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For any property d~ of a model (or graph), let ~n(&) be the fraction of models of power n 
which satisfy &, and let ~(d~) = lim~__~ Izn(d)) if this limit exists. For first-order properties &, it is 
known that ~(&) must be 0 or 1. We answer a question of K. Compton by proving in a strong 
way that this 0-1 law can fail if we allow monadic quantification (that is, quantification over 
sets) in defining the sentence &. In fact, by producing a monadic sentence which codes 
arithmetic on n with probability ~ = 1, we show that every recursive real is ~(&) for some 
monadic d). 

For any sentence d~ of any logic, let ~,,(d~) be the fraction of models of 
cardinality n which satisfy d~. (A precise definition appears in Definition 1 below.) 
Then let ~(d))=limn_.~ ~n(d)), if this limit exists. Fagin [2] and independently 
Glebskii, Kogan, Liogon'kii, and Talanov [4] proved that ~(d~) is 0 or 1 for each 
first-order sentence d) without function or constant symbols. A related result for 
the space of countable models was proved by Gaifman [3]. For other related 
references the reader may consult Lynch [5] and Compton [1]. 

In second-order logic one allows quantification over arbitrary relations. For this 
logic the limit t~(d~) need not even exist; for example, if IAI = n then A satisfies 
"there is a permutation of order 2 without fixed points" itf n is even. This 
example disappears if we restrict the second-order quantifiers to quantifiers over 
sets. The  resulting logic is called monadic second-order logic. Note that we allow 
n-place relation symbols in the vocabulary. If the vocabulary is restricted to unary 
predicates, then it is known that the 0-1 law holds. The following question of K. 
Compton appears in [6]: does ~(d~) exist and equal 0 or 1 for all monadic 
second-order d)? In this paper we answer this question negatively in a strong way 
by proving Theorem 2 below. First let us formally give the requisite definition. 
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Notation. We identify each natural number  n with the set of its predecessors, i.e. 

n ={0, 1 , . . . ,  n - l } .  

Definition 1. Let L be a finite vocabulary. (Usually L will consist of a single 
binary relation symbol R.) Let S~ be the space of all L-structures with universe 

{0, 1 , . . . ,  n -  1}= n. Then set/.t~(4') = [{qg ~ S~: q/V4'}[/[S,,[. If l im,_~/~,(4 ' )  exists, 
we denote this l imit  by /~(4'). 

We are about ready to state the main theorem and its consequence that answers 
Compton's  question. Let + tn denote {(x, y, z )~  n × n x n: x + y = z}; similarly for 
x in. Notice that in first-order logic one may assert (of a finite model) that 
(n, 4'(x, y, z , . . . ) ,  if(x, y, z, . . .)) --- (n, + tn, x n), where n is the cardinality of the 
model  but this sentence does not depend on n. Let us abbreviate this sentence by 

"(4', #,>---(+, x>". 

Theorem L There are monadic second-order formulas 4'+(x,y, z , [ ' ,R)  and 

4'×(x, y, z,/3, R),  where R is a binary relation symbol and/3 is a sequence of unary 
relation symbols, such that the following sentence has probability g = 1: 

=1/3((4'+(x, y, z,/3, R),  4'×(x, y, z,/3, R))  ~ ( + ,  x)) 

(where this abbreviation is defined above). 

The following result  implies that there are sentences of monadic  second-order 
logic which have no limit and sentences with any recursive real as the limit. 

Theorem 2. Let T be any recursively enumerable tree of finite sequences of zeros 
and ones, without terminal nodes. Then there is a sentence 4' of monadic second- 
order logic such that the set of subsequential limits from (l-g,(4'): n ~%1) equals the set 
of reals of the form ~{2-i-1:  b ( i ) -  1} for b ranging over the branches of T, i.e. 
b t n ~ T f o r a l l  n e N .  

The solution given by Theorem 2 is due to Shelah. Before giving the proofs of 
Theorems I and 2, we outline a simpler but less powerful example,  due (indepen- 
dently of Shelah) to Kaufmann and J. Schmerl, which hints at the power of 

monadic  second-order logic. 
Suppose ~d = ( A ,  R , . . . )  is a finite structure with R c_A 2. If X~_A,  say 

X is R-suitable if for all x, y e X  there is a ~ A  such that 
O/z~X)(Rza  ,-~ z = x v z  = y). Let n(R) be the largest k such that every subset of 
A of power k is R-suitable.  Then there is a monadic  second-order formula 
4,~(X) which says that X has power at most n(R). 4,~(X) is 
vz["lxl < R Izl" v ("lzl  <R Ixl" ^ " z  is R-suitable")], where "lxl  Izl" is 

3 X l ~ 2 3 X a 3 Z 1 3 Z z 3 Z a [ X =  X 1U X 2 U X 3 

^ Z ~ Z ,  UZ2UZ3^ A 3P((Vx~)(3 !  u~P)Rxu  
1 ~ i ~ 3  

^ (Vu ~P)(~!! x ~ ) R x u  ^ ( V z ~ ) ( 3 !  u~P)Rzu  ^ ( V u ~ P ) ( 3 z ~ . ) R z u ) ] ,  
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and "IxI<R Izl" is similar except that z ~ z x u z 2 o z 3 .  Let ~bR(X) say that 
IXI=n(R) ,  i.e. ~b~(X)^3y~¢b~(XO{y}).  Now consider a vocabulary with 2 
binary relations R and S. We claim that the following sentence does not have 
probability 1: ::IX(CbR(X)ACbs(X)), i.e. n ( R ) =  n(S). This will be seen to follow 
from the following observations. 

(1) Let i i =least  i such that i .~(n(R)=i) is a maximum (for fixed ]). Then 
iz(n(R) = n(S)) = 1 itt limj__~ I.q(n(R) = i~) = 1. 

(2) For all k, ~(n(R)>~ k ) =  1. 
(3) If /~(n(R) ~ i) > 1 - s then/Xi+l(n(R) ~< i) > ( 1 -  s)(1 - 2-(i+1)). 
(1) is easy to prove, and (2) is an easy consequence of the fact that a first-order 

sentence ~b holds in the countable universal homogeneous model itt/z(~b) = 1 (of. 
Fagin [2]). To verify (3), given a random model of power ] + 1, pick a random 
submodel of power 1. Assuming ~ ( n ( R ) ~ i ) >  l - e ,  with probability > l - e  this 
submodel has a counterexample (X; a, b e X)  to (i + 1)-suitability. The probability 
that the element c outside the submodel 'restores' X (i.e. R a c ^ R b c ^ ( V x e X )  
(Rxc ---> x = a v x  = b)) is 2 -(i+1), and (3) follows. Now by (1) and (2), if iz(n(R)= 
n(S)) = 1 then for all k there exist arbitrarily large ] such that ii+~ > i i > k. Setting 
i =/i  this contradicts (3). Therefore Iz,,(n(R) = n(S)) -/-> 1. 

Finally, since iz(n(R)= n(S) )~  1 (if indeed this limit exists at all), then since 
/z,(n(R) > n(S))= I~,,(n(S)> n(R)) for all n, we see that i z (n(R)> n(S)) is neither 
0 nor 1. We do not know if /z(n(R)= n(S)) exists. There is also a monadic 
second-order sentence ~k asserting that n(R) is an even number. While it seems 
likely that /~($)=½, we do not even know whether /~($)  exists. 

We turn now to: 

l~root of "Iheorem 1. Fix n, and let k be the unique integer satisfying 2 3 k ~  n < 

23(k+z). Also fix B = { 0 ,  1 , . . . ,  k - l }  and C={0 ,  1 , . . . ,  1 0 k -  1}; then B___C. We 
will code arithmetic on 2 k by coding all subsets of B, and then viewing these codes 
as binary expansions of numbers less than 2 k. Then we will view elements of n 
(recall n ={0, 1 , . . . ,  n - 1 } )  as coding distinct subsets of C, and use this idea 
together with the arithmetic on 2 k to code arithmetic on n. We begin by proving 
three claims which say that with probability 1, we can do such coding. 

(1) Let  ~o say that for all A _qB, there is a such that A = { / ~ B :  IRa}. Then 

!.~(~o) = 1. 

Proof. For each A ~ _ B  and a < n  the probability of " A  = { I ~ B :  IRa}" is 2 -k. 
These are independent events as a varies over elements of n. Hence the 
probability that OCaen) ( A # { I ~ B : I R a } )  is (1--2-k)"~e-"/2k~<e-2"~, so the 
probability that this occurs for some A ~_B is ~<2ke-2~<e --~". 

(2) Let  01 say that for all distinct a, /3eC,  { l e B :  l R a } ~ { l e B :  IR/3}. Then 
= 1 .  

Proo[. For each pair a ~ / 3  the probability that { I~B:  I R a } = { I ~ B :  IR[3} is 2 -k. 
So the probability that this holds for some a , / 3 ~ C  is at most ICIZ2 -k. = 
100k 2 2 - k <  n -x/4 for sufficiently large n. 
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(3) Let to2 say that for all a <[3 < n ,  (l ~ C: l R a } ~ { l  ~ C: lR[3}. Then/~(toz) = 1. 

PgOO[. /.tm(---lto2) ~ n 2 2 - Ic l  ~26 (k+1)  2 - l ° k  = 2 -4k+6 ~ 0,  and (3) follows. 

By (1), (2), and (3) we may assume henceforth that the model  M = ( n ,  R )  
satisfies too^ tot ^ to2. No more  probability arguments will appear. Rather, we will 
expand M by adding various unary predicates so that addition and multiplication 
restricted to n are definable in the expanded structure by certain formulas rb and to 
(respectively). This of course yields the theorem. For a technical reason we also 
assume 10k < [ 4 ~ ] .  

Our first step is to expand M to a structure Mo (adding only unary predicates) 
so that there is a l inear order on B definable in Mo. In fact, as B =  
{0, 1 , . . . ,  k -  1} we would like the natural order on B to be definable in such an 

expansion Mo, and this is easily arranged as follows. For each i < k choose ai < n 
such that { 0 , 1 , . . . , i } = { j < k : j R a i } ;  this is possible as M~too. Then  let S =  
{oh: i < k}. Clearly, for i, j < k we have i <] itt (:la ~S)( iRa ^--njRot). 

It will be convenient to allow quantification over two-place relations on/3 .  This 

practice keeps us in the realm of monadic second-order logic, however, as we now 
show. First notice that since M~too, for every a ~ [ 3  from B ( = k )  there is some 
x~,,m<n such that {a, [3} ={l  ~ B :  IRx~.m}. For any relation S c_B 2, then, we may 
associate sets X, Y c_n so that X={x~ , .m:a<-[3<k  and aS[3} and Y =  
{x~.m:/3 < a < k and aS[3}. Notice that ff x~.m = x~.,,8~ then a = ~/and [3 = & It is 
then clear that S can be recovered from X and ¥,  so for any monadic  0 (S , . . . )  
there is a monadic  i f(X,  Y , . . . )  such that in Mo (or indeed, in any expansion of 

Mo), (:IS c_ B2)O ~ (:IX)(:tY)O'(X, Y, . . .). Henceforth we will freely use quantifi- 
cation over binary relations on B. In particular, + and x restricted to k = B are 
definable in Mo. 

Since M ~  too ̂  to~ we may  extend C to represent all of the subsets of B. Hence 
we may (monadically) expand Mo to a structure Mt  which has the following 
properties: 

(4) The predicate "x  ~ B "  (i.e. x < k) is definable in Mr, as is the usual order 
on k. Also C is definable in Mt  (recall C = {0, 1 , . . . ,  1 0 k -  1}), as is a set D _  C 
of power 2 k such that O~a~D) 0¢[3~D) [aT ~ [3 --*{l ~B:  lRa}7~{l ~ B :  lR[3}]. We 
may quantify over binary relations on B. In particular, arithmetic on B is 
definable in Mr. 

Now define a function f :  D --> 2 k by f ( a )  = ~ {2 i : iRa, i ~ B}. We claim: 

(5) The relation R+ ={(a,  [3, ~/): a, [3, ~ /~D and f(,y)=f(a)+f(fl)} is d e f i n a b l e  
in M1. 

For, let X_c B = k be the set of places where there is a carry in the addition 
f (a) + f ([3), i.e. where ~ {2 j: iRa, ] < i} + Y, {2 i: jR[3, j < i} >I 2 i. Choose 6 ~ D such 
that {l ~ B :  I R t } = X .  Now the requirements for f (~ / )=[ (a )+f ({3)  are local. That  
is, [ (V)=f (a )+f ( [3 )  iff for some 6, the fight thing happens at each coordinate; 
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that is, ift: iR'v,.->[(iRa,.~iR/3)~->iR/}] for all i < k; --1 OR/}; 
(i + 1)R/},-->[(iR/} ̂  iRa) v (iR/} ^ JR~3) v (iRa ^ JR~3)] for all i < k - 1; and 
-~[((k-  1)R8 ^ ( k -  1 )Ra)v  ( ( k -  1)R8 ^ ( k -  1 )R/3 )v ( (k -  1)Ra ^ ( k -  1)R/3)] (so 
that f (a )  +f(/3) <2k).  Hence (5) holds. Now we prove 

(6) The relation R× = {(a,/3, ~/) ~ D3: f ( a ) .  f(/3) = / (7)}  is definable in M1. 

Given a, 13 ~ D with f ( a ) .  f(/3) < 2 k, we define ~/ (uniformly in a and/3)  such 
that f ( a ) .  f ( /3 )= / (7 ) ,  as follows. Let / ( a ) = Y  ai2 i and f(/3)=Y~/3i2 i. Consider 
the matrix S ~ B  2 formed (roughly) by putting ~ a i 2  i+i in column ] if /3i~0, 
otherwise putting all zeros in column j. Formally, set S ={(i, j)~B2: j<~i and 
( i - j )Ra  and jR~3}. Now the intuitive idea is that f ( a ) .  f(/3) is the sum of the 
columns of S, that is, Y~ {~ {2i: (i, j) ~ S}: j < k}. So let T_~ B 2 represent the partial 
sums, that is, the j th column of T should represent the sum of the first j columns 
of S. Formally, T is characterized by setting (i, 0) ~ Tiff  (i, 0) ~ S, and (i, j + 1) ~ T 
iff there are 8, rl, v with { i < k :  iR/}}={i<k:(i,j)~T}, { i < k :  iRrl}= 
{ i<k ' ( i , j+ l ) eS} ,  and f(v)=f(/})+f(rl) (which is definable, by (5)). Finally, 
f(a).  f( /3)= f(~/) iff there are such S and T such that ~/codes the last column of 
T: Ogi<k) (iR'v~-->(i, k - 1 ) ~ T ) .  Since by (4) we are allowed quantification over 
binary relations on B, this concludes the proof of (6). 

At  this point we turn to the problem of defining arithmetic on n rather than 
merely on 2 k. As M~ qJ2 we can view n as a subset of 2 Icl. The idea is to code each 
element of M (i.e. of n) by the number of predecessors it has in M, under the 
lexicographic order on 2 Icl. We use the arithmetic available on 2 k to carry out this 
coding. Notice that by replacing M1 with an isomorphic copy (in which B and C 
are fixed pointwise by the isomorphism), we may assume by (5) and (6) that: 

(7) D = 2 k, and setting E ={ / : /2<2k} ,  we have 'plus' and 'times' on E defina- 
ble in M~. Also we can code binary relations on E in M~: for S ~_ E 2, consider 

{i- +i: (i, i )e  s}. 

We now prove: 

(8) In M1, we can define the relation "x E E A I X  I =X".  

To see this, notice that for x ~ E, we have [XI = x itt there is S __ x × 10k such 
that for all i<x, { /<10k :  iSl}={l<lOk: lR'a} for some a ~X, and conversely, 
every a ~ X has this property for some unique i < x. By M ~  ffz and the last elanse 
of (7), and since 10k __q E (as we have assumed 10k < [x/2l~]), this argument proves 
(8). 

At least we are ready to begin to define arithmetic on n, in M1. Let  m = 
max(E), and for a < n let Ilall be the number of elements which precede a in the 
lexicographic order on 2 t°k, in the following sense: 

Ilall--1{/3: for some I < 10k, IRa ^--nlR/3 ̂ (Vi<l)(iRa~--~iR/3)}[. 

Notice that the predicate 11/311<Uall is definable in M2. Thinking in base m, we 
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see that there are unique p ° , p ~ , . . . , p 6 < m  such that II~l l=~__opLm ' (as 
roT> n). We claim: 

(9) The relations "m ~ divides I1~11" (each i = 1 ,  2 , . . .  ,6) and "p~= l'" (each 
i = 0 , . . . ,  6) are definable in M~. 

In fact (9) follows easily from (8). For example, m divides Ilall if~ for some 

x-{/3: l l /311<l l~l l~u{~) ,  we have a ~ X  and /3o~X where IIt3oll=0, and for all 

/3, 3" ~ X  with /3 < T, if (V~)01/311<II~II<II~II~ 8 ¢ X )  then [{8: 11/311--<ll~ll<llwll~-- m .  

The higher powers are treated similarly. For example, "rn 2 divides Ilall" is defined 
just like "m divides a " ,  except that 1{~: 11/311~<11~11<11~11]~ = m ~ for successive 13 < 3" 

in X:  (:1 y) (/3 ~ y ^ 3' ~ Y ^ (V/3' ~ Y) (V T' ~ Y) [ C¢8) (11/3'11 < I1~ II < 113"11 ~ 8 ¢ Y) 
I{~: 11/3'll<--U~ll<l13"ll}l--m]. The higher powers rn' are handled ~imilarly, that is, 
1{~:ll/311--<ll~ll<l13"ll~=rn ' for successive /3<3" in X, and this can be said by 
subdividing {~: 11/311--_<11~11<113"11~ ( i - 1 )  t imes.  The  predicates "p~=  l" are handed  
similarly. 

Finally, we can easily define {(a,/3, 3"): 11~11+11/311--113"11} in M~, using (9) and (7). 
Also, by (9) and the distributive law, it is easy to reduce the problem of defining 
((~,/3, 3"): I1~11- U/311=3"} in M1 to the problem of finding, for all pl,  p 2 < r n ,  some  

i, j < m such that pl-  P2 = irn +]. But since we have defined arithmetic up to m 2 in 
Mr, this is also routine, and the proof is complete. [] 

Theorem 2 is a rather direct consequence of the following lemma, which we will 
prove using Theorem 1. 

I~mm~.  Suppose that f and g are re.cursive [unctions such that f(n) < g(n) for all n. 
Then there is a sentence cb of monadic second-order logic and a finite-to-one 
function h ~om N onto N such that lim~__~lm,(cb)-f(h(n))/g(h(n))l=O. 

In particular, given any recursively enumerable tree T of finite sequences of O's 
and l ' s  (as in Theorem 2), we may apply this lemma to recursive functions f and g 
such that (f(n)/g(n): n ~N) enumerates T. (Here we are of course identifying a 
node s ~ T  with the corresponding fraction ~{2-(i+t): s ( i )=  1}.) Then it is clear 
that for every branch b of T we can choose a subsequence from (~(4~): n <to)  
converging to ~{2"(i+t): b(i)= 1}, where d~ is the sentence given by the lemma. 
Conversely, if (ta~(~): n ~1) is a convergent subsequence of (~(4~): n ~N), then 
(f(h(n))/g(h(n)): n ~1-) converges, so since h is finite-to-one, there is a branch b 
of T such that (f(h(n))/g(h(n)): n ~ I) converges to Y~ {2~i+~): i ~ b}, and Theorem 
2 follows. 

l~roo! of l ~ m m L  Recall that a function f is recursive if and only if it is definable 
in (~, + , . ,  <)  by a formula =lfi0(x, y, fi) where 0 is Ao, i.e. 0 has only bounded 
quantifiers (those of the form Vvl<v2,  =lv~<vg. We may assume that the 
symbols + and - occur in 0 as ternary relation symbols. (Notice that this may 
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increase the length of ft.) By replacing =lfi with :lz :iul < z :iu2 < z • • • ::lu~ <z,  we 
see that [ is definable in (l~l, +, -, < )  by a formula =lzO(x, y, z) where O is Ao and 
has + and • as relation symbols. Notice that for all n, if (n, + ~ n,. t n, < F n)~ 
::lzO(i, j, z) then f(i) = j. Choose a similar formula 3zto(x, y, z) for g. It is conve- 
nient to assume further that N~VxVyVz[0(x ,  y, z)vto(x, y, z ) - - - > x < z ^ y < z ] ^  
VxVyx Vy2VzVw[O(x, Yl, Z)Ato(x, Y2, w)---> z = w]. The idea is that z is the least 
number coding witnesses for both 0 and to. To be precise, simply replace #(x, y, z) 
by x<z^y<z^(::iv<z)(::ly'<z)(:~w<z)[O(x, y, v)^to(x, y', w)], and then re- 
place this new formula Oo(x, y, z) by 0o(x, y, z )^ tMu<z)70o(X,  y, u); and change 
tO similarly. 

Next we define the function h. Given n, let m = [nlla]. First suppose that 

(*) n=m4+a+rnb+m2c for some a,b,c<rn such that N~O(a,b,m)^ 
to(a, c, m); 

then set h(n) = a. Notice that such a, b, and c are unique, so if (*) holds then h(n) 
is well-defined. Moreover, for all a we may choose m such that N k 
O(a,f(a),m)^to(a,g(a),m), by choice of # and to; so h(m4+a+mf(a)+ 
m2g(a)) = a, hence h is onto. Notice that there are unique b, c, m such that 
O(a, b, m)^to(a, c, m), so thus far, h is one--one. It remains to define h(n) if ( . )  
fails. In that case let h(n) equal the greatest a < m such that N k(:;y<n)(:tz<m) 
( : lw<m)[0(a,  y, w)^to(a,  z, w)]; if there is no such a (but this can happen for 
only finitely many n), set h(n)= 0. It is dear  that h is finite-to-one. 

Now let @ be the sentence given by Theorem 1, that is, @ says 
(d>+(x, y, z,/5, R), ~b×(x, y, z,/5, R)) ----- (+, ×), and lim,_.~ ~(:! /50) = 1. Consider the 
following property of a model (n, R):  

(t) (n, R)~:I/5@, h(n)~O, and [log2(n)+ 1]<[~n] .  

We will show that it suffices that @ have the following property: 

( . )  Whenever (I") holds for ( rgR) ,  then (n,R)~@ iff for some i<f(h(n)),  
[{k: kR/;}l---i (rood g(h(n))). 

In order to define @ we use the following abbreviation. For X_~ n we can write 
succx(i, ]) if i e X ,  ]~X,  and k,¢X whenever i<k<] .  Then @ should say: 

O) (ViEX)(iRi); 
(ii) (Vi)(Vj)[suecx(i, j) ---> [{k: kRk and i ~ / ;  < ]}[ = g(h(n))]; 

(iii) I{k:/cRk and max(X)<-Ic}l<f(h(n)). 
Now let us describe d~. First, @ says that for some/5, 0 (/5) holds. Now we want 
to assert (i), (ii), and ('tii) above; then (*) follows. Of course (i) presents no 
problem, and since the formulas O and to from the definitions of f and g are Ao 
(and by choice of h), f(h(n)) and g(h(n)) are definable in (n,/5, R). (More 
precisely, the f(h(n))th and g(h(n))th elements in the order defined by 0(/5) are 
definable.) So to express (ii) and Off) we need only express the cardinalities there. 
Since h(n)~O, f(h(n))<[n 1/4] and g(h(n))<[nU4], so it suffices to define 
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the relation "x <[nl/4]^lXl= x". This is similar to the proof of (8) in the 
proof of Theorem 1. First notice that we can quantify over binary relations S 
on [,fin], by coding S by {x+[~n]y:xSy}. Then for x<[nl/4], IXl=xia  Ixl  
x ^-~(IxI  x + 1), and for x <~ [n 1/4], Ix x iff for some s =_ x x [log2(-) + 1 ], we 
have O/i<x)(~{2i'iS]}~X)^(Yi<]<x)(:lk)(iSk,->~]Sk). Since [ l o g 2 ( n ) + l ] <  
[~n] if (t) holds, it follows that (*) holds for ~b. 

The next task is to see that  l i ra,_.®/~("(t)  holds") = 1. But  this is clear from the 
choice of 8 ,  together with the fact that h is finite-to-one and lim,__~ [log2(-)+ 
1]/Ix/n] = 0. 

Finally, let ~ be the probability that  I{k: kRk}[--i (rood m), where m = 
g(h(n)).  We claim: 

n ~  k<  (.)) 

But this is clear from (*), together with the fact that lim.__~ ("( t)  ho ld s " )= l .  
Hence  the lemma follows from 

But  this in turn follows from 

= 0 .  

(**) for O<~k<l<m, I k- 'l<5 /2". 

For if (**) holds, then by Stirling's formula there is a constant C (not depending 
on n) such that I~ k -~ll<~C/.4n when 0~<k < / < m ,  and hence Ig k -1/ml<-C/~/n 
for 0 ~< k < m. Then it follows that 

_ < C  C 
[(k<f~(,))/xk) '(h(n))l~-~n[(h(n))<-~nnX/4'g(h(n)) 

which has limit 0, as claimed. 
T o  prove (**) first notice that for O<~k<l<m, /~k =~i(a.~+k)/2" and /z l =  

~i (i,,~+~/2". Now if a~ = (i~+k)/2" and bi = 6,,~+t)/2", then we see that  ao < b0 < a l  < 
bx < - - ' < %  <bp, where p is greatest such that  ( p +  1)m ~<[½n], and also ap+2> 
bp+2 > ap+3  > bp+3 > "  • • > aq > bq, where q is greatest such that  qm + l <~ n. Notice 
that  

p p p - 1  

O< ~". b i -  ~'. ai <<_ ~" ai+l +bp - ai=bo-ao<bp, 
i = 0  i = 0  i = 0  i = 0  

and similarly 
q 

0 <  Y. 
i = p + 2  

q 

ai -- ~'~ bi < ap+2. 
i • p + 2  
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So we have 

(Ii ) I/~ k - /z t [  < bp + a p + 2 +  ap+  t + bo+ l + aq+  1 ~< 5 /2", 

since (t~721)~>(~ for all k. []  

We close by remarking that by Theorem 1, one has second-order logic on [,fn], in 
the following sense. Suppose • is a second-order sentence, i.e. we allow monadic 
and binary quantification in ~ ,  but ~ has no non-logical symbols (except 
equality). Then there is a monadic second-order sentence qb (with one non-logical 
symbol R, R a binary relation symbol) such that  t~[(n, R)~  • iff_[~/n] ~ ap] = 1. This 
is clear by a trick we have already used: binary relations on [x/n] can be coded by 
subsets of n via the map (i, ])~->i +[x/n]]. 
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