in F} z_{n}\right)=$ $\sum_{n \in F} \tau\left(z_{n}\right)$ whenever $F \subseteq_{f} N$.

Proof. By Lemma 2.2 there exists a sequence $\left\langle z_{n}\right\rangle_{n=1}^{\infty}$ such that $F S\left(\left\langle z_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq F S\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right)$ and $2^{s} \mid z_{n+1}$ whenever $2^{s-1} \leqslant z_{n}$. In particular $F S\left(\left\langle z_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)$ so, by Lemma 2.4, it suffices to show that every element of F_{n} is less than every element of F_{n+1}, where $z_{n}=\sum_{t \in F_{n}} x_{t}$. Let a be the largest element of F_{n} and let b be the smallest element of F_{n+1}. Suppose that $b \leqslant a$ and let s be the largest integer such that $2^{s-1} \leqslant x_{b}$. Then $2^{s-1} \leqslant x_{a} \leqslant z_{n}$ so $2^{s} \mid z_{n+1}$. Also $2^{s} \mid x_{t}$ for every t in $F_{n+1} \mid\{b\}$ since b is the smallest element of F_{n+1}. But $x_{b}=z_{n+1}-\sum\left\{x_{t}: t \in F_{n+1} \mid\{b\}\right\}$ so $2^{s} \mid x_{b}$ and hence $2^{s} \leqslant x_{b}$, a contradiction.
2.6. Lemma. Let $k \in N$ and let $\{A(i, n): i \in\{1,2, \ldots, k\}$ and $n \in N\}$ be a collection of sets such that $A(i, n+1) \subseteq A(i, n)$ whenever $i \in\{1,2, \ldots, k\}$ and $n \in N$. Then there exist a subset S of $\{1,2, \ldots, k\}$, a sequence $\left\langle x_{m}\right\rangle_{m=1}^{\infty}$ in N, and an element M of N such that whenever $n \geqslant M$ and $\left\langle y_{m}\right\rangle_{m=1}^{\infty}$ is a sequence with $F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right) \subseteq F S\left(\left\langle x_{m}\right\rangle_{m=1}^{\infty}\right)$ then $F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right) \cap A(i, n) \neq \varnothing$ if and only if $i \in S$.

Proof. The proof is by induction on k. Let $k=1$. If there are any n and any sequence $\left\langle x_{m}\right\rangle_{m=1}^{\infty}$ such that $F S\left(\left\langle x_{m}\right\rangle_{m=1}^{\infty}\right) \cap A(1, n)=\varnothing$, let $M=n, S=\varnothing$, and let $\left\langle x_{m}\right\rangle_{m=1}^{\infty}$ be as given. Otherwise let $M=1$, $S=\{1\}$ and let $\left\langle x_{m}\right\rangle_{m=1}^{\infty}$ be any sequence whatever.

Now assume valid for $k-1$ and let $\left\langle x_{m}{ }^{\prime}\right\rangle_{m-1}^{\infty}, S^{\prime}$, and M^{\prime} be as given for $\{A(i, n): i \in\{1,2, \ldots, k-1\}$ and $n \in N\}$. If there are some $M^{\prime \prime} \geqslant M^{\prime}$ and $\left\langle y_{m}\right\rangle_{m=1}^{\infty}$ such that $F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right) \subseteq F S\left(\left\langle x_{m}\right\rangle_{m=1}^{\infty}\right)$ and

$$
F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right) \cap A\left(k, M^{\prime \prime}\right)=\varnothing,
$$

let $M=M^{\prime \prime}, S=S^{\prime}$, and $\left\langle x_{m}\right\rangle_{m=1}^{\infty}=\left\langle y_{m}\right\rangle_{m=1}^{\infty}$. Otherwise let $M=M^{\prime}$, $S=S^{\prime} \cup\{k\}$, and $\left\langle x_{m}\right\rangle_{m=1}^{\infty}=\left\langle x_{m}\right\rangle_{m-1}^{\infty}$.
2.7. Definition. Let α be a finite partition of $N,\left(\alpha=\left\{A_{i}\right\}_{i-1}^{a}\right)$. Let $n \in N$ and let $k<n$.
(a) $F_{\alpha}^{\prime}(k, n)=\{x \in N: x \geqslant n$ and there is some i in $\{1,2, \ldots, a\}$ such that $\left.\{k, x, x+k\} \subseteq A_{i}\right\}$.
(b) $F_{\alpha}(k, n)=F_{\alpha}^{\prime}(k, n) \backslash \bigcup_{j=1}^{k-1} F_{\alpha}^{\prime}(j, n)$, if $k>1 . F_{\alpha}(1, n)=F_{\alpha}^{\prime}(1, n)$.
(c) Let $i \in\{1,2, \ldots, a\} . U_{\alpha}(i, n)=\left(A_{i} \cap\{x \in N: x \geqslant n\}\right) \backslash \bigcup_{k=1}^{n-1} F_{\alpha}(k, n)$.

If, for any $n, \bigcup_{k=1}^{n-1} F_{\alpha}(k, n)=\{x \in N: x \geqslant n\}$, the proof of the main theorem is quite easy. This is not, unfortunately, always the case. The result we now seek is that we can find a sequence $\left\langle x_{m}\right\rangle_{m=1}^{\infty}$ with

$$
F S\left(\left\langle x_{m}\right\rangle_{m=1}^{\infty}\right) \subseteq \bigcup_{k=1}^{n-1} F_{\alpha}(k, n)
$$

for some n. This result will be Lemma 2.10. This, together with the fact, guaranteed by Iemma 2.4, that the natural map τ for $F S\left(\left\langle x_{m}\right\rangle_{m-1}^{\infty}\right)$ is "nearly" an isomorphism onto N will allow us to complete the proof. The following, exceedingly technical, lemma allows us to choose the desired sequence.
2.8. Lemma. Let $\alpha=\left\{A_{i}\right\}_{i=1}^{\alpha}$ be a partition of N. Assume that for each n in N and sequence $\left\langle y_{m}\right\rangle_{m-1}^{\infty}$ in N one has $F S\left(\left\langle y_{m}\right\rangle_{m-1}^{\infty}\right) \backslash \bigcup_{k-1}^{n-1} F_{\alpha}(k, n) \neq \varnothing$. Then there exists i in $\{1,2, \ldots, a\}$ such that for each n in $N \cup\{0\}$ there exist x_{n} and M_{n} in N and a sequence $\left\langle x_{n, m}\right\rangle_{m=1}^{\infty}$ in N such that for each $p \geqslant M_{n}$ there exists a set $U(n, p)$ satisfying:
(1) for each m, if $2^{s-1} \leqslant x_{n, m}$ then $2^{s} \mid x_{n, m+1}$;
(2) if $p \geqslant M_{n}$ and $\left\langle y_{m}\right\rangle_{m=1}^{\infty}$ is a sequence with

$$
F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right) \subseteq F S\left(\left\langle x_{n, m}\right\rangle_{m=1}^{\infty}\right),
$$

then

$$
F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right) \cap U(n, p) \neq \varnothing ;
$$

(3) if $p \geqslant M_{n}$, then $U(n, p+1) \subseteq U(n, p)$ and $U(n, p) \subseteq A_{i}$;
(4) if $n \geqslant 1$, then $M_{n} \geqslant M_{n-1}$ and $M_{n}>\sum_{j-1}^{n} x_{j}$;
(5) if $n \geqslant 1$ and $p \geqslant M_{n}$, then $U(n, p) \subseteq U(n-1, p)$;
(6) if $n \geqslant 1$ and $p \geqslant M_{n}$ and $x \in U(n, p)$, then $x+x_{n} \in U\left(n-1, M_{n-1}\right)$

Proof. Let M, S, and $\left\langle w_{m}\right\rangle_{m=1}^{\infty}$ be as guaranteed by Lemma 2.6 for the family $\left\{U_{\alpha}(i, m): i \in\{1,2, \ldots, a\}\right.$ and $\left.m \in N\right\}$. By the hypothesis of the current lemma, $S \neq \varnothing$. (For, if $F S\left(\left\langle\mathcal{W}_{m}\right\rangle_{m=1}^{\infty}\right) \cap U_{\alpha}(i, M)=\varnothing$ for each i in $\{1,2, \ldots, a\}$, then $F S\left(\left\langle w_{m}\right\rangle_{m=1}^{\infty}\right) \subseteq \bigcup_{k=1}^{M-1} F_{\alpha}(k, M)$.) Let $i \in S$.

We now define $x_{n}, M_{n},\left\langle x_{n, m}\right\rangle_{m=1}^{\infty}$, and, for each $p \geqslant M_{n}, U(n, p)$ inductively on n. Let $x_{0}=1$. (No requirements of the lemma affect x_{0}.) Let $M_{0}=M$, let $\left\langle x_{0, m}\right\rangle_{m=1}^{\infty}$ be a sequence with $F S\left(\left\langle x_{0, m}\right)_{m=1}^{\infty}\right) \subseteq F S\left(\left\langle w_{m}\right\rangle_{m=1}^{\infty}\right)$ such that $2^{s} \mid x_{0, m+1}$ whenever $2^{s-1} \leqslant x_{0, m}$ (there is such a sequence by Lemma 2.2), and for each $p \geqslant M_{0}$ let $U(0, p)=U_{\alpha}(i, p)$. (Where M and $\left\langle w_{m}\right\rangle_{m=1}^{\infty}$ are as in the paragraph above.)
Conditions (4), (5), and (6) are satisfied vacuously, and $\left\langle x_{0, m}\right\rangle_{m=1}^{\infty}$ was chosen specifically to satisfy condition (1). Condition (2) is satisfied by Lemma 2.6, since $U(0, p)=U_{\alpha}(i, p), i \in S$, and

$$
F S\left(\left\langle x_{0, m}\right\rangle_{m=1}^{\infty}\right) \subseteq F S\left(\left\langle w_{m}^{\prime}\right\rangle_{m=1}^{\infty}\right) .
$$

Condition (3) is satisfied because $U(0, p)=U_{\alpha}(i, p)$.
We assume we have chosen $x_{k}, M_{k},\left\langle x_{k, m}\right\rangle_{m=1}^{\infty}$, and, for each $p \geqslant M_{k}$, $U(k, p)$ satisfying each of the six conditions for every $k<n$. Let τ be the natural map for $F S\left(\left\langle x_{n-1, m}\right\rangle_{m=1}^{\infty}\right)$ and let $p \geqslant M_{n-1}$. Consider $\tau(U(n-1, p))$. We claim that for each sequence $\left\langle z_{m}\right\rangle_{m=1}^{\infty}$ in N one has

$$
\left.F S\left(\left(z_{m}\right\rangle_{m=1}^{\infty}\right) \cap \tau U(n-1, p)\right) \neq \varnothing .
$$

For, indeed, if there is a sequence with $F S\left(\left\langle z_{m}\right\rangle_{m=1}^{\infty}\right) \cap \tau(U(n-1, p))=\varnothing$, then, by Lemma 2.2 , we may suppose that $2^{s} \mid z_{m+1}$ whenever $2^{8-1} \leqslant z_{m}$. Consequently, if $y_{m}=\tau^{-1}\left(z_{m}\right)$ for each m, we have by Lemma 2.4 that $F S\left(\left\langle y_{m}>_{m=1}^{\infty}\right) \cap U(n-1, p)=\varnothing\right.$, an impossibility since

$$
F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right) \subseteq F S\left(\left\langle x_{n-1, m}\right\rangle_{m=1}^{\infty}\right)
$$

(also by virtue of Lemma 2.4) and condition (2) holds at $n-1$. The claim is thus established.
Thus, in particular, there exists some b in N such that, for every x in N, $\{x+1, x+2, \ldots, x+b\} \cap \tau\left(U\left(n-1, M_{n-1}\right)\right) \neq \varnothing$. (For, if there were no bound on the gaps in $\tau\left(U\left(n-1, M_{n-1}\right)\right)$, one could choose a sequence $\left\langle z_{m}\right\rangle_{m=1}^{\infty}$ inductively by picking z_{m} such that

$$
\left.\left\{z_{m}, z_{m}+1, \ldots, z_{m}+\sum_{k=1}^{m-1} z_{k}\right\} \cap \tau\left(U(n-1), M_{n-1}\right)\right)=\varnothing .
$$

For this sequence we would have $F S\left(\left\langle z_{m}\right\rangle_{m=1}^{\infty}\right) \cap \tau\left(U\left(n-1, M_{n-1}\right)\right)=\varnothing$.) Let M_{n}^{\prime} be the larger of M_{n-1} and $\sum_{j=1}^{n-1} x_{j}+\tau^{-1}(b)+1$ and let r be the largest integer such that $2^{r 1} \leqslant b$. For each j in $\{1,2, \ldots, b\}$ and for each $p \geqslant M_{n}{ }^{\prime}$ define $V(i, p)=\left\{x \in \tau(U(n-1, p)): 2^{r} \mid x\right.$ and

$$
\left.x+j \in \tau\left(U\left(n-1, M_{n-1}\right)\right)\right\} .
$$

Let $V(0, p)=\left\{x \in \tau(U(n-1, p)): 2^{r} \uparrow x\right\}$. Note that

$$
\tau(U(n-1, p))=\bigcup_{j=0}^{b} V(j, p)
$$

Also since condition (3) holds at $n-1$ we have that $V(j, p) \supseteq V(j, p+1)$ whenever $p \geqslant M_{n}$

For $p<M_{n}{ }^{\prime}$ let $V(j, p)=V\left(j, M_{n}{ }^{\prime}\right)$. Then by Lemma 2.6 there exist a subset S^{\prime} of $\{0,1, \ldots, b\}$, a sequence $\left\langle y_{m}\right\rangle_{m=1}^{\infty}$, and an element $M_{n}^{\prime \prime}$ of N such that, if $p \geqslant M_{n}^{\prime \prime}$ and $j \in S^{\prime}$ and $\left\langle z_{m}\right\rangle_{m=1}^{\infty}$ is any sequence with

$$
F S\left(\left\langle z_{m}\right\rangle_{m=1}^{\infty}\right) \subseteq F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right)
$$

then $F S\left(\left\langle z_{m}\right\rangle_{m=1}^{\infty}\right) \cap V(j, p) \neq \varnothing$. We may assume, by Lemma 2.2, that $2^{s} \mid y_{m+1}$ whenever $2^{s-1} \leqslant y_{m}$. Note that $S^{\prime} \neq \varnothing$. Otherwise, we would have that $F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right) \cap \tau(U(n-1, p)=\varnothing$ since

$$
\tau(U(n-1, p))=\bigcup_{j=0}^{b} V(j, p)
$$

But that has already been established to be impossible. Note also that $0 \notin S^{\prime}$ since, for all but finitely many terms of $\left\langle y_{m}\right\rangle_{m=1}^{\infty}, 2^{r} \mid y_{m}$. Let $w \in S^{\prime}$, let $x_{n}=\tau^{-1}(w)$, and let M_{n} be the larger of M_{n}^{\prime} and $M_{n}^{\prime \prime}$. For each m let $x_{n, m}=\tau^{-1}\left(y_{m}\right)$ and for each $p \geqslant M_{n}$ let $U(n, p)=\tau^{-1}(V(w, p))$.

To see that condition (1) is satistied note that, since $x_{n, m}=\tau^{-1}\left(y_{m}\right)$ for each $m, x_{n, m} \in F S\left(\left\langle x_{n-1, t}\right\rangle_{t=1}^{\infty}\right)$. For each m we have that $2^{s} \mid y_{m+1}$ whenever $2^{s-1} \leqslant y_{m}$ so by Lemma 2.4 and condition (1) applied to $F S\left(\left\langle x_{n-1, t}\right\rangle_{t=1}^{\infty}\right)$ we have that each element of F_{m} is less than each element of F_{m+1}, where $x_{n, m}=\sum_{t \in F_{m}} x_{n-1, t}$. Thus, letting c be the largest element of F_{m}, we have that, if $2^{s-1} \leqslant x_{n, m}$, then $2^{s-1} \leqslant x_{n-1, c}$. Therefore, since condition (1) holds at $n-1,2^{s} \mid x_{n-1, t}$ for cvery t in F_{m+1}. That is, $2^{s} \mid x_{n, m+1}$.

To see that condition (2) holds let $\left\langle z_{m}\right\rangle_{m=1}^{\infty}$ be a sequence with

$$
F S\left(\left\langle z_{m}\right\rangle_{m=1}^{\infty}\right) \subseteq F S\left(\left\langle x_{n, m}\right\rangle_{m=1}^{\infty}\right)
$$

and suppose that $F S\left(\left\langle z_{m}\right\rangle_{m=1}^{\infty}\right) \cap U(n, p)=\varnothing$. Then by Lemma 2.5 we may assume that, whenever $F \complement_{f} N, \tau\left(\sum_{m \in F} z_{m}\right)=\sum_{m \in F} \tau\left(z_{m}\right)$. Thus $F S\left(\left\langle\tau\left(z_{m}\right)\right\rangle_{m=1}^{\infty}\right) \cap V(w, p)-\varnothing$ while $F S\left(\left\langle\tau\left(z_{m}\right)\right\rangle_{m=1}^{\infty}\right) \subseteq F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right)$, a contradiction. (The latter inclusion comes from the fact, a consequence of Lemma 2.4, that $F S\left(\left\langle\tau\left(x_{n, m}\right)\right\rangle_{m=1}^{\infty}\right) \subseteq F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right)$.)

The verification of conditions (3), (4), and (5) is trivial. To see that condition (6) holds let $x \in U(n, p)$. Then $\tau(x) \in V(w, p)$ so $2^{r} \mid \tau(x)$ and $\tau(x)+w \in \tau\left(U\left(n-1, M_{n-1}\right)\right)$. But $w \leqslant b$ so if $2^{s-1} \leqslant w$ then $s \leqslant r$ so $2^{s} \mid \tau(x)$. Thus, by Lemma 2.4, $x+\tau^{-1}(w)=x+x_{n} \in U\left(n-1, M_{n-1}\right)$ as desired. The induction is complete.
2.9. Lemma. Let $\alpha=\left\{A_{j}\right\}_{i=1}^{b}$ be a partition of N. If, for each n in N and sequence $\left\langle y_{m}\right\rangle_{m=1}^{\infty}$ in N one has $F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right) \backslash \bigcup_{k=1}^{n-1} F_{\alpha}(k, u) \neq \varnothing$, then there are some i in $\{1,2, \ldots, a\}$ and some sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in N such that $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \cap A_{i}=\varnothing$.

Proof. Let i and $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be as given by Lemma 2.8. Let $F \subseteq_{r} N$ and let t and r be, respectively, the smallest and largest elements of F. Let $x \in U\left(r, M_{r}\right)$. We show by induction on the number of elements in F that $x+\sum_{n \in F} x_{n} \in U\left(t-1, M_{t-1}\right)$. In case F has one element we have by condition (6) of lemma 2.8 that $x+x_{r} \in U\left(r-1, M_{r-1}\right)=U\left(t-1, M_{t-1}\right)$. Now assume F has more than one element and let $G=F \backslash\{t\}$. Let t^{\prime} be the smallest element of G. By induction, $x+\sum_{n \in G} x_{n} \in U\left(t^{\prime}-1, M_{t^{\prime}-1}\right)$. By condition (5) applied as often as needed $x+\sum_{n \in G} x_{n} \in U\left(t, M_{t^{*}-1}\right.$). (Of course, if $t=t^{\prime}-1$, condition (5) is not needed.) Then, by condition (6), $x+\sum_{n \in G} x_{n}+x_{t} \in U\left(t-1, M_{t-1}\right)$. The induction is complete.

By condition (3) of lemma 2.8 we have that $x+\sum_{n \in F} x_{n} \in A_{i}$ and $x \in A_{i}$. But $x \in U\left(r, M_{r}\right)$ so by repeated application of condition (5) $x \in U\left(0, M_{r}\right)=U_{\alpha}\left(i, M_{r}\right)$. Thus $x \notin F_{\alpha}^{\prime}\left(\sum_{n \in F} x_{n}, M_{r}\right)$. (By condition (4) $M_{r}>\sum_{n \in F} x_{n}$.) Thus it is not the case that

$$
\left\{\sum_{n \in F} x_{n}, x, x+\sum_{n \in F} x_{n}\right\} \subseteq A_{i}
$$

That is, $\sum_{n \in F} x_{n} \notin A_{i}$ as desired.
2.10. Lemma. Let $\alpha=\left\{A_{i}\right\}_{i-1}^{a}$ be a partition of N. Then there exist n in N and a sequence $\left\langle x_{m}\right\rangle_{m=1}^{\infty}$ in N such that $F S\left(\left\langle x_{m}\right\rangle_{m=1}^{\infty}\right) \subseteq \bigcup_{k=1}^{n-1} F_{\alpha}(k, n)$.

Proof. The proof is by induction on a, the number of elements of α. If $a=1$ the result is trivial. Assume the lemma is valid for any partition with $a-1$ elements.

Suppose the conclusion fails. Then by Lemma 2.9 we have some i in $\{1,2, \ldots, a\}$ and some sequence $\left\langle y_{m}\right\rangle_{m=1}^{\infty}$ such that $F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right) \cap A_{i}=\varnothing$. We may assume, by Lemma 2.2 , that $2^{8} \mid y_{m+1}$ whenever $2^{s-1} \leqslant y_{m}$. Let τ be the natural map for $F S\left(\left\langle y_{m}\right\rangle_{m=1}^{\infty}\right)$ and let $\beta=\left\{\tau\left(A_{j}\right): j \in\{1,2, \ldots, a\}\right.$ and $j \neq i\}$. Then, since $\tau\left(A_{2}\right)=\varnothing, \beta$ is a partition of N with $a-1$ elements. Consequently there exist r in N and $\left\langle z_{m}\right\rangle_{m=1}^{\infty}$ such that $F S\left(\left\langle z_{m}\right\rangle_{m=1}^{\infty}\right) \subseteq$ $\bigcup_{k=1}^{r-1} F_{B}(k, r)$. We may assume, by Lemma 2.2, that $2^{s} \mid z_{m+1}$ whenever $2^{s-1} \leqslant z_{m}$. We also assume that $2^{s} \mid z_{m}$ whenever $2^{s-1}<r$.

Now, let $n=\tau^{-1}(r)$ and let $x_{m}=\tau^{-1}\left(z_{m}\right)$ for each m. We claim that $F S\left(\left\langle x_{m}\right\rangle_{m=1}^{\infty}\right) \subseteq \bigcup_{k=1}^{n-1} F_{\alpha}(k, n)$. To see this, let $F \complement_{f} N$. Then, by Lemma 2.4, $\tau\left(\sum_{m \in F} x_{m}\right)=\sum_{m \in F} z_{m}$. Thus $\tau\left(\sum_{m \in F} x_{m}\right) \in F_{B}(k, r)$ for some $k<r$. That is, $\left\{k, \tau\left(\sum_{m \in F} x_{m}\right), \tau\left(\sum_{m \in F} x_{m}\right)+k\right\} \subseteq \tau\left(A_{j}\right)$ for some j in $\{1,2, \ldots, a\}$. Thus,
immediately $\tau^{-1}(k) \in A_{j}$ and $\sum_{m \in F} x_{m} \in A_{j}$. But $k<r$ so, if $2^{s-1} \leqslant k$, we have $2^{s-1}<r$ so that $2^{s} \mid z_{m}$ for each m. Thus $2^{s} \mid \sum_{m \in F} z_{m}$, so $2^{s} \mid \tau\left(\sum_{m \in F} x_{m}\right)$. Thus, by Lemma $2.4, \sum_{m \in F} x_{m}+\tau^{-1}(k) \in A_{j}$. Noting finally that

$$
\sum_{m \in F} x_{m} \geqslant \tau^{-1}(r)=n
$$

we have $\sum_{m \in F} x_{m} \in F_{\alpha}^{\prime}\left(\tau^{-1}(k), n\right)$ as desried.
Lemma 2.12 is the only result needed to prove the main theorem. It uses in its proof the following lemma, which is a partial generalization of Corollary 4 of [2]. Graham and Rothschild attribute the result there to J. Folkman (in a personal communication), R. Rado [4], and J. Sanders [5].
2.11. Lemma. For every partiton α of N with $\alpha=\left\{A_{i}\right\}_{i=1}^{\alpha}$, there exists a function $f_{\alpha}^{\prime}: N \rightarrow N$ such that, for each r in N, there exist i in $\{1,2, \ldots, a\}$ and $\left\langle y_{j}\right\rangle_{j=1}^{r}$ satisfying:
(1) $F S\left(\left\langle y_{j}\right\rangle_{j=1}^{r}\right) \subseteq A_{i}$;
(2) if $j \in\{1,2, \ldots, r-1\}$ and $2^{s-1} \leqslant y_{j}$, then $2^{s} \mid y_{j+1}$
(3) if $j \in\{1,2, \ldots, r\}$, then $y_{j} \leqslant f_{\alpha}(j)$.

Proof. For each α choose $p(\alpha)$ in N and a sequence $\left\langle x_{\alpha, m}\right\rangle_{m=1}^{\infty}$ such that $F S\left(\left\langle x_{\alpha, m}\right\rangle_{m=1}^{\infty}\right) \subseteq \bigcup_{k=1}^{p(\alpha)-1} F_{\alpha}(k, p(\alpha))$ and $2^{s} \mid x_{\alpha, m+1}$ whenever $2^{s-1} \leqslant x_{\alpha, m}$. We can assume in addition that, for each $m, 2^{s} \mid x_{\alpha, m}$ whenever $2^{s-1} \leqslant p(\alpha)$. Let τ_{α} be the natural map for $F S\left(\left\langle x_{\alpha, m}\right\rangle_{m=1}^{\infty}\right)$ and let $\beta(\alpha)=\left\{\tau_{\alpha}\left(F_{\alpha}(k, p(\alpha))\right)\right.$: $k \in\{1,2, \ldots, p(\alpha)-1\}\}$. Then $\beta(\alpha)$ is a partition of N.

We define $f_{\alpha}(n)$ inductively on n for every α at once. Let $f_{\alpha}(1)=p(\alpha)-1$ and let $f_{\alpha}(n+1)=\tau_{\alpha}^{-1}\left(f_{\beta(\alpha)}(n)\right)$.

Now, with f_{α} defined for every finite partition α of N we prove the lemma inductively on r. If $r=1$, let $y_{1}=1$ and let i be the element of $\{1,2, \ldots, a\}$ that $l \in A_{i}$. Condition (2) holds vacuously and (1) and (3) are trivial, since $p(\alpha) \geqslant 2$.

Let $r>1$ and assume the lemma is valid for every partition α at $r-1$. Let $\left\langle w_{j}\right\rangle_{j=1}^{r-1}$ and let k in $\{1,2, \ldots, p(\alpha)-1\}$ be as guaranteed by the lemma for the partition $\beta(\alpha)$ at $r-1$. Let i be that element of $\{1,2, \ldots, a\}$ such that $k \in A_{j}$. Let $y_{1}=k$ and, for $j \in\{2, \ldots, r\}$, let $y_{j}=\tau_{\alpha}^{-1}\left(w_{j-1}\right)$.

To verify condition (1), first let $F \subseteq\{2, \ldots, r\}$. Then, by Lemma 2.4 and condition (2) for $\beta(\alpha), \tau_{\alpha}\left(\sum_{j \in F} y_{j}\right)=\sum_{j \in F} w_{j-1}$. But

$$
\sum_{j \in F} w_{j-1} \in \tau_{\alpha}\left(F_{\alpha}(k, p(\alpha))\right) \quad \text { so } \quad \sum_{j \in F} y_{j} \in F_{\alpha}(k, p(\alpha))
$$

Thus $\sum_{j \in F} y_{j} \in A_{i}$ and $y_{1}+\sum_{j \in F} y_{j} \in A_{i}$. Finally, since $y_{1} \in A_{i}$ condition (1) is satisfied.

To see condition (2) note that, if $2^{s-1} \leqslant y_{1}$, then $2^{s-1}<p(\alpha)$ so $2^{s} \mid x_{\alpha, m}$ for every m. Consequently $2^{s} \mid y_{2}$. Now let $j \in\{2, \ldots, r-1\}$. By Lemma 2.4 every element of F_{j} is less than every element of F_{j+1} where $y_{j}=\sum_{t \in F_{j}} x_{\alpha, t}$. Let c be the largest element of F_{j}. If $2^{s-1} \leqslant y_{j}$, then $2^{s-1} \leqslant x_{\alpha, c}$ so $2^{s} \mid x_{\alpha, t}$ for every t in F_{j+1} and consequently $2^{s} \mid y_{j+1}$.

Now consider condition (3). First $y_{1}=k \leqslant p(\alpha)-1$. Now let $j \in\{2, \ldots, r\}$. Then $w_{j-1} \leqslant f_{\beta(\alpha)}(j-1)$ and τ_{α} is order preservingso $y_{j} \leqslant f_{\alpha}(j)$.
2.12. Lemma. For every partition α of N, with $\alpha=\left\{A_{i}\right\}_{i=1}^{a}$, there exist a function $f_{\alpha}: N \rightarrow N$ and an in $\{1,2, \ldots$, a\} such that, for every r in N, there exists $\left\langle y_{j}\right\rangle_{j=1}^{r}$ such that $F S\left(\left\langle y_{j}\right\rangle\right\rangle_{j=1}^{r} \subseteq A_{i}$ and $y_{j} \leqslant f_{x}(j)$ whenever $j \in\{1,2, \ldots, r\}$.

Proof. Let f_{α} be as in Lemma 2.11. For each r in N let $i(r)$ be that element of $\{1,2, \ldots, a\}$ whose existence is guaranteed by Lemma 2.11. Let $i \in\{1,2, \ldots, a\}$ such that $i=i(r)$ for infinitely many r 's.

Now let $r \in N$ and let $r^{\prime} \in N$ such that $r^{\prime} \geqslant r$ and $i=i\left(r^{\prime}\right)$. If $\left\langle y_{j}\right\rangle_{j=1}^{r^{\prime}}$ is as guaranteed by Lemma 2.11, then $\left\langle y_{j}\right\rangle_{j=1}^{r}$ will work here.

3. The Main Results

The proof now rests only on the compactness of the product space $\{0,1\}^{N}$. For an element s of $\{0,1\}^{N}$ we define a sequence $\left\langle x_{s, m}\right\rangle_{m=1}^{\infty}$ in $N \cup\{0\}$ by agreeing that $x_{s, m}=k$ where k is the m th element of N such that $s_{k}=1$. If s has fewer than m non-zero coordinates, we agree that $x_{s, m}=0$.
3.1. Theorem. Let a be a finite partition of N with $\alpha=\left\{A_{i}\right\}_{i=1}^{\alpha}$. There exist in $\left\{1,2, \ldots\right.$, a\} and a sequence $\left\langle x_{m}\right\rangle_{m=1}^{\infty}$ such that $F S\left(\left\langle x_{m}\right\rangle_{m=1}^{\infty}\right) \subseteq A_{i}$.

Proof. Let i and f_{α} be as guaranteed by Lemma 2.12. For each r and m in N let $A_{n, m}=\left\{s \in\{0,1\}^{N}:\left\{x_{s, k}: k \in\{1,2, \ldots, n\}\right\}\{1,2, \ldots, m\}\right.$ and $\left.F S\left(\left\langle x_{s, k}\right\rangle_{k=1}^{n}\right) \subseteq A_{i}\right\}$. Since whether or not $s \in A_{n, m}$ is determined by the first m coordinates of $s, A_{n, m}$ is closed. Now let $n \in N$ and let $\left\langle y_{j}\right\rangle_{j=1}^{n}$ be as guaranteed by Lemma 2.12. Let $s \in\{0,1\}^{N}$ such that $s_{y_{j}}=1$ for j in $\{1,2, \ldots, n\}$ and $s_{k}=0$ otherwise, then $s \in \bigcap_{j=1} A_{j, f_{\alpha}(j)}$.

We thus have that $\left\{A_{n, m}: n \in N\right.$ and $\left.m=f_{\alpha}(n)\right\}$ is a family of closed sets in $\{0,1\}^{N}$ with the finite intersection property. Consequently there exists s in $\bigcap_{n=1}^{\infty} A_{n, f_{0}(n)}$. Let $x_{m}=x_{s, m}$ for every m. Let $F \subseteq_{f} N$ and let n be the largest element of F. Then $s \in A_{n, f_{\alpha}(n)}$ so $\sum_{m \in F} x_{m} \in A_{i}$. The proof is complete.
3.2. Corollary (Continuum Hypothesis). There exists an ultrafilter p on N such that $\{x: A-x \in p\} \in p$ whenever $A \in p$. (Where

$$
A-x=\{y \in N: x+y \in A\} .)
$$

Proof. This statement was shown in [3] to be equivalent, in the presence of the continuum hypothesis, to Theorem 3.1.

The author is grateful to R. Graham and B. Rothshild for pointing out that the following generalization of [2, Corollary 3] might also be obtained in this manner.
3.3. Corollary. Let $\Pi=\left\{F: F \subseteq_{f} N\right\}$. If $\Pi=\bigcup_{i=1}^{a} \Gamma_{i}$, then there are a sequence $\left\langle F_{n}\right\rangle_{n=1}^{\infty}$ in Π and an i in $\{1,2, \ldots, a\}$ such that $\bigcup_{n \in G} F_{n} \in \Gamma_{i}$ whenever $G \subseteq_{f} N$.

Proof. Define $\sigma: \Pi \rightarrow N$ by the rule $\sigma(F)=\sum_{n \in F} 2^{n-1}$. Then σ is one-to-one and onto. Let, for each i in $\{1,2, \ldots, a\}, A_{i}=\sigma\left(\Gamma_{i}\right)$. Then, by Theorem 3.1, there exist i in $\{1,2, \ldots, a\}$ and $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ such that

$$
F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq A_{i} .
$$

By Lemma 2.2 we may suppose that $2^{s} \mid x_{n+1}$ whenever $2^{s-1} \leqslant x_{n}$.
Let $F_{n}=\sigma^{-1}\left(x_{n}\right)$, for each n in N. Then $\left\{F_{n}: n \in N\right\}$ form a pairwise disjoint collection. Thus, if $G \subseteq_{f} N$, we have that

$$
\begin{aligned}
\sigma\left(\bigcup_{n \in G} F_{n}\right) & =\sum\left\{2^{t-1}: t \in \bigcup_{n \in G} F_{n}\right\}=\sum_{n \in G}\left(\sum_{t \in F_{n}} 2^{t-1}\right) \\
& =\sum_{n \in F} \sigma\left(F_{n}\right)=\sum_{n \in G} x_{n} \in A_{i} .
\end{aligned}
$$

Thus $\bigcup_{n \in G} F_{n} \in \sigma^{-1}\left(A_{i}\right)=\Gamma_{i}$ as desired.
The following very restricted partial generalizations of corollaries 1 and 2 of [2] are proved in a similar fashion, as was also noted by Graham and Rothschild.
3.4. Corollary. Let A be an \aleph_{0}-dimensional affine space over the field of 2 elements. If $A=\bigcup_{i=1}^{n} B_{i}$, then there are an \aleph_{0}-dimensional affine subspace A^{\prime} of A and an in $\{1,2, \ldots, n\}$ such that $A^{\prime} \subseteq B_{i}$.
3.5. Corollary. Let V be an \aleph_{0}-dimensional vector space over the field of 2 elements and let Π be the set of one-dimensional subspaces of V. If $\Pi=\bigcup_{i=1}^{n} \Gamma_{i}$, then there are an $\mathbf{\aleph}_{0}$-dimensional subspace V^{\prime} of V and an i in $\{1,2, \ldots, n\}$ such that every one-dimensional subspace of V^{\prime} is an element of Γ_{i}.

It should be remarked finally that Theorem 3.1 and Corollary 3.3 are not, strictly speaking, generalizations of Corollaries 4 and 3 of [2], respectively. For there is no bound given on x_{i} valid for all partitions with a given number of elements. Indeed, no such bound can be obtained, for one can let the first cell of a partition consist of arbitrarily long initial segments of N.

References

1. P. Erdös, Problems and results on combinatorial number theory, preprint.
2. R. L. Graham and B. L. Rothschld, Ramsey's theorem for n-parameter sets, Trans. Amer. Math. Soc. 159 (1971), 257-292.
3. N. Hindman, The existence of certain ultrafilters on N and a conjecture of Graham and Rothschild, Proc. Amer. Math. Soc. 36 (1972), 341-346.
4. R. Rado, Some partition theorems, Colloq. Math. Soc. János Bolyai, 4, "Combinatorial Theory and Its Applications," Vol. III, North-Holland, Amsterdam, 1970.
5. J. Sanders, A Generalization of a Theorem of Schur, Doctoral dissertation, Yale University, New Haven, 1968.
