Edge-choosability of planar graphs without adjacent triangles or without 7-cycles

Jianfeng Hou, Guizhen Liu*, Jiansheng Cai

School of Mathematics and System Sciences, Shandong University, Jinan, 250100, PR China

Received 12 January 2006; received in revised form 14 December 2007; accepted 17 December 2007
Available online 22 January 2008

Abstract

A graph G is edge-L-colorable, if for a given edge assignment $L = \{L(e) : e \in E(G)\}$, there exists a proper edge-coloring ϕ of G such that $\phi(e) \in L(e)$ for all $e \in E(G)$. If G is edge-L-colorable for every edge assignment L with $|L(e)| \geq k$ for $e \in E(G)$, then G is said to be edge-k-choosable. In this paper, we prove that if G is a planar graph with maximum degree $\Delta(G) \neq 5$ and without adjacent 3-cycles, or with maximum degree $\Delta(G) \neq 5, 6$ and without 7-cycles, then G is edge-$(\Delta(G) + 1)$-choosable.

Keywords: Planar graph; Edge-coloring; Choosability; Triangle; Cycle

1. Introduction

All graphs considered in this paper are simple, finite, and undirected. For a planar graph G, we denote its vertex set, edge set, face set, maximum degree, and minimum degree by $V(G), E(G), F(G), \Delta(G), \delta(G)$. A triangle is synonymous with a 3-cycle.

An edge-coloring of a graph G is a mapping ϕ from $E(G)$ to the set of colors $\{1, 2, \ldots, k\}$ for some positive integer k. An edge-coloring is called proper if adjacent edges receive different colors. The edge chromatic number $\chi'(G)$ is the smallest integer k such that G has a proper edge-coloring into the set $\{1, 2, \ldots, k\}$. We say that L is an edge assignment for the graph G if it assigns a list $L(e)$ of possible colors to each edge e of G. If G has a proper edge-coloring ϕ such that $\phi(e) \in L(e)$ for any edge e of G, then we say that G is edge-L-colorable or ϕ is an edge-L-coloring of G. The graph G is edge-k-choosable if it is edge-L-colorable for every edge assignment L satisfying $|L(e)| \geq k$ for any edge $e \in E(G)$. The edge choice number $\chi'_l(G)$ of G is the smallest k such that G is edge-k-choosable.

The following conjecture was formulated independently by Vizing, by Gupta, by Alberson and Collins, and by Bollobás and Harris (see [5] or [8]), and it is well known as the List Coloring Conjecture.

Conjecture 1. If G is a multigraph, then $\chi'_l(G) = \chi'(G)$.
The conjecture has been proved for a few special cases, such as bipartite multigraphs [4], complete graphs of odd order [6], multicircuits [16], graphs with \(\Delta(G) \geq 12 \) which can be embedded in a surface of non-negative characteristic [3], and outerplanar graphs [13]. Vizing (see [10]) proposed a weaker conjecture as follows.

Conjecture 2. Every graph \(G \) is edge-(\(\Delta(G) + 1 \))-choosable.

An earlier result of Harris [7] shows that \(\chi'_c(G) \leq 2\Delta(G) - 2 \) if \(G \) is a graph with \(\Delta(G) \geq 3 \). This implies Conjecture 2 for the case \(\Delta(G) = 3 \). In 1999, Juvan, Mohar and Škrekovski [9] settled the case for \(\Delta(G) = 4 \). Conjecture 2 has also been confirmed for other special cases such as complete graphs [6], graphs with girth at least \(8\Delta(G) (\ln \Delta(G) + 1.1) \) [10], planar graphs with \(\Delta(G) \geq 9 \) [2], and planar graphs with \(\Delta(G) \neq 5 \) and without two 3-cycles sharing a common vertex [14]. Suppose that \(G \) is a planar graph without \(k \)-cycles for some fixed integer \(3 \leq k \leq 6 \). Then it was shown that Conjecture 2 holds if \(G \) satisfies one of following conditions: (i) either \(k = 3 \) or \(k = 4 \) and \(\Delta(G) \neq 5 \) [17]; (ii) \(k = 4 \) [11]; (iii) \(k = 5 \) [15]; (iv) \(k = 6 \) and \(\Delta(G) \neq 5 \) [12].

In this paper, we will prove the following theorems which show that Conjecture 2 is true in some cases.

Theorem 1.1. Every planar graph \(G \) without adjacent triangles is edge-\(k \)-choosable, where \(k = \max(7, \Delta(G) + 1) \).

Theorem 1.2. Every planar graph \(G \) without 7-cycles is edge-\(k \)-choosable, where \(k = \max(8, \Delta(G) + 1) \).

Let \(G \) be a connected graph (not necessarily planar). It is well known that \(G \) is edge-(\(\Delta(G) + 1 \))-choosable for \(\Delta(G) \leq 2 \) and in particular \(G \) is edge-2-choosable if \(G \) is an even cycle. From the results of [7,9], \(G \) is edge-(\(\Delta(G) + 1 \))-choosable if \(\Delta(G) = 3 \) or \(\Delta(G) = 4 \). Thus we have the following theorem by Theorems 1.1 and 1.2.

Theorem 1.3. If \(G \) is a planar graph with \(\Delta(G) \neq 5 \) and without adjacent triangles, or with \(\Delta(G) \neq 5, 6 \) and without 7-cycles, then \(G \) is edge-(\(\Delta(G) + 1 \))-choosable.

2. Structural lemmas of some planar graphs

Let us introduce some notations and definitions. Let \(G \) be a planar graph. We use \(d_G(v) \) (for short, \(d(v) \)) to denote the degree of a vertex \(v \in V(G) \). A vertex \(v \) is called a \(k \)-vertex or a \(k^+ \)-vertex if \(d(v) = k \) or if \(d(v) \geq k \), respectively. For any face \(f \in F(G) \), the degree of \(f \), denoted by \(d(f) \), is the number of edges incident with it, where each cut edge is counted twice, and we write \(f = u_1u_2\cdots u_nu_1 \) if \(u_1, u_2, \ldots, u_n \) are the boundary vertices of \(f \) in the clockwise order. A \(k \)-face or a \(k^+ \)-face is a face of degree \(k \) or of degree at least \(k \), respectively. A \(k \)-face \(f \) is called simple if the boundary of \(f \) forms a cycle of length \(k \). If \(f \) is not a simple face, then \(f \) must contain two cycles, say \(C_1, C_2 \), such that \(C_1 \) and \(C_2 \) share a common vertex. This implies that \(d(f) \geq 6 \). Thus every face of degree at most 5 is simple. For a vertex \(v \in V(G) \), let \(m_k(v) \) denote the number of \(k \)-faces incident with \(v \) for \(k \geq 3 \), and let \(n_k(v) \) denote the number of \(k \)-vertices adjacent to \(v \). We sometimes use \((d_1, d_2, \ldots, d_n) \) to represent a cycle (or a face) whose boundary vertices are of degree \(d_1, d_2, \ldots, d_n \) in the clockwise order in the graph \(G \). Let \(\delta(f) \) denote the minimum degree of vertices incident with \(f \).

A subgraph \(H \) of the graph \(G \) with \(\Delta(G) = 6 \) is called a special subgraph of \(G \) if it has the structure in Fig. 1. In Fig. 1, the vertex \(v \), called the center vertex of \(H \), is also called a special vertex of \(G \).

In the proofs of Lemmas 2.1 and 2.2, we use the technique of discharging, which was used to prove Four Color Theorem [1].
Lemma 2.1. Let G be a planar graph without adjacent triangles. Then G contains one of the following configurations

(A1) An edge uv with $d(u) + d(v) \leq \max\{8, \Delta(G) + 2\}$.

(A2) A $(3, \Delta(G), 3, \Delta(G))$-cycle.

(A3) A special vertex v incident with two $(3, 6, 6)$-faces and one $(4, 5, 6)$-face.

Proof. The proof is carried out by contradiction. Let G be a minimal counterexample to the lemma in terms of the number of vertices and edges. Then G is a connected planar graph with $\delta(G) \geq 3$ by lacking of (A1). Euler’s formula $|V(G)| - |E(G)| + |F(G)| = 2$ can be rewritten as $(6|E(G)| - 8|V(G)|) + (2|E(G)| - 8|F(G)|) = -16$. It follows from $\sum_{v \in V(G)} d(v) = \sum_{f \in F(G)} d(f) = 2|E(G)|$ that

$$\sum_{v \in V(G)} (3d(v) - 8) + \sum_{f \in F(G)} (d(f) - 8) = -16.$$

Let w denote the weight function defined on $V(G) \cup F(G)$ by $w(v) = 3d(v) - 8$ if $v \in V(G)$ and $w(f) = d(f) - 8$ if $f \in F(G)$. So we have $\sum_{x \in V(G) \cup F(G)} w(x) = -16$. We are going to redistribute these weights, not changing their sum, so that the new weight $w^*(x)$ becomes non-negative for all $x \in V(G) \cup F(G)$. Thus the following contradiction is produced and henceforth the proof is completed.

$$0 \leq \sum_{x \in V(G) \cup F(G)} w^*(x) = \sum_{x \in V(G) \cup F(G)} w(x) = -16.$$

Our discharging rules are defined as follows.

(R1) From each 3-vertex to its incident 3-face, transfer 1.

(R2) From each 4-vertex to each of its incident face f, where $3 \leq d(f) \leq 7$, transfer 1.

(R3) From each 5-vertex to each of its incident face f, where $3 \leq d(f) \leq 7$, transfer

$$2, \text{ if } d(f) = 3;$$

$$1, \text{ otherwise.}$$

(R4) From each 6-vertex v with $m_3(v) \leq 2$ to each of its incident face f, where $3 \leq d(f) \leq 7$, transfer

$$2, \text{ if } d(f) = 3;$$

$$\frac{w(v) - 2m_3(v)}{6 - m_3(v)}, \text{ otherwise.}$$

(R5) From each 6-vertex v with $m_3(v) = 3$ to each of its incident face f, where $3 \leq d(f) \leq 7$, transfer

$$2, \text{ if } d(f) = 3 \text{ and } f \text{ is not a } (5, 5, 6)\text{-face;}$$

$$1, \text{ if } f \text{ is a } (5, 5, 6)\text{-face;}$$

$$3, \text{ if } d(f) = 4 \text{ and } \delta(f) \geq 4 \text{ or } 5 \leq d(f) \leq 7;$$

$$\frac{3}{2}, \text{ if } f \text{ is either a } (6, 3, 6, 4)\text{-face or a } (6, 3, 6, 5)\text{-face;}$$

$$\frac{5}{4}, \text{ otherwise.}$$

(R6) From each 7$^+$-vertex v to each of its incident face f, where $3 \leq d(f) \leq 7$, transfer

$$2, \text{ if } d(f) = 3;$$

$$\frac{3}{2}, \text{ otherwise.}$$

Let $\gamma(x \to y)$ denote the amount transferred out of an element x into another element y according to the above rules. Then G has the following properties.

(P1) Since G does not contain adjacent triangles, every k-vertex, where $k \geq 3$, is incident with at most $\lfloor \frac{k}{2} \rfloor$ 3-faces.

(P2) Let uv be any edge of G. Then $d(u) + d(v) \geq \max\{9, \Delta(G) + 3\}$. This implies that $d(v) = \Delta(G) \geq 6$ if v neighbors a 3-vertex.
Lemma 2.1

An edge $u \rightarrow v$ is a 6-vertex with $m_3(v) \leq 2$ and f, where $4 \leq d(f) \leq 7$, is a face incident with v, then $\gamma(v \rightarrow f) = \frac{w(v)-2m_3(v)}{6-m_3(v)} \geq \min\{\frac{10-2\times 1}{6-1}, \frac{10-2\times 2}{6-2}\} = \frac{3}{2}$.

(P4) Let f be a 4-face with $\delta(f) = 3$ and let v be a 6^+-vertex incident with f. If $d(v) \geq 7$, then $\gamma(v \rightarrow f) = \frac{3}{2}$.

Assume that $d(v) = 6$. If $m_3(v) \leq 2$, then $\gamma(v \rightarrow f) = \frac{3}{2}$ by (P3). Otherwise, we have $m_3(v) = 3$. If f is either a $(6, 3, 6)$-face or $(6, 3, 6, 5)$-face, then $\gamma(v \rightarrow f) = \frac{3}{2}$. Otherwise, $\gamma(v \rightarrow f) = \frac{3}{4}$. Thus in any case, we have $\gamma(v \rightarrow f) \geq \frac{5}{4}$.

(P5) If v is a special vertex of G and the total number of $(6, 3, 6, 4)$-faces or $(6, 3, 6, 5)$-faces incident with v is exactly two, then v is incident with exactly one $(5, 5, 6)$-face.

Next, we show that (P5) is true. Since v is a special vertex of G, we have $d(v) = 6$ and $m_3(v) = 3$. The fact that the total number of $(6, 3, 6, 4)$-faces or $(6, 3, 6, 5)$-faces incident with v is exactly two implies that v is incident with two $(3, 6, 6)$-faces and $n_3(v) + n_5(v) = 2$. So $n_3(v) = n_2(v) = n_4(v) + n_5(v) = 2$. Since G is lacking in (A3), the remaining 3-face with which v is incident is a $(5, 5, 6)$-face.

We shall show that $w^*(x) \geq 0$ for all $x \in V(G) \cup F(G)$. Suppose that v is a k-vertex of G. If $k = 3$, then v is incident with at most one 3-face by (P1). Thus $w^*(v) \geq w(v) - 1 = 0$. If $k = 4$, then $w^*(v) \geq w(v) - 4 \times 1 = 0$. If $k = 3$, then $m_3(v) \leq 2$ by (P1). Thus $w^*(v) = w(v) - m_3(v) \geq 2 - (5 - m_3(v)) \times 1 = 7 - 5 - m_3(v) \geq 0$.

Now suppose that $k \geq 6$. If $m_3(v) \leq 2$, then $w^*(v) = (v) - m_3(v) \times 2 - (6 - m_3(v) \times 6 - m_3(v)) \times 6 = 0$. Otherwise, we have $m_3(v) = 3$. In this case, if v is incident with a 5^+-face, then $w^*(v) = w(v) - 3 \times 2 - 2 \times 3 = 0$. Next we assume that $k = 6$ and $m_3(v) = m = 3$. It is easy to verify that the total number of $(6, 3, 6, 4)$-faces or $(6, 3, 6, 5)$-faces incident with v is at most two. If the total number of $(6, 3, 6, 4)$-faces or $(6, 3, 6, 5)$-faces incident with v is exactly two, then v is incident with exactly one $(5, 5, 6)$-face by (P5). So $w^*(v) = w(v) - 2 \times 1 - 3 \times 2 = \frac{5}{2} > 0$ by (R5). Otherwise, there is at most one 4-face f incident with v which receives $\frac{3}{2}$ from v. Thus $w^*(v) \geq w(v) - 3 \times 2 - 2 \times 2 - 2 \times \frac{5}{2} = 0$.

If $k \geq 7$, then $w^*(v) \geq w(v) - 3 \times 2 - 2 \times 2 - 2 \times \frac{5}{2} = 0$.

Next, we consider the case that $f = v_1v_2v_3v_4v_1$ is a 4-face. If $\delta(f) \geq 4$, then $w^*(f) = w(f) + 4 \times 1 = 0$. Now assume that $\delta(f) = 3$. Without loss of generality, let $d(v_1) = 3$. Then $d(v_2) = d(v_4) = \Delta(G) \geq 6$ and $d(v_3) \geq 4$ by lacking of (A1) and (A2). If $\Delta(G) \geq 7$, then $w^*(f) = w(f) + 2 \times \frac{3}{2} + 1 = 0$. Otherwise, we have $d(v_2) = d(v_4) = 6$ and $d(v_3) \geq 4$. Then $w^*(f) = w(f) + 2 \times 2 = 0$. If $d(v_3) = 5$, then $w^*(f) = w(f) + 1 + 2 \times 2 = 0$. Thus $w^*(f) = w(f) + 1 + 2 \times 2 = 0$. Now suppose that $d(v_4) \geq 5$. If f is a $(5, 5, 6)$-face, then $w^*(f) = w(f) + 1 + 2 \times 2 = 0$. Otherwise, $w^*(f) = w(f) + 1 + 2 \times 2 > 0$.

Finally, let f be a k-face of G, where $5 \leq d(f) \leq 7$. Then f is incident with at least three 4^+-vertices by lacking of (A1), even if f is not a simple face. So $w^*(f) \geq w(f) + 3 \times 1 \geq 0$. This completes the proof of Lemma 2.1. ■

Lemma 2.2. Every planar graph G without 7-cycles contains one of the following configurations.

(B1) An edge uv with $d(u) + d(v) \leq \max\{9, \Delta(G) + 2\}$.

(B2) A $(3, \Delta(G), 3, \Delta(G))$-cycle.

Proof. The proof is carried out by contradiction. Let G be a minimal counterexample to the lemma in terms of number of vertices and edges. Then G is a connected planar graph with $\Delta(G) \geq 3$ by lacking of (B1). Moreover, the following configurations are excluded from G.

(C1) a simple 7-face;

(C2) a k-vertex, where $k \geq 6$, is incident with at least $(k - 1)$ 3-faces.
Let w denote the weight function defined on $V(G) \cup F(G)$ by $w(v) = 3d(v) - 8$ if $v \in V(G)$ and $w(f) = d(f) - 8$ if $f \in F(G)$. Applying Euler’s formula $|V(G)| - |E(G)| + |F(G)| = 2$, we can show that $\sum_{v \in V(G) \cup F(G)} w(v) = -16$. Weights will be transferred according to the following rules.

(R1) From each 3-vertex v to each of its incident 3-face f, transfer

1. if $m_3(v) = 1$;
2. $\frac{1}{3}$, otherwise.

(R2) From each 4-vertex v to each of its incident face f, where $3 \leq d(f) \leq 6$, transfer 1.

(R3) From each 5-vertex v to each of its incident 3-face f, transfer

1. if $m_3(v) = 5$;
2. $\frac{3}{2}$, if $m_3(v) = 4$;
3. if v is incident with at least two 8^+-faces;
4. $\frac{5}{3}$, otherwise.

(R4) From each 5-vertex v to each of its incident face f, where $4 \leq d(f) \leq 6$, transfer 1.

(R5) From each 6-vertex v to each of its incident face f, where $3 \leq d(f) \leq 6$, transfer

1. if $d(f) = 3$;
2. if $4 \leq d(f) \leq 6$.

(R6) From each 7$^+$-vertex to each of its incident 3-face f, transfer

1. $\frac{7}{3}$, if $\delta(f) = 3$ and the 3-vertex incident with f transfers $\frac{1}{3}$ to f;
2. otherwise.

(R7) From each 7$^+$-vertex to each of its incident face f, where $4 \leq d(f) \leq 6$, transfer

1. if $d(f) = 4$ and $\delta(f) = 3$;
2. otherwise.

Note that G have the following properties.

(P1) Let uv be any edge of G. Then $d(u) + d(v) \geq \max\{10, \Delta(G) + 3\}$. This implies that $d(v) = \Delta(G) \geq 7$ if v neighbors a 3-vertex.

(P2) Let v be a 5-vertex of G with $m_3(v) = 5$. If u is a neighbor of v, then u is incident with at least two 8^+-faces. Thus $\gamma(u \rightarrow f) \geq 2$ for any 3-face f incident with u.

(P3) Let v be a 5-vertex of G with $m_3(v) = 4$. Then it must be one of the cases in Fig. 2. Furthermore, $d(v_i) \geq 5$ and v_i is incident with at least two 8^+-faces in Fig. 2 for $i \in \{1, 2, 4, 5\}$.

(P4) Let v be a k-vertex, where $k \geq 7$. If v is incident with three continuous 3-faces, then v is incident with at least one 8^+-face.

Now we show that (P4) is true. Let f_1, f_2, \ldots, f_k be the faces incident with v in the clockwise order. Without loss of generality, let $d(f_1) = d(f_2) = d(f_3) = 3$. If $d(f_4) \geq 8$, then we are done. Otherwise, we have $d(f_4) \in \{3, 4, 5\}$, since G is free of 7-cycles. We first consider the case that $d(f_4) = 3$. If $d(f_5) \geq 8$, then we are done. Otherwise, we have $d(f_5) = 4$ or $d(f_5) = 5$. This implies that $d(f_6) \geq 8$. Next we consider the case that $d(f_4) = 4$. If $d(f_5) \geq 8$, then we are done. Otherwise, $d(f_5) = 3$. This implies that $d(f_6) \geq 8$. Finally, we have $d(f_6) = 5$. This implies that $d(f_5) \geq 8$.

(P5) Let v be a 7-vertex with $m_3(v) = 4$. Then v is incident with at least one 8^+-face.

We shall show that (P5) is true. Let f_1, f_2, \ldots, f_7 be the faces incident with v in the clockwise order. If v is incident with three continuous 3-faces, then v is incident with at most one 8^+-face by (P4). Otherwise, it must be one of the cases in Fig. 3. If $d(f_1) = d(f_2) = d(f_3) = d(f_4) = 3$ (see Fig. 3 (a)), then $d(f_5) \geq 8$. Assume that $d(f_1) = d(f_2) = d(f_4) = d(f_6) = 3$ (see Fig. 3 (b)). If $d(f_3) = 4$ or 5, then $d(f_5) \geq 8$. Otherwise, $d(f_5) \geq 8$.

(P_6) Let \(v \) be a 7-vertex \(v \) with \(n_3(v) = 5 \). Then \(v \) is incident with at least one \(8^+ \)-face. Furthermore, if \(v \) is incident with exactly one \(8^+ \)-face, then it must be the case in Fig. 4.

In Fig. 4, if \(d(v_1) = 3 \), then \(v_1 \) is incident with at most one 3-face and \(d(v_2) = 7 \). Thus \(\gamma(v \rightarrow f_i) = 2 \) for \(i \in \{1, 2\} \). If \(d(v_2) = 3 \), then \(d(v_i) \geq 4 \) for \(i \in \{3, 4, 5\} \) by lacking of \((B_2)\). Thus \(\gamma(v \rightarrow f_i) = 2 \) for \(i \in \{3, 4\} \). Otherwise, we have that \(d(v_1) \geq 4 \) and \(d(v_2) \geq 4 \). Thus \(\gamma(v \rightarrow f_i) = 2 \) for \(i \in \{1, 2\} \). In any case, \(v \) is incident with at least two 3-faces which receive 2 from \(v \).

We shall show that \(w^*(x) \geq 0 \) for all \(x \in V(G) \cup F(G) \). Suppose that \(v \) is a \(k \)-vertex. If \(k = 3 \), then \(w^*(v) \geq w(v) - \max\{3 \times \frac{1}{2}, 1\} = 0 \). If \(k = 4 \), then \(w^*(v) \geq w(v) - 4 \times 1 = 0 \). Let \(k = 5 \). If \(n_3(v) = 5 \), then \(w^*(v) = w(v) - 5 \times \frac{2}{3} = 0 \). If \(n_3(v) = 4 \), then \(w^*(v) \geq w(v) - 4 \times \frac{3}{3} - 1 = 0 \). Now suppose that \(n_3(v) \leq 3 \). If \(v \) is incident with at least two \(8^+ \)-faces, then \(w^*(v) \geq w(v) - 3 \times 2 = 1 > 0 \). Otherwise, \(w^*(v) \geq w(v) - 3 \times \frac{5}{3} - 2 \times 1 = 0 \). If \(k = 6 \), then \(v \) is incident with at most four 3-faces by \((C_2)\). Thus \(w^*(v) \geq w(v) - 4 \times 2 - 2 \times 1 = 0 \). Suppose that \(k = 7 \). If \(v \) is incident with at most three 3-faces, then \(w^*(v) \geq w(v) - 3 \times \frac{7}{3} - 4 \times \frac{3}{2} = 0 \). If \(v \) is incident with four 3-faces, then \(v \) is incident with at least one \(8^+ \)-face by \((P_5)\). Thus \(w^*(v) \geq w(v) - 4 \times \frac{7}{2} - 2 \times \frac{3}{2} = \frac{2}{3} > 0 \).
Otherwise, v is incident with exactly five 3-faces. In this case, if the other faces incident with v are 8^+-faces, then $w^*(v) \geq w(v) - 5 \times \frac{7}{3} = \frac{1}{2} > 0$. Otherwise, it must be the case in Fig. 4 by (P$_6$). Thus v is incident with at least two 3-faces which receive 2 from v and then $w^*(v) \geq w(v) - 3 \times \frac{7}{3} - 2 \times 2 - \frac{3}{2} = \frac{1}{2} > 0$. Let $k = 8$. If v is incident with at most four 3-faces, then $w^*(v) \geq w(v) - 4 \times \frac{7}{3} - 4 \times \frac{3}{2} = \frac{2}{3} > 0$. Now suppose that v is incident with five 3-faces. If v is incident with three continuous 3-faces, then v is incident with at least one 8^+-face by (P$_4$). Thus $w^*(v) \geq w(v) - 5 \times \frac{7}{3} - 2 \times \frac{3}{2} = \frac{4}{3} > 0$. Otherwise, it must be the case in Fig. 5. It is easy to verify that v is incident with at least one 5^+-face and then $w^*(v) \geq w(v) - 5 \times \frac{7}{3} - 2 \times \frac{3}{2} - 1 = \frac{1}{3} > 0$. If v is incident with six 3-faces, then v is incident with at least one 8^+-face. Thus $w^*(v) \geq w(v) - 6 \times \frac{7}{3} - \frac{3}{2} = \frac{5}{6} > 0$.

Let $k \geq 9$. If $m_3(v) \leq k - 3$, then $w^*(v) \geq w(v) - (k - 3) \times \frac{7}{3} - 3 \times \frac{3}{2} = \frac{2}{3}k - \frac{11}{2} > 0$. Otherwise, $n_3(v) = k - 2$ and v is incident with at least one 8^+-face. Thus $w^*(v) \geq w(v) - (k - 2) \times \frac{7}{3} - \frac{3}{2} = \frac{2}{3}k - \frac{29}{6} > 0$.

Let f be any face of G. Clearly, $w^*(f) = w(f) \geq 0$ if $d(f) \geq 8$. Now suppose that $f = v_1v_2v_3v_4$ is a 3-face with $d(v_1) \leq d(v_2) \leq d(v_3)$. If $d(v_1) = 3$, then $d(v_2) = d(v_3) = \Delta(G) \geq 7$ by (P$_1$). Thus $w^*(f) \geq w(f) + \min\{1 + 2 \times \frac{7}{3}, \frac{1}{2} + 2 \times \frac{7}{3}\} = 0$. If $d(v_1) = 4$, then $d(v_2) \geq 6$ and $d(v_3) \geq 6$. Thus $w^*(f) \geq w(f) + 1 + 2 \times 2 = 0$. Now suppose that $d(v_1) = 5$. If there is a 5-vertex $v \in \{v_1, v_2, v_3\}$ satisfying $n_3(v) = 5$, then $w^*(f) \geq w(f) + \frac{7}{3} + 2 \times 2 = \frac{2}{3} > 0$. Otherwise, $\gamma(v_i \rightarrow f) \geq \frac{3}{2}$ for $i = 1, 2, 3$. In this case, if $d(v_3) \geq 6$, then $\gamma(v_3 \rightarrow f) = 2$ and $w^*(f) \geq w(f) + 2 \times \frac{3}{2} = 0$. Now suppose that $d(v_1) = d(v_2) = d(v_3) = 5$. Without loss of generality, let $\gamma(v_1 \rightarrow f) \leq \gamma(v_2 \rightarrow f) \leq \gamma(v_3 \rightarrow f)$. If $\gamma(v_1 \rightarrow f) \geq \frac{3}{2}$, then $w^*(f) \geq w(f) + 3 \times \frac{3}{2} > 0$. Otherwise, we have $\gamma(v_1 \rightarrow f) = \frac{3}{2}$. It implies that $n_3(v_1) = 4$. It follows from (P$_3$) that either v_2 or v_3 is incident with at least two 8^+-faces and then $w^*(f) \geq w(f) + 2 \times \frac{3}{2} = 0$. Now suppose that $d(v_1) \geq 6$, then $w^*(f) = w(f) + 3 \times 2 = 1 > 0$.

Let $f = v_1v_2v_3v_4v_5$ be a 4-face. If $d(f) = 3$, without loss of generality, let $d(v_1) = 3$. Then $d(v_2) = d(v_3) = \Delta(G) \geq 7$ and $d(v_4) \geq 4$. Thus $w^*(f) \geq w(f) + 2 \times \frac{3}{2} + 1 = 0$. Otherwise, $w^*(f) \geq w(f) + 4 \times 1 = 0$. If $5 \leq d(f) \leq 6$, then f is incident with at least three 4^+-vertices. Thus $w^*(f) \geq w(f) + 3 \times 1 \geq 0$.

This completes the proof of Lemma 2.2. ■

3. Proof of theorems

In this section, we will prove the Theorems 1.1 and 1.2 by contradiction.

Proof of Theorem 1.1. The proof is carried out by contradiction. Let G be a minimal counterexample to the theorem. Then there is an edge assignment L with $|L(e)| \geq k$ for all $e \in E(G)$, where $k = \max\{7, \Delta(G) + 1\}$, such that G is not edge-L-colorable. By Lemma 2.1, we consider three cases as follows.

Case 1. G contains an edge uv with $d(u) + d(v) \leq \max\{8, \Delta(G) + 2\}$. Consider the graph $G' = G - uv$. Then G' has an edge-L-coloring ϕ. Since there exists at most $\max\{6, \Delta(G)\}$ edges adjacent to uv and $|L(uv)| \geq \max\{7, \Delta(G) + 1\}$, we can color uv with some color from $L(uv)$ that was not used by ϕ on the edges adjacent to uv. It is easy to see that the resulting coloring is an edge-L-coloring of G. This contradicts the choice of G.

Case 2. There is a 4-cycle $C = v_1v_2v_3v_4v_1$ such that $d(v_1) = d(v_2) = 3$, and $d(v_3) = d(v_4) = \Delta(G)$. Let G' be the subgraph of G obtained by deleting the edges on C. Then G' has an edge-L-coloring ϕ. Define an edge
assignment L' of C such that $L'(e) = L(e) \setminus \{\phi(e')|e' \in E(G')\}$ is adjacent to e in G} for each $e \in E(C)$. It is easy to inspect that $|L'(e)| \geq 2$ for each $e \in E(C)$. Thus C is edge-L'-colorable and hence G is edge-L-colorable, which is a contradiction.

Case 3. G contains a special vertex v of C which is incident with two $(3, 6, 6)$-faces and one $(4, 5, 6)$-face. Let H be the special subgraph containing v as shown in Fig. 1. Without loss of generality, we assume that $d(v_1) = d(v_3) = 3$, $d(v_2) = d(v_4) = 6$, $d(v_5) = 4$, and $d(v_6) = 5$. Let G' be the subgraph of G obtained by deleting the edges on H. Then G' has an edge-L-coloring ϕ. Define an edge assignment L' of H such that $L'(e) = L(e) \setminus \{\phi(e')|e' \in E(G')\}$ is adjacent to e in G} for each $e \in E(H)$. It is easy to inspect that $|L'(v_i v_{i+1})| \geq 2$ for $i = 1, 3, 5$, $|L'(v_1 v_2)| \geq 6$ for $i = 1, 3$, $|L'(v_i v_4)| \geq 3$ for $i = 2, 4$, $|L'(v_2 v_5)| \geq 5$, and $|L'(v_4 v_6)| \geq 4$. If $|L'(v_1 v_2)| \geq 3$, then color $v_2, v_4, v_3 v_4, v_5 v_6, v_3 v_5, v_4 v_5, v_1 v_2$, and $v_1 v_2$, successively. Otherwise, since $|L'(v_2 v_5)| \geq 3$, there exists $v \in L'(v_2 v_5) \setminus L'(v_1 v_2)$. We color $v_2, v_4, v_5 v_6, v_3 v_5, v_4 v_5, v_1 v_2$, successively. Thus H is edge-L'-colorable, and hence G is edge-L-colorable, which is a contradiction. This completes the proof. ■

Proof of Theorem 1.2. The proof is carried out by contradiction. Let G be a minimal counterexample to the theorem. Then there is an edge assignment L with $|L(e)| \geq k$ for all $e \in E(G)$, where $k = \max\{8, \Delta(G) + 1\}$, such that G is not edge-L-colorable. By Lemma 2.2, we consider two cases as follows.

Case 1. G contains an edge uv with $d(u) + d(v) \leq \max\{9, \Delta(G) + 2\}$. Consider the graph $G' = G - uv$. Then G' has an edge-L-coloring ϕ. Since there exists at most $\max\{7, \Delta(G)\}$ edges adjacent to uv and $|L(uv)| \geq \max\{8, \Delta(G) + 1\}$, we can color uv with some color from $L(uv)$ that was not used by ϕ on the edges adjacent to uv, which is a contradiction.

Case 2. There is a 4-cycle $C = v_1 v_2 v_3 v_4 v_1$ such that $d(v_1) = d(v_3) = 3$, and $d(v_2) = d(v_4) = \Delta(G)$. Let G' be the subgraph of G obtained by deleting the edges on C. Then G' has an edge-L-coloring ϕ. Define an edge assignment L' of C such that $L'(e) = L(e) \setminus \{\phi(e')|e' \in E(G')\}$ is adjacent to e in G} for each $e \in E(C)$. It is easy to inspect that $|L'(e)| \geq 2$ for each $e \in E(C)$. Thus C is edge-L'-colorable and hence G is edge-L-colorable, which is a contradiction. This completes the proof. ■

References