The signaling pathways involved in the synergistic effect of ET-1 and cAMP on IL-6 transcription
Shin-Pei Chai, Jim C. Fong

Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taiwan
E-mail address: ffong@ym.edu.tw (J.C. Fong)

We demonstrated previously that ET-1 and cAMP may synergistically induce IL-6 release from adipocytes, mainly through their strong stimulatory effect on IL-6 gene expression. In the present study, we further examined the signaling pathways that may be involved. A luciferase reporter driven by promoter (−1310/+198) of mouse IL-6 gene was transfected into 3T3-L1 adipocytes to monitor IL-6 transcription in response to ET-1 and 8-bromo cAMP, and the effects of various inhibitory agents were tested. Whereas the stimulatory effect of ET-1 alone was inhibited by pertussis toxin (PT), GF109203X, U0126, N-acetylcysteine, salicylate, dominant negative CREB (dn-CREB) and mithramycin A, the stimulatory effect of 8-bromo cAMP was only inhibited by dn-CREB. On the other hand, the synergistic effect of ET-1 and cAMP was suppressed by GF109203X, U0126, salicylate, c-Jun-specific antisense oligonucleotide (AS-cJun) and dn-CREB. PT had a partial inhibitory effect, while NAC and mithramycin A had no influence. Since NF-κB activation by ET-1 is mediated by a PKCθ/ε/ROS cascade, the observation that the synergistic effect of ET-1 and cAMP was inhibited by salicylate but not NAC suggests salicylate inhibited some factor in addition to NF-κB. Indeed, we found that another salicylate target p90 ribosomal S6 Kinase (RSK) was involved. Taken together, the synergistic effect of ET-1 and cAMP on IL-6 gene transcription seems to be mediated by pathways involving PKC, MAPK, CREB, AP-1 and RSK.


A novel mouse model to characterize the mechanisms of endothelin-1-induced vascular injury
Pierre Paradis², Suellen C. Coelho³
Yohann Rautureau³, Ernesto L. Schiffrin³,⁴

²Lady Davis Institute for Medical Research, McGill University, Montreal PQ, Canada
³Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal PQ, Canada
E-mail address: pierre.paradis@mcgill.ca (P. Paradis)

Background: To develop a model to study the mechanisms of endothelin-1 (ET-1)-induced vascular injury, we generated an inducible endothelial cell (EC)-restricted human ET-1 (EDN1) cDNA overexpressing transgenic mouse. Methods and results: A transgene was engineered that expresses chloramphenicol acetyltransferase (cat) and EDN1 cDNA prior and after Cre-mediated excision, respectively, under the control of cytomegalovirus immediate early enhancer/chicken β-actin promoter (CAG). Co-transfection of Cre expression vector and pCAG-cat-EDN1 caused 30-fold increase in ET-1 production. Transgenic mice were generated and two of seven founder lines were tested. Whereas the stimulatory effect of ET-1 alone was inhibited by pertussis toxin (PT), GF109203X, U0126, N-acetylcysteine, salicylate, dominant negative CREB (dn-CREB) and mithramycin A, the stimulatory effect of 8-bromo cAMP was only inhibited by dn-CREB. On the other hand, the synergistic effect of ET-1 and cAMP was inhibited by salicylate but not NAC suggests salicylate inhibited some factor in addition to NF-κB. Indeed, we found that another salicylate target p90 ribosomal S6 Kinase (RSK) was involved. Taken together, the synergistic effect of ET-1 and cAMP on IL-6 gene transcription seems to be mediated by pathways involving PKC, MAPK, CREB, AP-1 and RSK.


Remodeling of endothelial function in atherosclerotic mice overexpressing endothelin-1 restricted to endothelium
Pierre Paradis⁵, Noureddine Idris-Khodja⁵, Muhammad Oneeb Rehman Mian⁵, Melissa W. Li⁵, Avishalom Leibowitz⁵, Yohann Rautureau⁵, Ernesto L. Schiffrin⁵,⁶

⁵Lady Davis Institute for Medical Research, McGill University, Montreal PQ, Canada
⁶Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal PQ, Canada
E-mail address: pierre.paradis@mcgill.ca (P. Paradis)

In human atherosclerosis, which is associated with elevated plasma and coronary endothelium (ET-1) levels, ETA receptor antagonists improved coronary endothelial function. Mice overexpressing ET-1 specifically in the endothelium (eET-1) crossed with apolipoprotein E knockout mice (Apoe⁻/⁻) exhibited exaggerated high-fat diet (HFD)-induced atherosclerosis. Since endothelial dysfunction often precedes atherosclerosis development, we investigated whether endothelium-specific ET-1 overexpression causes endothelial dysfunction in Apoe⁻/⁻ mice. Male 8-week old eET-1, Apoe⁻/⁻, eET-1/Apoe⁻/⁻ and wild-type mice were fed a regular diet or HFD for 8 weeks. Endothelial function was assessed in mesenteric arteries by pressurized myography. In HFD-fed mice, acetylcholine-induced endothelium-dependent relaxation (EDR) was reduced 67% in Apoe⁻/⁻ and 41% in eET-1 compared to wild-type (P < 0.05). Surprisingly, EDR was not impaired in eET-1/Apoe⁻/⁻ compared to wild-type. Endothelium-independent relaxation to nitric oxide donor sodium nitroprusside and contractile responses to norepinephrine were unaffected. Similar results were observed in regular diet-fed mice. In the presence of inhibitors of either nitric oxide synthase (NOS)-mediated relaxation, NO-nitro-l-arginine methyl ester, or endothelium-dependent hyperpolarization (EDH)-mediated relaxation, apamin plus Trim34, EDR was blunted in wild-type (P < 0.01), whereas NOS-mediated relaxation was reduced 22% (P < 0.05) and EDH-mediated relaxation unaffected in eET-1/Apoe⁻/⁻. However, the concomitant inhibition of NOS- and EDH-mediated relaxation reduced EDR 51% in eET-1/Apoe⁻/⁻ (P < 0.05). These results show an interdependence of NOS and EDH pathways in EDR in wild-type mice. ET-1 overexpression induced development of compensatory mechanisms in pre-atherosclerotic arteries of Apoe⁻/⁻ mice, which permits either NOS or EDH pathway to mediate EDR independently. Investigation of mechanisms involved in EDR remodeling in eET-1/Apoe⁻/⁻ mice will allow a better understanding of the ET-1 role in atherosclerosis.