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Abstract

We introduce a new class of models of Higgs inflation using the superconformal approach to supergravity
by modifying the Kähler geometry. Using the above-mentioned mechanism, we construct a phenomenolog-
ical functional form of a new Kähler potential followed by construction of various types of models which
are characterized by a superconformal symmetry breaking parameter χ . Depending on the numerical values
of χ we classify the proposed models into three categories. Models with minimal coupling are identified by
χ = ± 2

3 branch which are made up of shift symmetry preserving flat directions. We also propose various
other models by introducing a non-minimal coupling of the inflaton field to gravity described by χ �= 2

3
branch. We employ all these proposed models to study the inflationary paradigm by estimating the ma-
jor cosmological observables and confront them with recent observational data from WMAP9 along with
other complementary data sets, as well as independently with PLANCK. We also mention an allowed range
of non-minimal couplings and the Yukawa type of couplings appearing in the proposed models used for
cosmological parameter estimation.
© 2014 The Authors. Published by Elsevier B.V.

1. Introduction

Cosmological inflation has been a paradigm in which the pathological problems of the Stan-
dard Big Bang Cosmology are addressed in a sophisticated way. The inflaton field yields scale-
dependent nearly Gaussian spectrum of density fluctuations. Moreover, during the inflationary
epoch, cosmological perturbation via quantum fluctuation provides seed for the large-scale
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structure formation as we perceive today. Inflation is governed by a flat potential which has a
proper field theoretic origin [1–5]. In this context, supersymmetry (SUSY) or its local extension
(i.e. supergravity (SUGRA)) is the most successful candidate, which imposes certain constraints
on the non-supersymmetric models of particle physics and cosmology [6–9]. A well known ex-
ample of such restrictions is the fact that the supersymmetric version of the Standard Model (SM)
of particle physics requires at least two Higgs superfields [10,4]. On the other hand, the SUSY
embedding of the Higgs model in inflation requires SUGRA [11–18]. Thus, it is interesting to
see how SUSY may affect various inflationary models, where the gravity sector is minimally or
non-minimally coupled to scalar fields [11,19].

A competent idea is to exercise the SM Higgs doublet as the inflaton [20,21] through the well
known Higgs inflation [22] within the SUGRA domain [12–14,16]. In this framework, inflation
is realized via a large non-minimal coupling of Higgs doublet to Einstein gravity instead of a
tiny Higgs quartic coupling, as it contradicts the observed Higgs mass bound at Large Hadron
Collider (LHC) [23]. Earlier it has been shown in various works [24–27] that by applying power
counting formalism, Hubble scale during inflation approaches the unitarity bound on the new
scale in conjunction with the breakdown of the semi-classical approximation in the effective field
theory of inflation in four dimension below the Ultra-Violet (UV) cut-off. However, a customary
notion is prevalent amongst physicists for the study of effective field theory of inflation in which
a singlet field with non-minimal coupling can act as an inflaton for a small singlet self interaction
motivated quartic coupling. In such cases Hubble scale can be smaller than the unitarity bound.
The well posed hierarchy problem in the context of SM has been resolved by implementing the
well-known weak scale SUSY [10,28], which is one of the most important topics of research in
particle physics collider phenomenology. In the framework of Minimal Supersymmetric Standard
Model (MSSM) [3,10,28,29], there is an existence of two Higgs doublets and the equivalent
self coupling can be expressed in terms of the electroweak (EW) gauge couplings. Setting apart
the unitarity problem in the context of MSSM Higgs inflation, the implementation of Higgs
inflation without fine tuning [30] is inconceivable due to the appearance of instability in the ratio
of two Higgs VEVs. An interesting situation may emerge when the superpotential term provides
the vacuum energy via the introduction of an additional self interacting coupling required for
inflation governed by Next-to-Minimal Supersymmetric Standard Model (NMSSM) [1,12,13,15,
31]. As this new self coupling can be made small without any violation of the recently observed
LHC bound on the Higgs mass, there might be another physical possibility appearing where the
Higgs inflation can be performed within the semi-classical limit of effective field theory.

However the supergravity theory has a dark side in the context of Higgs inflation. The main
problem was rooted in the functional form of the Kähler potential which involves typical con-
tributions proportional to quadratic combination of the superfields in the canonical version. One
elegant way to overcome such problem is to search for shift symmetry [14,32–34] protected flat
directions in supergravity which can take part in inflation. The flatness of the potential is broken
only by introducing a superconformal symmetry breaking parameter in the supergravity Kähler
potential [12,13]. Such terms are directly connected with non-minimal interactions of the infla-
ton field to the Einstein gravity sector. This class of non-minimal models of Kähler potential has
many interesting features, which were explored in the context of superconformal approach to su-
pergravity. Specifically, in the context of canonical superconformal supergravity (CSS) models
[12,13,15], kinetic terms in the preferred frame of reference (Jordan frame) are canonical and
the corresponding potential is exactly same as that appearing in global supersymmetry. For this
purpose, in this article we propose a phenomenological model of a new Kähler potential with
two singlet chiral superfields (H,S) which successfully address the problems of supergravity
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inflation with non-minimal coupling (ξ1, ξ2). Here one singlet field plays the role of inflaton and
the other one is the background which will trigger preheating [35,36]/reheating [37–39] depend-
ing on the branching ratios of different decay channels of the inflaton. Our result can be applied
directly to the Higgs inflation by satisfying D-flat constraints. In this article, our primary target is
to do a thorough survey of inflationary models from Kähler potential using superconformal trans-
formation followed by confrontation with latest observational data from WMAP9 [40] and other
complementary datasets. The results have also been confronted independently with PLANCK
data [41].

The paper is organized as follows. We first explain a general framework for N = 1, D = 4
Jordan frame supergravity where superconformal symmetry breaking parameters for scalar fields
are suitably implemented. Then we introduce a new phenomenological model of Kähler poten-
tial with two singlet chiral superfields. Next we discuss the implication of the Higgs inflation
from various types of inflationary potentials derived from the Jordan frame Kähler potential for
four distinct physical branches of the symmetry breaking parameter (χ ). Next imposing the con-
straints from LHC we employ these models for cosmological parameter estimation by using a
numerical code CAMB [42]. Finally, we confront the cosmological observables with the latest
available datasets.

2. Superconformal mechanism in Kähler geometry

In this section we start our discussion with N = 1, D = 4 SUGRA action in the Jordan frame
with generalized frame function Φ(z, z̄) in the Planckian unit described by [12,13]

SΦ =
∫

d4x
√−gJ

[
R(4) − 2Λ(4) + e−1

(4)L
Φ
SUGRA

]
(2.1)

where

e−1
(4)L

Φ
SUGRA := −Φ(z, z̄)

6

[
R(4) − Ψ̄μRμ

] − 1

6
(∂μΦ)

(
Ψ̄ αγαΨ μ

)
+L0 +L 1

2
+L1 +Lm +Lmix +Ld +L4f − VJ . (2.2)

In Eq. (2.2) the notations used are: Ψμ ⇒ gravitino field, Rμ ⇒ gravitino kinetic term, L0 ⇒
scalar d.o.f., L 1

2
⇒ fermion d.o.f., L1 ⇒ vector d.o.f., Lm ⇒ fermion mass term, Lmix ⇒ mixing

term, Ld ⇒ kinetic D term, L4f ⇒ four fermion term and the SUGRA potential in Jordan frame
is given by [12,13]

VJ = Φ2(z, z̄)

9

[
eK(z,z̄)

{(∇αW(z)
)
Gαβ̄

(∇β̄W̄(z)
) − 3

∣∣W(z)
∣∣2}

+ 1

2

(
Re f (z)

)−1 ABPAPB

]
(2.3)

where α = 1,2, . . . , n represents the number of complex scalars in the SUGRA chiral multiplet,
K(z, z̄) is the Kähler potential, W(z) is the holomorphic superpotential, fAB(z) is the holomor-
phic kinetic gauge matrix field and the Killing potential or momentum map is denoted by PA

which includes all the Yang–Mills transformation of the scalars through which Fayet–Iliopoulos
terms are also taken care of. In Eq. (2.1) the supergravity verbien (inverse of fünfbien) is charac-
terized by the transformation rule [43]

gJ := η ˆ ˆ
(
V Â ⊗ V B̂

)
(2.4)
μν AB μ ν
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with

Det(V ) = √−gJ = e(4). (2.5)

Here we use the following definition of covariant derivative:

∇αW := Wα +KαW (2.6)

where the subscript α denotes differentiation with respect to complex field zα . By setting
Φ = −3, the SUGRA action in Jordan frame reduces to the well known action in the Einstein
frame. Consequently the potential stated in Eq. (2.3) can be related to its Einstein frame counter-
part as

VJ = Φ2(z, z̄)

9
VE, (2.7)

where the subscripts J and E are used to denote Jordan and Einstein frame. Here both the frames
are connected via the superconformal transformation defined in terms of the metric as

gJ
μν = Ω2(z, z̄)gE

μν (2.8)

where we identify the conformal factor with

Ω2(z, z̄) = −Φ(z, z̄)

3
= e−K(z,z̄)

3 (2.9)

which yields a purely bosonic action in N = 1, D = 4 SUGRA in a specific Jordan frame
triggering the superHiggs mechanism. The SUGRA action includes SU(2,2|1) superconformal
symmetry, local dilation, special conformal symmetry, special SUSY and local U(1)R symmetry
and other local symmetries of N = 1, D = 4 SUGRA. Such a superconformal mechanism is
very useful to embed a class of scale invariant Global Supersymmetric (GSUSY) models into
SUGRA theory. By “embedding”, here we actually point towards the fact that the N = 1, D = 4
self-interacting SUGRA multiplets have a local Poincaré SUSY which can be obtained by the
breakdown of above mentioned superconformal symmetry. Consequently the pure SUGRA sec-
tor in the action stated by Eq. (2.1) breaks superconformal symmetry and the matter part remains
superconformal after gauge fixing. The non-canonical nature of the kinetic term is generally
guaranteed by the following choice of superconformal factor [12–14]:

Ω2(z, z̄) = 1 − 1

3

(
δαβ̄zαz̄β̄ +J (z) + J̄ (z̄)

)
(2.10)

where J (z) and J̄ (z̄) are the phenomenological holomorphic functions considered in the Kähler
gauge. It is important to mention here that the dilation symmetry implies Ω2(z, z̄) to be homoge-
neous of first degree in both z and z̄, W(z) to be homogeneous of third degree in z. Additionally
local U(1)R symmetry implies Ω2(z, z̄) is neutral and W(z) has chiral weight three (which has
been taken care of in Eq. (2.12)). We also assume that the resultant potential is obtained only from
the supergravity F-term as the kinetic sector is gauge fixed by imposing the D-flat constraints.

Now using Eqs. (2.9) and (2.10) one can find out the explicit expressions for SUGRA frame
function and Kähler potential in this context. Using these results we obtain the following expres-
sion for Kähler metric:
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Gαβ̄ =
(

∂2Ω2(z, z̄)

∂zα∂z̄β̄

)

=
{

1 − 1

3

(
δαβ̄zαz̄β̄ +J (z) + J̄ (z̄)

)}[
δαβ̄ − 1

3

(
zαz̄β̄ + δαβ̄

(
J (z) + J̄ (z̄)

))]
.

(2.11)

Assuming non-canonical structure of the superconformal factor stated in Eq. (2.10) let us
prove the equivalence of F-term SUGRA potential in superconformal Jordan frame and in
GSUSY. We start with a renormalizable N = 1, D = 4 SUGRA where the most generalized
expression of the superpotential is constrained to the following cubic form:

W(z) = 1

3
dαβγ zαzβzγ (2.12)

where dαβγ ’s are the trilinear couplings in SUGRA theory. Eq. (2.12) breaks the SU(1,n) sym-
metry. Now considering the fact that the SUGRA superpotential is homogeneous of the third
degree in zα’s we get:

Wαzα = 3W,

W̄ᾱ z̄ᾱ = 3W̄ . (2.13)

Considering all the above facts the Jordan frame D-flat potential turns out to be

V F
J =

(
1 − 1

3

(
J (z) + J̄ (z̄)

))[
V F

GSUSY(z) + W̄
(
∂zαJ (z)

) + W̄
(
∂z̄ᾱ J̄ (z̄)

)]

+ |W|2
{
δαβ̄zαz̄β̄ +J (z) + J̄ (z̄)

(
1 − 1

3

(
J (z) + J̄ (z̄)

))

×[
δγ̄ λz̄

γ̄ zλ + zα
(
∂zαJ (z)

) + z̄β̄
(
∂z̄ᾱ J̄ (z̄)

) + δαβ̄
(
∂zαJ (z)

)(
∂z̄ᾱ J̄ (z̄)

)]
− 1

3
zαz̄β̄

[
δαγ̄ δβ̄α′ z̄γ̄ zα′ + δβ̄α′zα′(

∂zαJ (z)
) + δαγ̄ z̄γ̄

(
∂
z̄β̄ J̄ (z̄)

)

+ (
∂zαJ (z)

)(
∂
z̄β̄ J̄ (z̄)

)]}

− 1

3
zαz̄β̄

{
3|W|2δαβ̄ +WW̄β̄

(
∂zαJ (z)

) + δβ̄γ W̄Wαzγ +WWα

(
∂
z̄β̄ J̄ (z̄)

)}
(2.14)

where GSUSY potential VGSUSY(z) = δαβ̄WαW̄β̄ . Here the superscript F denotes F-term po-
tential. Here it is important to mention that when superconformal symmetry is gauge fixed, the
matter multiplets are preserved, which implies J (z) = 0 and J̄ (z̄) = 0. Consequently Eq. (2.14)
reduces to the following D-flat form of the effective potential:

V F
J = V F

GSUSY(z) − 1

3
δαγ̄ δβ̄α′zαz̄β̄ z̄γ̄ zα′ |W|2 (2.15)

where in the last non-renormalizable term of the above expansion the superpotential is highly
suppressed by the UV cut-off scale (ΛUV ) of the effective theory of gravity in presence of
O(1/Λ2

UV) order term. Here ΛUV is fixed at the value of reduced Planck scale MPL(∼2.43 ×
1018 GeV) in the Planckian unit system beyond which the theory becomes unprotective from
UV end and the effective field theory prescription doesn’t hold good in our proposed setup.
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The contribution from the last term of Eq. (2.15) originates from the quadratically Planck scale
suppressed higher dimensional Kähler operators in N = 1 SUGRA theory. Most importantly, in
four dimensions, such Kähler corrections doesn’t contribute to the leading order of effective the-
ory. Consequently below such high scale UV cut-off, renormalizability of the effective potential
is automatically demanded within the effective theory prescription and finally we have:

V F
J 
 V F

GSUSY(z � ΛUV = MPL) (2.16)

leading to the equivalence of F-term potentials as claimed above. Next we will concentrate on a
specific situation where the superconformal symmetry is broken via the non-minimal coupling
parameter χ with gravity. Consequently the frame function stated in Eq. (2.10) is modified as
[12,13]:

Ω2(z, z̄) = −∣∣z0
∣∣2 + ∣∣zα

∣∣2 − χ

(
Θαβ

zαzβ z̄0̄

z0
+ Θ̄αβ

z̄ᾱ z̄β̄ z0

z̄0̄

)
(2.17)

which characterizes the non-flat moduli space geometry in SUGRA. Now gauge fixing criteria
demand that in Planckian unit system the compensator fields satisfy z0 = z̄0̄ = √

3. This implies
a subsequent modification in the matter part of the inverse Kähler metric of the enlarged space
which can be expressed as:

Gαβ̄ = δαβ̄ − 4χ2δαλ̄δσ β̄Θσζ Θ̄λ̄ξ̄ z
ζ z̄ξ̄

[3 − χ(Θγηzγ zη + Θ̄γ̄ η̄z̄γ̄ z̄η̄) + 4χ2δγ η̄Θγ ζ Θ̄η̄ρ̄zζ z̄ρ̄] ,

G0β̄ = − 2
√

3χδλβ̄Θλξ z
ξ

[3 − χ(Θγηzγ zη + Θ̄γ̄ η̄z̄γ̄ z̄η̄) + 4χ2δγ η̄ΘγρΘ̄η̄σ̄ zρ z̄σ̄ ] ,

Gα0̄ = − 2
√

3χδαλ̄Θ̄λ̄ξ̄ z̄
ξ̄

[3 − χ(Θγηzγ zη + Θ̄γ̄ η̄z̄γ̄ z̄η̄) + 4χ2δγ η̄ΘγρΘ̄η̄σ̄ zρ z̄σ̄ ] ,

G00̄ = − 3

[3 − χ(Θγηzγ zη + Θ̄γ̄ η̄z̄γ̄ z̄η̄) + 4χ2δγ η̄Θγ ζ Θ̄η̄ρ̄zζ z̄ρ̄] , (2.18)

subject to the orthonormalization condition

G0β̄G0γ̄ + Gαβ̄Gαγ̄ = δ
β̄
γ̄ . (2.19)

This will directly modify the Jordan frame potential stated in Eq. (2.3). In the next two sec-
tions we will discuss elaborately the cosmological consequences of such non-minimal coupling
parameter in the context of superHiggs theory.

3. Inflationary model building for different values of the non-minimal coupling (χ )

In this section we will start our discussion with a simple gauge fixed version of frame function
in the presence of a superconformal symmetry breaking term (χ ) in the Planckian unit:

Φ(H,S, H̄ , S̄) = −3 − 1

4

(
1 + 3χ

2

)[
(H − H̄ )2 + (S − S̄)2]

+ 1

4

(
1 − 3χ

2

)[
(H + H̄ )2 + (S + S̄)2]. (3.1)

Using Eq. (2.9), the conformal factor turns out to be:
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Fig. 1. Family of Higgs potentials for different numerical values of non-minimal coupling ξ , starting from ξ = 0. Inflation
occurs either when the field φ = (H,S) rolls down from its large numerical values or when it rolls down from φ = 0.

Ω2(H,S, H̄ , S̄) = 1 + 1

12

(
1 + 3χ

2

)[
(H − H̄ )2 + (S − S̄)2]

− 1

12

(
1 − 3χ

2

)[
(H + H̄ )2 + (S + S̄)2]. (3.2)

Here the superHiggs sector H = H1+iH2√
2

and S = S1+iS2√
2

are complex scalar fields in the SUGRA
chiral multiplet. Depending on the numerical values of χ , shift symmetry of H and S fields are
preserved, which is one of the necessary tools to resolve SUGRA η problem in the context of in-
flation. However, the model will suffer from the well known tachyonic mass problem [12,13,15,
44] in superHiggs theory, which can be resolved by adding higher order non-minimal quartic cor-
rection terms β1(HH̄ )2 or β2(SS̄)2 in the frame function as well as in the conformal factor stated
in Eqs. (3.1) and (3.2) respectively. Here (β1, β2) are two dimensional non-minimal couplings
which are highly suppressed by the UV cut-off scale of the effective theory by O(1/M4

PL) order
term in Planckian unit. Once we add such corrections to the proposed model, tachyonic mass
problem is resolved immediately in the next to leading order of the effective theory. But this will
explicitly break the shift symmetry, the result of which is reappearance of SUGRA η problem.
However, in our prescribed effective field theory setup the tachyonic mass problem will not at all
appear as the VEV of the Higgs field is too small compared to the UV cut-off of the effective
theory (ΛUV = MPL) and the scale of superHiggs inflation ( 4

√
Vinf ∼ 4.11 × 10−3

PL ∼ MGUT).
Here we fix the VEV of the Higgs field at v = 1.01 × 10−16MPL ∼ 246 GeV, which sets the
Higgs mass at the observed value mH = 5.14 × 10−17MPL ∼ 125 GeV by LHC [23]. The behav-
ior of the Higgs potential for various values of the non-minimal coupling is explicitly shown in
Fig. 1. This shows that with the increasing strengths of non-minimal coupling, the corresponding
potential becomes more and more flat. In the next subsections we will study the cosmological
consequences of these models in detail.
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Table 1
Jordan frame and Einstein frame potentials obtained from χ = 2

3 branch.

Class of models Ω2 W VJ VE

H real, S = 0 1 −λ1S(HH̄ − v2
1
2 )

λ2
1

4 (H 2
1 − v2

1)2 λ2
1

4 (H 2
1 − v2

1)2

H = 0, S real 1 −λ2H(SS̄ − v2
2
2 )

λ2
2

4 (S2
1 − v2

2)2 λ2
2

4 (S2
1 − v2

2)2

H complex, S = 0 (1 − H2
2

3 ) −λ1S(HH̄ − v2
1
2 )

λ2
1

4 (H 2
1 + H 2

2 − v2
1)2

λ2
1
4 (H2

1 +H2
2 −v2

1 )2

(1− H2
2

3 )2

H = 0, S complex (1 − S2
2
3 ) −λ2H(SS̄ − v2

2
2 )

λ2
2

4 (S2
1 + S2

2 − v2
2)2

λ2
2
4 (S2

1+S2
2−v2

2 )2

(1− S2
2
3 )2

3.1. Models with χ = 2
3

In this branch the conformal factor is given by:

Ω2(H,S, H̄ , S̄) = 1 + 1

6

[
(H − H̄ )2 + (S − S̄)2] (3.3)

which is connected to the Kähler potential via Eq. (2.9). In this context the following transfor-
mations

H → H + CH ,

S → S + CS (3.4)

lead to the shift symmetry of the Kähler potential with respect to (H − H̄ ) and (S − S̄), provided
CH and CS are constant shifts along real axis of H and S complex plane.

In Table 1 we have listed several classes of Jordan frame and Einstein frame potentials ob-
tained from all possible physical combinations of H and S of the superconformal transformation
mentioned in Eq. (3.3). In this article, potentials obtained from H and S in any branch are exactly
similar. So we will restrict ourselves to the H dependent models for cosmological parameter es-
timation. In order to confront with the recently observed Higgs at LHC, here we fix the VEV,
v1 = 246 GeV with mass 125 GeV.

3.2. Models with χ = − 2
3

In this branch the conformal factor in Eq. (3.2) reduces to the following:

Ω2(H,S, H̄ , S̄) = 1 − 1

6

[
(H + H̄ )2 + (S + S̄)2] (3.5)

which is connected to the Kähler potential via Eq. (2.9). In this context the following transfor-
mations

H → H + C̃H ,

S → S + C̃S (3.6)

lead to the shift symmetry of the Kähler potential with respect to (H + H̄ ) and (S + S̄), provided
C̃H and C̃S are constant shifts along imaginary axis of H and S complex plane.
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In Table 3 we have mentioned the various classes of Jordan frame and Einstein frame po-
tentials obtained from all possible physical combinations of H and S of the superconformal
transformation mentioned in Eq. (3.5).

In Tables 2 and 4 we have mentioned all the cosmological parameters estimated from the
observationally allowed potentials of χ = 2

3 and χ = − 2
3 branch respectively. From the numer-

ical analysis, we have explicitly shown that almost all of these proposed models confront well
with latest WMAP9 data combined with several complementary datasets of SPT , ACT , and h0

observations in the ΛCDM background and PLANCK data set as well. Next implementing the
information obtained for each model from the cosmological code CAMB we estimate dark energy
density (ΩΛ), matter density (Ωm) and its r.m.s. fluctuation (σ8) etc. Hence we plot the behavior
of CMB angular power spectrum for TT , TE and EE polarization obtained from χ = ± 2

3 branch
as shown in Figs. 2(a)–2(c) and Figs. 3(a)–3(c) for scalar mode.

In this article our prime objective is to study the cosmological consequences of single field
inflationary potentials. For such cases the fields other than inflaton (i.e. background fields)
can trigger the two phenomenological scenarios: preheating and reheating. Further this will
directly or indirectly affect the leptogenesis [37,38,45–48] and baryogenesis [49,50] scenario
depending on the strength of the different decay channels of the inflatons into different particle
constituents and the corresponding CP asymmetry of different branches. For the precise esti-
mation of cosmological parameters, we fix the value of all the background fields at GUT scale
(H1 = H2 = 0.9 × 1016 GeV).

In this context, all the potentials are derived from SUGRA or from its superconformal exten-
sion. Consequently the energy scale of the potentials is around GUT scale. This directly satisfies
the constraint on energy scale as μGUT < ΛUV , where μGUT ∼ 1016 GeV is the corresponding
energy scale of SUGRA and ΛUV = MPL be the UV (Ultra-Violet) cut-off theory. Here all the
Yukawa type couplings (λ1, λ2) are energy scale dependent which will follow the Renormaliza-
tion Group (RG) flow [51–53] via Callan–Symanzik equation. For the numerical estimation we
fix the values of the Yukawa type couplings at GUT scale in the present context. Moreover, after
applying RG flow from GUT to EWSB scale all of them become large (∼2.065×10−3) imposing
the experimental constraints from LHC. It is a ray of hope for near future that proper bound on
the self coupling is measurable in the next run of the LHC. For further details on these aspects see
[52,53] where RG flow analysis has been discussed thoroughly. Most importantly, the very recent
Higgs mass bound observed at LHC and latest observational data from WMAP9 and PLANCK
have already ruled out the possibility of all the proposed inflationary potentials at the EWSB
scale in the absence of any symmetry breaking non-minimal coupling. In this article by thorough
numerical analysis we explicitly show that without introducing any non-minimal coupling all
the proposed inflationary potentials obtained from the χ = ± 2

3 branches are observationally fa-
vored at the GUT scale. On the other hand such running in the Yukawa type of couplings induces
the possibility of Primordial Black Hole (PBH) formation [4,54,55] depending on the running
on the model dependent cosmological parameter αS . A very interesting fact for the inflationary
model building is that the present observation from PLANCK (using WMAP9 data as a prior)
and the complementary data set (PLANCK lensing + CMB high l + BAO) [41] has predicted
αS and κS to be −0.013 ± 0.009 (although at 1.5σ ) and 0.020+0.016

−0.015 respectively. Additionally

for both χ = ± 2
3 branches tensor to scalar ratio (r) are within the observational upper bound of

PLANCK.



164
S.C

houdhury
etal./N

uclear
P

hysics
B

880
(2014)

155–174

r ΩΛ Ωm σ8 ηRec, Mpc η0, Mpc

0.048 0.684 0.316 0.819 280.38 14184.8

0.046 0.684 0.316 0.822 280.38 14184.8
Table 2
Cosmological parameter estimation for observationally allowed models obtained from χ = 2

3 branch.

Potential Confronts with Coupling (λ1) (×10−7) PS (×10−9) nS αS (×10−4)

λ2
1

4 (H 2
1 − v2

1)2 ΛCDM(WMAP9)/PLANCK 1.43 2.354 0.958 −5.894

λ2
1
4 (H2

1 +H2
2 −v2

1 )2

(1− H2
2

3 )2
ΛCDM(WMAP9 + spt

+ act + h0)/PLANCK
1.250 2.321 0.964 −4.422
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Table 3
Jordan frame and Einstein frame potentials obtained from χ = − 2

3 branch.

Class of models Ω2 W VJ VE

H real, S = 0 (1 − H2
1

3 ) −λ1S(HH̄ − v2
1
2 )

λ2
1

4 (H 2
1 − v2

1)2
λ2

1
4 (H2

1 −v2
1 )2

(1− H2
1

3 )2

H = 0, S real (1 − S2
1
3 ) −λ2H(SS̄ − v2

2
2 )

λ2
2

4 (S2
1 − v2

2)2
λ2

2
4 (S2

1−v2
2 )2

(1− S2
1
3 )2

H complex, S = 0 (1 − H2
1

3 ) −λ1S(HH̄ − v2
1
2 )

λ2
1

4 (H 2
1 + H 2

2 − v2
1)2

λ2
1
4 (H2

1 +H2
2 −v2

1 )2

(1− H2
1

3 )2

H = 0, S complex (1 − S2
1
3 ) −λ2H(SS̄ − v2

2
2 )

λ2
2

4 (S2
1 + S2

2 − v2
2)2

λ2
2
4 (S2

1+S2
2−v2

2 )2

(1− S2
1
3 )2

Fig. 2. Variation of CMB angular power spectra vs multipoles (l) for (a) TT , (b) TE and (c) EE mode from χ = 2
3 branch.

The statistical error bars are obtained from WMAP9 data.
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r ΩΛ Ωm σ8 ηRec, Mpc η0, Mpc

0.046 0.684 0.316 0.822 280.38 14184.8
Table 4
Cosmological parameter estimation from observationally feasible model obtained from χ = − 2

3 branch.

Potential Confronts with Coupling (λ1) (×10−7) PR (×10−9) nS αS (×10−4)

λ2
1
4 (H2

1 +H2
2 −v2

1 )2

(1− H2
1

3 )2
ΛCDM(WMAP9 + spt

+ act + h0)/PLANCK
1.250 2.321 0.964 −4.422
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Fig. 3. Variation of CMB angular power spectra vs multipoles (l) for (a) TT , (b) TE and (c) EE mode from χ = − 2
3

branch. The statistical error bars are obtained from WMAP9 data.

3.3. Models with χ �= ± 2
3

In this context the symmetry breaking parameter χ is connected with the non-minimal cou-
pling ξ present as ξ

2 φ2R in the action. To explore more features from this sector we consider two
physical situations given by:

χ − 2

3
= 4ξ1, (3.7)

χ + 2

3
= 4ξ2 (3.8)

where ξ1 and ξ2 are the two non-minimal couplings approaching from 2
3 and − 2

3 respectively.
From Eqs. (3.7) and (3.8) the superconformal factors can be expressed as:

Ω2
1 (H, H̄ , S, S̄) = 1 + 1

(
ξ1 + 1

)[
(H − H̄ )2 + (S − S̄)2]
2 3
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Table 5
Jordan frame and Einstein frame potentials obtained from χ − 2

3 = 4ξ1 branch.

Class of models Ω2
1 W VJ VE

H real, S = 0 (1 + ξ1H 2
1 ) −λ1S(HH̄ − v2

1
2 )

λ2
1

4 (H 2
1 − v2

1)2
λ2

1
4 (H2

1 −v2
1)2

(1+ξ1H2
1 )2

H = 0, S real (1 + ξ1S2
1 ) −λ2H(SS̄ − v2

2
2 )

λ2
2

4 (S2
1 − v2

2)2
λ2

2
4 (S2

1−v2
2)2

(1+ξ1S2
1 )2

H complex, S = 0 1 − (ξ1 + 1
3 )H 2

2 + ξ1H 2
1 −λ1S(HH̄ − v2

1
2 )

λ2
1

4 (H 2
1 + H 2

2 − v2
1)2

λ2
1
4 (H2

1 +H2
2 −v2

1)2

[1−(ξ1+ 1
3 )H2

2 +ξ1H2
1 ]2

H = 0, S complex 1 − (ξ1 + 1
3 )S2

2 + ξ1S2
1 −λ2H(SS̄ − v2

2
2 )

λ2
2

4 (S2
1 + S2

2 − v2
2)2

λ2
2
4 (S2

1+S2
2−v2

2)2

[1−(ξ1+ 1
3 )S2

2+ξ1S2
1 ]2

+ ξ1

2

[
(H + H̄ )2 + (S + S̄)2], (3.9)

Ω2
2 (H, H̄ , S, S̄) = 1 + ξ2

2

[
(H − H̄ )2 + (S − S̄)2]

+ 1

2

(
ξ2 − 1

3

)[
(H + H̄ )2 + (S + S̄)2]. (3.10)

In Tables 5 and 7 we mention all types of inflationary potentials in Jordan frame and Einstein
frame as obtained from the two possible physical branches of the superconformal transformations
mentioned in Eqs. (3.9) and (3.10) respectively.

Next we have mentioned all the cosmological parameters estimated from χ �= 2
3 (χ − 2

3 = 4ξ1

and χ + 2
3 = 4ξ2) branches in Tables 6 and 8 and shown in Figs. 4(a)–4(c) and Figs. 5(a)–5(c).

This clearly shows non-minimal coupling (ξ1, ξ2) dependent models confront with latest data.
We have also shown that if we allow the above mentioned non-minimal couplings along with
very recent LHC Higgs mass bound and latest observational constraints, then almost all of the
proposed inflationary potentials are favored starting from EWSB to GUT scale depending on
the RG flow in Yukawa type coupling. Throughout the numerical analysis we have allowed both
the signatures of the non-minimal coupling. We also avoided specific values of the non-minimal
couplings for which divergences are appearing in the proposed potentials. During the analysis
we have observed that only for (ξ1, ξ2) > 0 the first two models appearing in Tables 6 and 8
are in good agreement with latest observation. On the contrary for (ξ1, ξ2) < 0 only the third
model fairs well with WMAP9 and PLANCK data set. Moreover, for the numerical estimations
we consider only those values of the non-minimal couplings for which the proposed models are
free from any poles. The behavior of tensor to scalar ratio (r) with respect to the scalar spectral
index (nS ) for all class of proposed models of inflation is depicted in Fig. 6.

4. Summary and outlook

In this article we have proposed a class of supergravity motivated models to implement Higgs
inflation, where the Higgs field is non-minimally coupled to gravity sector via symmetry break-
ing coupling (χ ). We have followed the analysis by making use of superconformal techniques in
the Kähler manifold. Using such tools we have introduced a phenomenological Kähler potential
which preserves shift symmetry for two minimal couplings χ = ± 2

3 with gravity. This results
in various classes of inflationary models which are made up of shift symmetry protected flat
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) r ΩΛ Ωm σ8 ηRec, Mpc η0, Mpc

0.015 0.684 0.316 0.821 280.38 14184.8

0.013 0.684 0.316 0.816 280.38 14184.8

0.011 0.684 0.316 0.821 280.38 14184.8
Table 6
Cosmological parameter estimation from observationally allowed models obtained from χ − 2

3 = 4ξ1 branch.

Potential Confronts with Couplings (×10−6) ξ1 PR (×10−9) nS αS (×10−4

λ2
1
4 (H2

1 −v2
1)2

(1+ξ1H2
1 )2 ΛCDM(WMAP9 + spt

+ act + h0)/PLANCK
5.167 0.1 2.330 0.961 −11.752

λ2
1
4 (H2

1 +H2
2 −v2

1)2

[1−(ξ1+ 1
3 )H2

2 +ξ1H2
1 ]2 ΛCDM(WMAP9 + spt

+ act + h0)/PLANCK
6.789 0.1 2.310 0.960 −9.94

λ2
2
4 (H2

1 +H2
2 −v2

2)2

[1−(ξ1+ 1
3 )H2

2 +ξ1H2
1 ]2 ΛCDM(WMAP9 + spt

+ act + h0)/PLANCK
5.818 −0.5 2.318 0.962 −8.801
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Fig. 4. Variation of CMB angular power spectra vs multipoles (l) (a) TT , (b) TE and (c) EE mode from χ − 2
3 = 4ξ1

branch. The statistical error bars are obtained from WMAP9 data.

Table 7
Jordan frame and Einstein frame potentials obtained from χ + 2

3 = 4ξ2 branch.

Class of models Ω2
2 W VJ VE

H real, S = 0 [1 + (ξ2 − 1
3 )H 2

1 ] −λ1S(HH̄ − v2
1
2 )

λ2
1

4 (H 2
1 − v2

1)2
λ2

1
4 (H2

1 −v2
1 )2

[1+(ξ2− 1
3 )H2

1 ]2

H = 0, S real [1 + (ξ2 − 1
3 )S2

1 ] −λ2H(SS̄ − v2
2
2 )

λ2
2

4 (S2
1 − v2

2)2
λ2

2
4 (S2

1−v2
2 )2

[1+(ξ2− 1
3 )S2

1 ]2

H complex, S = 0 1 + (ξ2 − 1
3 )H 2

1 − ξ2H 2
2 −λ1S(HH̄ − v2

1
2 )

λ2
1

4 (H 2
1 + H 2

2 − v2
1)2

λ2
1
4 (H2

1 +H2
2 −v2

1)2

[1+(ξ2− 1
3 )H2

1 −ξ2H2
2 ]2

H = 0, S complex 1 + (ξ2 − 1
3 )S2

1 − ξ2S2
2 −λ2H(SS̄ − v2

2
2 )

λ2
2

4 (S2
1 + S2

2 − v2
2)2

λ2
2
4 (S2

1+S2
2−v2

2)2

[1+(ξ2− 1
3 )S2

1−ξ2S2
2 ]2

directions. We have elaborately discussed the consequences of superconformal techniques in the
two preferred frames of references namely, Jordan and Einstein frames. Then we have explored
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) r ΩΛ Ωm σ8 ηRec, Mpc η0, Mpc

0.018 0.684 0.316 0.826 280.38 14184.8

0.011 0.684 0.316 0.818 280.38 14184.8

0.015 0.684 0.316 0.822 280.38 14184.8
Table 8
Cosmological parameter estimation for observationally favored models obtained from χ + 2

3 = 4ξ2 branch.

Potential Confronts with Couplings (×10−6) ξ2 PR (×10−9) nS αS (×10−4

λ2
1
4 (H2

1 −v2
1 )2

[1+(ξ2− 1
3 )H2

1 ]2 ΛCDM(WMAP9 + spt
+ act + h0)/PLANCK

9.254 0.5 2.370 0.960 −10.006

λ2
1
4 (H2

1 +H2
2 −v2

1)2

[1+(ξ2− 1
3 )H2

1 −ξ2H2
2 ]2 ΛCDM(WMAP9 + spt

+ act + h0)/PLANCK
7.152 0.5 2.32 0.961 −9.712

λ2
1
4 (H2

1 +H2
2 −v2

1)2

[1+(ξ2− 1
3 )H2

1 −ξ2H2
2 ]2 ΛCDM(WMAP9 + spt

+ act + h0)/PLANCK
5.184 −0.1 2.340 0.961 −9.365
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Fig. 5. Variation of CMB angular power spectra vs multipoles (l) for (a) TT , (b) TE (c) EE mode from χ + 2
3 = 4ξ2

branch. The statistical error bars are obtained from WMAP9 data.

the features of non-minimal coupling (ξ1, ξ2) connected with shift symmetry breaking branch
χ �= 2

3 in the context of Higgs inflation. Hence we have studied inflation from these proposed
models by estimating the observable parameters which originates from primordial quantum fluc-
tuation for scalar and tensor modes. We have further confronted our results with WMAP9 and
various complementary datasets (SPT,ACT, h0) by using CAMB and as well as independently
with PLANCK data set. Further we have compared the behavior of theoretical CMB polariza-
tion power spectra for TT , TE and EE mode obtained from all of these proposed models with
observational power spectra. We have also commented on the allowed range for non-minimal
couplings (ξ1, ξ2) and phenomenological Yukawa type of couplings which are very crucial inputs
in the context of inflationary model building. This, collectively, provides an exhaustive study of
the class of Higgs inflation from Kähler potential and consequently, their pros and cons.

An interesting open issue in this context is to study the role of Heisenberg symmetry [56–58].
Other open issue is to study primordial black hole formation and its cosmological conse-
quences from the running of the spectral index (αS ) and its running (κS ) as the very recent
PLANCK data gives an estimation of the above mentioned indexes at 1.5σ [41]. Moreover, the
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Fig. 6. Variation of tensor to scalar ratio (r) vs scalar spectral index (nS ) for the family of Higgs potentials for different
numerical values of non-minimal coupling ξ . The value of the non-minimal coupling increases as we go down towards
the plot. This also shows χ ± 2

3 = 4ξ branches are more observationally favored compared to the χ = ± 2
3 branches.

phenomenological consequences of all of these proposed models via reheating and leptogenesis
are also a promising issue for future study.
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