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Hyers–Ulam stability of linear differential equations of first order, II
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Abstract

Let X be a complex Banach space and letI be an open interval. For given functionsg : I → C, h : I → X andϕ : I → [0,∞),
we will solve the differential inequality‖y′(t) + g(t)y(t) + h(t)‖ ≤ ϕ(t) for the class of continuously differentiable functions
y : I → X under some integrability conditions.
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1. Introduction

Let X be a normed space and letI be an open interval. Assume that for any functionf : I → X satisfying the
differential inequality

‖an(t)y(n)(t) + an−1(t)y(n−1)(t) + · · · + a1(t)y′(t) + a0(t)y(t) + h(t)‖ ≤ ε

for all t ∈ I and for someε ≥ 0, there exists a solution f0 : I → X of the differential equation

an(t)y(n)(t) + an−1(t)y(n−1)(t) + · · · + a1(t)y′(t) + a0(t)y(t) + h(t) = 0

suchthat‖ f (t) − f0(t)‖ ≤ K (ε) for any t ∈ I , whereK (ε) is an expression forε only. Then, we say that the above
differential equation has the Hyers–Ulam stability.

If the above statement is also true when we replaceε and K (ε) by ϕ(t) andΦ(t), whereϕ,Φ : I → [0,∞)

are functions not depending onf and f0 explicitly, then we say that the corresponding differential equation has the
Hyers–Ulam–Rassias stability (or the generalized Hyers–Ulam stability).

We may apply these terminologies for other differential equations. For more detailed definitions of the Hyers–Ulam
stability and the Hyers–Ulam–Rassias stability, refer to [1,2].

Alsina and Ger were the first authors who investigated the Hyers–Ulam stability of differential equations: They
proved in [3] that if a differentiable functionf : I → R is a solution of the differential inequality|y′(t) − y(t)| ≤ ε,
whereI is anopen subinterval ofR, then there exists a solutionf0 : I → R of the differential equationy′(t) = y(t)
suchthat| f (t) − f0(t)| ≤ 3ε for anyt ∈ I .
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This result of Alsina and Ger has been generalized by Takahasi et al.: they proved in [4] that the Hyers–Ulam
stability holds for the Banach space valued differential equationy′(t) = λy(t) (see also [5]).

In [6], Miura et al. also proved the Hyers–Ulam stability of linear differential equations of first order,y′(t) +
g(t)y(t) = 0, whereg(t) is a continuous function, while the author [7] proved theHyers–Ulam stability of differential
equations of the formc(t)y′(t) = y(t).

The aim of this work is to improve the results of [6,7] by provingthe Hyers–Ulam–Rassias stability of the following
nonhomogeneous linear differential equation of first order:

y′(t) + g(t)y(t) + h(t) = 0. (1)

We assume thatX is a complex Banach space andI = (a, b) is an arbitrary interval. We moreover assume that
g : I → C, h : I → X, andϕ : I → [0,∞) are functions such that for arbitraryc ∈ I , g(t) and exp{∫ t

a g(u)du}h(t)

are integrable on(a, c), and further such thatϕ(t) exp{R(
∫ t

a g(u)du)} is integrable onI , wherewe useR(ω) to denote
the real part of complex numbersω.

We prove inTheorem 1that if a continuously differentiable functiony : I → X satisfies the differential inequality

‖y′(t) + g(t)y(t) + h(t)‖ ≤ ϕ(t) (2)

for all t ∈ I , then there exists a unique solutiony0(t) of the differential equation(1) suchthat

‖y(t) − y0(t)‖ ≤ exp

{
−R

(∫ t

a
g(u)du

)} ∫ b

t
ϕ(v) exp

{
R

(∫ v

a
g(u)du

)}
dv

for all t ∈ I .

2. Main results

In the following theorem, we will prove the Hyers–Ulam–Rassias stabilityof the nonhomogeneous linear
differential equation(1). More precisely, we solve the differential inequality(2) for the class of functionsy : I → X.

Theorem 1. Let X be a complex Banach space and let I= (a, b) be an open interval, where a, b ∈ R ∪ {±∞}
are arbitrarily given with a < b. Assume that g: I → C and h : I → X are continuous functions such that g(t)
and exp{∫ t

a g(u)du}h(t) are integrable on(a, c) for each c∈ I . Moreover, supposeϕ : I → [0,∞) is a function

suchthatϕ(t) exp{R(
∫ t

a g(u)du)} is integrable on I . If a continuously differentiable function y: I → X satisfies the
differential inequality(2) for all t ∈ I , thenthere exists aunique x∈ X such that∥∥∥∥y(t) − exp

{
−

∫ t

a
g(u)du

}(
x −

∫ t

a
exp

{∫ v

a
g(u)du

}
h(v)dv

)∥∥∥∥
≤ exp

{
−R

(∫ t

a
g(u)du

)}∫ b

t
ϕ(v) exp

{
R

(∫ v

a
g(u)du

)}
dv (3)

for every t∈ I .

Proof. For simplicity, we use the following notation:

z(t) := exp

{∫ t

a
g(u)du

}
y(t) +

∫ t

a
exp

{∫ v

a
g(u)du

}
h(v)dv

for eacht ∈ I . By making use of thisnotation and by(2), we get

‖z(t) − z(s)‖ =
∥∥∥∥exp

{∫ t

a
g(u)du

}
y(t) − exp

{∫ s

a
g(u)du

}
y(s)

+
∫ t

s
exp

{∫ v

a
g(u)du

}
h(v)dv

∥∥∥∥
=

∥∥∥∥
∫ t

s

d

dv

[
exp

{∫ v

a
g(u)du

}
y(v)

]
dv
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+
∫ t

s
exp

{∫ v

a
g(u)du

}
h(v)dv

∥∥∥∥
=

∥∥∥∥
∫ t

s
exp

{∫ v

a
g(u)du

}
{y ′(v) + g(v)y(v) + h(v)}dv

∥∥∥∥
≤

∣∣∣∣
∫ t

s
exp

{
R

(∫ v

a
g(u)du

)}
ϕ(v)dv

∣∣∣∣ (4)

for anys, t ∈ I .
Sinceϕ(t) exp{R(

∫ t
a g(u)du)} is assumed to be integrable onI , we mayselect t0 ∈ I , for any givenε > 0, such

thats, t ≥ t0 implies‖z(t) − z(s)‖ < ε. That is,{z(s)}s∈I is a Cauchy net and hence there exists anx ∈ X suchthat
z(s) converges tox ass → b, sinceX is complete.

Finally, it follows from(4) and the above argument that for anyt ∈ I ,∥∥∥∥y(t) − exp

{
−

∫ t

a
g(u)du

}(
x −

∫ t

a
exp

{∫ v

a
g(u)du

}
h(v)dv

)∥∥∥∥
=

∥∥∥∥exp

{
−

∫ t

a
g(u)du

}
(z(t) − x)

∥∥∥∥
≤ exp

{
−R

(∫ t

a
g(u)du

)}
‖z(t) − z(s)‖

+ exp

{
−R

(∫ t

a
g(u)du

)}
‖z(s) − x‖

≤ exp

{
−R

(∫ t

a
g(u)du

)} ∣∣∣∣
∫ t

s
ϕ(v) exp

{
R

(∫ v

a
g(u)du

)}
dv

∣∣∣∣
+ exp

{
−R

(∫ t

a
g(u)du

)}
‖z(s) − x‖

→ exp

{
−R

(∫ t

a
g(u)du

)}∫ b

t
ϕ(v) exp

{
R

(∫ v

a
g(u)du

)}
dv

ass → b, sincez(s) → x ass → b.
It now remains to prove the uniqueness ofx. Assume thatx1 ∈ X also satisfies the inequality(3) in place ofx.

Then, we have∥∥∥∥exp

{
−

∫ t

a
g(u)du

}
(x1 − x)

∥∥∥∥
≤ 2 exp

{
−R

(∫ t

a
g(u)du

)}∫ b

t
ϕ(v) exp

{
R

(∫ v

a
g(u)du

)}
dv

for anyt ∈ I . It follows from the integrability hypotheses that

‖x1 − x‖ ≤ 2
∫ b

t
ϕ(v) exp

{
R

(∫ v

a
g(u)du

)}
dv → 0

ast → b. This implies theuniqueness ofx. �

Remark 1. We may now remark that

y(t) = exp

{
−

∫ t

a
g(u)du

}(
x −

∫ t

a
exp

{∫ v

a
g(u)du

}
h(v)dv

)

is the general solution of the differential equation(1), wherex is an arbitrary element ofX.

Corollary 2. Let X be a complex Banach space and let I= (a, b) be an open interval, where a, b ∈ R ∪ {±∞}
are arbitrarily given with a < b. Assume that g: I → C and h : I → X are continuous functions such that g(t)
and exp{∫ t

b g(u)du}h(t) are integrable on(c, b) for every c∈ I . Moreover, supposeϕ : I → [0,∞) is a function
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suchthatϕ(t) exp{R(
∫ t

b g(u)du)} is integrable on I . If a continuously differentiable function y: I → X satisfies the
differential inequality(2) for all t ∈ I , thenthere exists aunique x∈ X such that∥∥∥∥y(t) − exp

{
−

∫ t

b
g(u)du

}(
x −

∫ t

b
exp

{∫ v

b
g(u)du

}
h(v)dv

)∥∥∥∥
≤ exp

{
−R

(∫ t

b
g(u)du

)}∫ t

a
ϕ(v) exp

{
R

(∫ v

b
g(u)du

)}
dv (5)

for any t ∈ I .

Proof. Let J = (−b,−a) and define functionsg1 : J → C, h1 : J → X, y1 : J → X, andϕ1 : J → [0,∞) by
g1(t) = g(−t), h1(t) = h(−t), y1(t) = y(−t), andϕ1(t) = ϕ(−t), respectively.

Using these definitions, we may transform the inequality(2) into

‖y′
1(t) − g1(t)y1(t) − h1(t)‖ ≤ ϕ1(t)

for eacht ∈ J.
Sinceg(t) is integrable on(c, b) with c ∈ I , so is−g1(t) on (−b,−c) with −c ∈ J. Similarly, other integrability

hypotheses imply that for any−c ∈ J,

exp

{∫ t

−b
(−g1(u))du

}
(−h1(t)) and ϕ1(t) exp

{
R

(∫ t

−b
(−g1(u))du

)}

are integrable on(−b,−c) and onJ, respectively. Hence, we can now useTheorem 1to conclude that there exists a
uniquex ∈ X suchthat∥∥∥∥y1(t) − exp

{∫ t

−b
g1(u)du

}(
x +

∫ t

−b
exp

{
−

∫ v

−b
g1(u)du

}
h1(v)dv

)∥∥∥∥
≤ exp

{
R

(∫ t

−b
g1(u)du

)}∫ −a

t
ϕ1(v) exp

{
−R

(∫ v

−b
g1(u)du

)}
dv

for anyt ∈ J. Indeed, we can verify by some tedious substitutions that this inequality is equivalent to that in(5). �

Remark 2. We remark that for any elementx of X,

y(t) = exp

{
−

∫ t

b
g(u)du

}(
x −

∫ t

b
exp

{∫ v

b
g(u)du

}
h(v)dv

)

is a solution of the differential equation(1).

Remark 3. If we replaceC by R in the proofs of both Theorem 1and Corollary 2, we can see thatTheorem 1
andCorollary 2 are also true for a real Banach spaceX. In both cases, we naturally assume thatg is a real-valued
continuous function.

3. Examples

In this section, we will introduce some examples for linear differential equations of first order which have the
Hyers–Ulam–Rassias stability.

Example 1. If we seth(t) ≡ 0 andϕ(t) ≡ ε in Theorem 1, we obtain the following result: LetX be a complex
Banach space and letI = (a, b) be an open interval, wherea, b ∈ R∪{±∞}. Assume thatg : I → C is a continuous
and integrable function on(a, c) for eachc ∈ I such that exp{R(

∫ t
a g(u)du)} is integrable onI . If a continuously

differentiable functiony : I → X satisfies the differential inequality

‖y′(t) + g(t)y(t)‖ ≤ ε
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for all t ∈ I , then there exists a uniquex ∈ X suchthat∥∥∥∥y(t) − exp

{
−

∫ t

a
g(u)du

}
x

∥∥∥∥
≤ ε exp

{
−R

(∫ t

a
g(u)du

)}∫ b

t
exp

{
R

(∫ v

a
g(u)du

)}
dv

for eacht ∈ I (cf. [6]).

Example 2. Let g < 0 andh be fixed real numbers, letI = (a,∞) be an open interval witha ∈ R, and letϕ : I → R

be a polynomial int with real coefficients. Assume that a continuously differentiable functiony : I → R satisfies the
differential inequality

|y′(t) + gy(t) + h| ≤ ϕ(t)

for all t ∈ I .
We can easily verify that the choices ofg, h, ϕ and I are consistent with the hypotheses ofTheorem 1. Hence,

according toTheorem 1andRemark 3, there exists auniquec0 ∈ R suchthat∣∣∣∣y(t) − c0e−gt + h

g

(
1 − e−g(t−a)

)∣∣∣∣ ≤ e−gt
∫ ∞

t
ϕ(v)egvdv

for any t ∈ I . Further, we know thaty0(t) = c0e−gt − h
g (1 − e−g(t−a)) is a (particular) solution of the differential

equationy′(t) + gy(t) + h = 0.
If we setϕ(t) ≡ ε and I = (a,∞) with a ≥ 0 in the above statement, then there exists a unique solutiony0(t) of

the differential equationy′(t) + gy(t) + h = 0 such that

|y(t) − y0(t)| ≤ − ε

g

for all t ∈ I . (We may compare this result with [3] or [4].)
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