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Abstract

In this article, we derive some implicit summation formulae for Hermite and related polynomials by using different analytical
means on their respective generating functions.
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1. Introduction and preliminaries

The 2-variable Hermite–Kampé de Fériet polynomials (2VHKdFP) Hn(x, y) [2, p. 341 (23)] are defined as:

Hn(x, y) = n!
[n/2]∑
r=0

xn−2ryr

(n − 2r)!r! . (1.1)

In terms of classical Hermite polynomials Hn(x) or Hen(x) [1], it is easily seen from the definition (1.1) that

Hn(2x,−1) = Hn(x) (1.2a)

and

Hn

(
x,−1

2

)
= Hen(x). (1.2b)

Also, there exists the following close relationship [2, p. 341 (21)]:

Hn(x, y) = (−i)nyn/2Hn

(
ix

2
√

y

)
= in(2y)n/2Hen

(
x

i
√

2y

)
(1.3)
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with the classical Hermite polynomials. The usage of a second variable (parameter) y in the 2VHKdFP Hn(x, y)

is found to be convenient from the viewpoint of their applications. Indeed, from an entirely different viewpoint and
considerations, Hermite polynomials of several variables are introduced and investigated by Erdélyi et al. [8, p. 283].

Recently, Dattoli [4] introduced the incomplete 2-variable 2-index 1-parameter Hermite polynomials (i2V2I1PHP)
hm,n(x, y | τ) specified by the series [4, p. 447 (1a)] (see also [6])

hm,n(x, y | τ) = m!n!
min(m,n)∑

r=0

τ rxm−ryn−r

r!(m − r)!(n − r)! . (1.4)

They are defined through the generating function

exp(xu + yv + τuv) =
∞∑

m,n=0

umvn

m!n! hm,n(x, y | τ) (1.5)

and are linked to the i2V2IHP

hm,n(x, y) = m!n!
min(m,n)∑

r=0

xm−ryn−r

r!(m − r)!(n − r)! (1.6)

by the relation

hm,n(x, y | τ) = τ (m+n)/2hm,n

(
x√
τ

,
y√
τ

)
. (1.7)

Also, the i2V2I1PHP hm,n(x, y | τ) are linked to the associated Laguerre polynomials L
(α)
n (x) [1] by the relations

hm,n(x, y | τ) = m!τmxn−mL(n−m)
m

(
−xy

τ

)
, n > m,

hm,n(x, y | τ) = n!τnym−nL(m−n)
n

(
−xy

τ

)
, m > n. (1.8)

If we take τ = −1 and replace x and y by z and z̄ respectively in relations (1.8), we get

hm,n(z, z̄ | −1) = (−1)mm!(z̄)n−mL(n−m)
m (zz̄) = Lm,n(I ; z, z̄),

hm,n(z, z̄ | −1) = (−1)nn!(z)m−nL(m−n)
n (zz̄) = Lm,n(I ; z, z̄), (1.9)

where Lm,n(I ; z, z̄) is a special case of Laguerre 2D polynomials Lm,n(U ; z, z̄) [12], which play an important role for
the different representations of quasi-probabilities in quantum optics.

Again, taking m = n and replacing τ by −y in relations (1.8), we get

hn,n(x, y | −y) = (−y)nn!Ln(x), (1.10)

where Ln(x) are the ordinary Laguerre polynomials [1].
Also, we note the following special cases of i2V2I1PHP hm,n(x, y | τ):

hm,0(x, y | τ) = xm, h0,n(x, y | τ) = yn, (1.11)

hm,n(x, y | 0) = xmyn, (1.12)

hm,n(x,0 | τ) =
{

n!(m
n

)
xm−nτn if m � n,

0 if m < n,
(1.13)

and

hm,n(0, y | τ) =
{

m!(n
m

)
yn−mτm if n � m,

0 if n < m.
(1.14)

The i2V2I1PHP hm,n(x, y | τ) are particular cases of the more general family of complete multi-dimensional Her-
mite polynomials often exploited in applications concerning entangled harmonic oscillator states [7]. The possibility
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of developing the theory of complete 2D Hermite polynomials from the point of view of the incomplete forms is
analyzed in Ref. [4].

It happens very often that the solution of a given problem in physics or applied mathematics requires the evaluation
of infinite sums, involving special functions. Problems of this type arise, e.g., in the computation of the higher-
order moments of a distribution or to evaluate transition matrix elements in quantum mechanics. In [5], Dattoli has
shown that summation formulae of special functions, often encountered in applications ranging from electromagnetic
processes to combinatorics, can be written in terms of Hermite polynomials with more than one variable.

Motivated by the work going in this direction, in this paper, we derive the implicit summation formulae for Her-
mite polynomials Hn(x) and for i2V2I1PHP hm,n(x, y | τ) by using different analytical means on their respective
generating functions.

Just to give an idea of the procedure adopted here, we consider the generating function [10, p. 196]

exp
(
2x(t + u) − (t + u)2) =

∞∑
k,l=0

tkul

k!l! Hk+l(x), (1.15)

which on separating the power series in r.h.s. into their even and odd terms by using the elementary identity

∞∑
n=0

Φ(n) =
∞∑

n=0

Φ(2n) +
∞∑

n=0

Φ(2n + 1) (1.16)

becomes

exp
(
2x(t + u) − (t + u)2) =

∞∑
k=0

t2k

(2k)!

( ∞∑
l=0

u2l

(2l)!H2k+2l (x) +
∞∑
l=0

u2l+1

(2l + 1)!H2k+2l+1(x)

)

+
∞∑

k=0

t2k+1

(2k + 1)!

( ∞∑
l=0

u2l

(2l)!H2k+2l+1(x) +
∞∑
l=0

u2l+1

(2l + 1)!H2k+2l+2(x)

)
. (1.17)

Now replacing t by it and u by iu in Eq. (1.17) and equating the real and imaginary parts of the resultant equation,
we get the summation formulae

exp
(
(u + t)2) cos

(
2x(u + t)

) =
∞∑

k,l=0

(−1)k+l t2ku2l

(2k)!(2l)! H2k+2l (x) +
∞∑

k,l=0

(−1)k+l t2k+1u2l+1

(2k + 1)!(2l + 1)! H2k+2l+2(x)

(1.18)

and

exp
(
(u + t)2) sin

(
2x(u + t)

) =
∞∑

k,l=0

(−1)k+l t2ku2l+1

(2k)!(2l + 1)! H2k+2l+1(x) +
∞∑

k,l=0

(−1)k+l t2k+1u2l

(2k + 1)!(2l)! H2k+2l+1(x).

(1.19)

Further, taking t → 0 in formulae (1.18) and (1.19), we obtain the well-known results for the Hermite polynomials
Hn(x) [9, p. 252]

exp
(
u2) cos(2xu) =

∞∑
l=0

(−1)lu2l

(2l)! H2l (x) (1.20)

and

exp
(
u2) sin(2xu) =

∞∑
l=0

(−1)lu2l+1

(2l + 1)! H2l+1(x). (1.21)

In the following sections, we will see how the above results can be extended to more generalized forms of Hermite
polynomials.
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2. Implicit formulae involving Hermite polynomials Hn(x)

First we prove the following results involving Hermite polynomials Hn(x):

Theorem 2.1. The following implicit summation formula for Hermite polynomials Hn(x) holds true:

Hk+l (y) =
k,l∑

n,m=0

(
k

n

)(
l

m

)(
2(y − x)

)n+m
Hk+l−n−m(x). (2.1)

Proof. We rewrite the generating function (1.15) as:

exp
(−(t + u)2) = exp

(−2x(t + u)
) ∞∑

k,l=0

tkul

k!l! Hk+l (x).

Replacing x by y in the above equation and equating the resultant equation to the above equation, we find

∞∑
k,l=0

tkul

k!l! Hk+l (y) = exp
(
2(y − x)(t + u)

) ∞∑
k,l=0

tkul

k!l! Hk+l (x)

or
∞∑

k,l=0

tkul

k!l! Hk+l (y) =
∞∑

N=0

[2(y − x)]N(t + u)N

N !
∞∑

k,l=0

tkul

k!l! Hk+l (x), (2.2)

which on using formula [11, p. 52 (2)]

∞∑
N=0

f (N)
(x + y)N

N ! =
∞∑

n,m=0

f (n + m)
xnym

n!m! , (2.3)

in the r.h.s. becomes
∞∑

k,l=0

tkul

k!l! Hk+l (y) =
∞∑

n,m=0

[2(y − x)]n+mtnum

n!m!
∞∑

k,l=0

tkul

k!l! Hk+l (x). (2.4)

Now, replacing k by k − n, l by l − m and using the lemma [11, p. 100 (1)]

∞∑
k,n=0

A(n, k) =
∞∑

k=0

k∑
n=0

A(n, k − n), (2.5)

in the r.h.s. of Eq. (2.4), we find

∞∑
k,l=0

tkul

k!l! Hk+l (y) =
∞∑

k,l=0

k,l∑
n,m=0

[2(y − x)]n+mtkul

n!m!(k − n)!(l − m)!Hk+l−n−m(x). (2.6)

Finally, on equating the coefficients of like powers of t and u in Eq. (2.6), we are led to the assertion (2.1) of
Theorem 2.1. �
Remark 1. By taking l = 0 in Theorem 2.1, we immediately deduce the following consequence of Theorem 2.1.

Corollary 2.1. The following implicit summation formula for Hermite polynomials Hn(x) holds true:

Hk(y) =
k∑

n=0

(
k

n

)
2n(y − x)nHk−n(x). (2.7)
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Remark 2. On replacing y by x + y in Eq. (2.7) we obtain [9, p. 255 (5.6.4)]

Hn(x + y) =
n∑

m=0

(
n

m

)
(2y)n−mHm(x). (2.8)

Theorem 2.2. The following implicit summation formula for Hermite polynomials Hn(x) holds true:

(x)2k+δ

(2k + δ)!H2k+δ(y) =
k∑

m=0

(y2 − x2)m(y)2k+δ−2m

m!(2k + δ − 2m)! H2k+δ−2m(x), δ ∈ {0,1}. (2.9)

Proof. We rewrite Eqs. (1.20) and (1.21) as:

exp
(−t2) ∞∑

k=0

(−1)kt2k+δ

(2k + δ)! H2k+δ(x) =
{

cos(2xt), when δ = 0
sin(2xt), when δ = 1

}
.

Replacing t by yz in the above equation, we find

exp
(−y2z2) ∞∑

k=0

(−1)k(yz)2k+δ

(2k + δ)! H2k+δ(x) =
{

cos(2xyz), when δ = 0
sin(2xyz), when δ = 1

}
. (2.10)

Again, replacing x by y and y by x in Eq. (2.10) and equating the resultant equation to Eq. (2.10), we find, after
expanding the exponential in series

∞∑
k=0

(−1)k(xz)2k+δ

(2k + δ)! H2k+δ(y) =
∞∑

k,m=0

(x2 − y2)mz2m(−1)k(yz)2k+δ

m!(2k + δ)! H2k+δ(x), δ ∈ {0,1}. (2.11)

Now, replacing k by k − m and using Eq. (2.5) in the r.h.s. of the above equation and equating the coefficients of
like powers of z, we get the assertion (2.9) of Theorem 2.2. �
Remark 1. Taking k = 1 in Eq. (2.9), we get

(x)δ+2

(δ + 2)!Hδ+2(y) = (y)δ+2

(δ + 2)!Hδ+2(x) + yδ(y2 − x2)

δ! Hδ(x), δ ∈ {0,1}. (2.12)

Remark 2. Setting x = √
2y in Eq. (2.9), we get

(2)k+ δ
2

(2k + δ)!H2k+δ(y) =
k∑

m=0

(−1)m

m!(2k + δ − 2m)!H2k+δ−2m(
√

2y). (2.13)

Now, we prove the following results involving product of Hermite polynomials Hn(x):

Theorem 2.3. The following implicit summation formula involving product of Hermite polynomials Hn(x) holds true:

( x
y
)l

k!l! Hk+l(X) =
k∑

n=0

l−n∑
m=0

( x2

y2 − 1)m/2(2(1 − x
y
))n

m!n!(k − n)!(l − m − n)!Hm

(
X

√(
x − y

x + y

))
Hk+l−m−2n(X). (2.14)

Proof. After replacing x by X, we rewrite the generating function (1.15) as:

exp
(
2X(u + t) − (u + t)2) =

∞∑
k,l=0

tkul

k!l! Hk+l (X),

which on replacing u by yz and t by YZ becomes
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exp(2XYZ) = exp
(−2Xyz + (yz + YZ)2) ∞∑

k,l=0

(YZ)k(yz)l

k!l! Hk+l (X). (2.15)

Again, replacing x by y and y by x in Eq. (2.15) and equating the resultant equation to Eq. (2.15), we find

∞∑
k,l=0

(YZ)k(xz)l

k!l! Hk+l (X) = exp
(
2Xz(x − y) − z2(x2 − y2)) exp

(
2z(y − x)YZ

) ∞∑
k,l=0

(YZ)k(yz)l

k!l! Hk+l (X).

(2.16)

By setting T := z
√

(x2 − y2) and x′ := X
√

(
x−y
x+y

) in Eq. (2.16), the first exponential in the r.h.s. becomes the

generating function of Hermite polynomials Hn(x):

exp
(
2x′T − T 2) =

∞∑
m=0

T m

m! Hm(x′). (2.17)

Now, from Eqs. (2.16) and (2.17), we have

∞∑
k,l=0

(YZ)k(xz)l

k!l! Hk+l (X) =
∞∑

m=0

Hm

(
X

√(
x − y

x + y

))
zm(x2 − y2)m/2

m!
∞∑

n=0

(2(y − x))nzn(YZ)n

n!

×
∞∑

k,l=0

(YZ)k(yz)l

k!l! Hk+l (X). (2.18)

Finally, replacing l by l − m − n, k by k − n and using Eq. (2.5) in the r.h.s. of Eq. (2.18) and then equating the
coefficients of like powers of (YZ) and z, we get formula (2.14). �
Remark 1. By taking l − n = N and k = 0 in Theorem 2.3, we immediately deduce the following consequence of
Theorem 2.3.

Corollary 2.2. The following implicit summation formula involving product of Hermite polynomials Hn(x) holds true:

(
x

y

)N

Hn(X) =
N∑

m=0

(
N

m

)(
x2

y2
− 1

)m/2

Hm

(
X

√(
x − y

x + y

))
HN−m(X). (2.19)

Theorem 2.4. The following implicit summation formula involving product of Hermite polynomials Hn(x) holds true:

( x
y
)r (X

Y
)s

r!s! Hr(y)Hs(Y ) =
[r/2]∑
m=0

[s/2]∑
n=0

(1 − x2

y2 )m(1 − X2

Y 2 )n

m!n!(r − 2m)!(s − 2n)!Hr−2m(x)Hs−2n(X). (2.20)

Proof. Consider the product of Hermite polynomials generating functions (2.17) in the following form:

exp
(−(

2xt + 2XT + t2 + T 2)) =
∞∑

r,s=0

(−1)r+s t rT s

r!s! Hr(x)Hs(X), (2.21)

which on replacing t by yz and T by YZ becomes

exp
(−(

2xyz + 2XYZ + y2z2 + Y 2Z2)) =
∞∑

r,s=0

(−1)r+s(yz)r (YZ)s

r!s! Hr(x)Hs(X). (2.22)

Next, replacing x by y, y by x, X by Y and Y by X in Eq. (2.22) and equating the resultant equation to Eq. (2.22),
we find, after expanding the exponentials in series
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∞∑
r,s=0

(−1)r+s(xz)r (XZ)s

r!s! Hr(y)Hs(Y )

=
∞∑

r,m=0

(y2 − x2)mz2m(−1)r (yz)r

m!r! Hr(x)

∞∑
s,n=0

(Y 2 − X2)nZ2n(−1)s(YZ)s

n!s! Hs(X). (2.23)

Finally, replacing r by r − 2m, s by s − 2n and using the lemma [11, p. 100 (3)]

∞∑
r,m=0

A(m, r) =
∞∑

r=0

[r/2]∑
m=0

A(m, r − 2m),

in the r.h.s. of Eq. (2.23) and then equating the coefficients of like powers of z and Z, we get formula (2.20). �
3. Implicit formulae involving i2V2I1PHP hm,n(x,y | τ)

We prove the following results involving i2V2I1PHP hm,n(x, y | τ):

Theorem 3.1. The following implicit summation formula involving i2V2I1PHP hm,n(x, y | τ) holds true:

(
x

y

)m(
X

Y

)n

hm,n(y,Y | τ) =
min(m,n)∑

M=0

M!
(

m

M

)(
n

M

)(
τ

(
xX − yY

yY

))M

hm−M,n−M(x,X | τ). (3.1)

Proof. We rewrite the generating function (1.5) as:

exp(xt + XT + τ tT ) =
∞∑

m,n=0

tmT n

m!n! hm,n(x,X | τ), (3.2)

which on replacing t by yz and T by YZ becomes

exp(xyz + XYZ + τyzYZ) =
∞∑

m,n=0

(yz)m(YZ)n

m!n! hm,n(x,X | τ). (3.3)

Next, replacing x by y, y by x, X by Y and Y by X in Eq. (3.3) and equating the resultant equation to Eq. (3.3),
we find, after expanding the exponential in series

∞∑
m,n=0

(xz)m(XZ)n

m!n! hm,n(y,Y | τ) =
∞∑

M=0

(τzZ)M(xX − yY )M

M!
∞∑

m,n=0

(yz)m(YZ)n

m!n! hm,n(x,X | τ). (3.4)

Now, we replace m by m − M and n by n − M in the r.h.s. of Eq. (3.4) to obtain

∞∑
m,n=0

(xz)m(XZ)n

m!n! hm,n(y,Y | τ)

=
∞∑

m,n=0

(yz)m(YZ)n
min(m,n)∑

M=0

1

M!(m − M)!(n − M)!
(

τ

(
xX − yY

yY

))M

hm−M,n−M(x,X | τ),

which on equating the coefficients of like powers of z and Z yields formula (3.1). �
Theorem 3.2. The following implicit summation formula involving i2V2I1PHP hm,n(x, y | τ) holds true:

hm,n(y, x | τ) =
m,n∑

M,N=0

(
m

M

)(
n

N

)
(y − x)M(x − y)Nhm−M,n−N(x, y | τ). (3.5)
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Proof. From generating function (1.5), we have

exp(τuv) = exp(−xu − yv)

∞∑
m,n=0

umvn

m!n! hm,n(x, y | τ). (3.6)

Now, replacing x by y and y by x in Eq. (3.6) and equating the resultant equation to Eq. (3.6), we find, after
expanding the exponentials in series

∞∑
m,n=0

umvn

m!n! hm,n(y, x | τ) =
∞∑

M=0

(y − x)MuM

M!
∞∑

N=0

(x − y)NvN

N !
∞∑

m,n=0

umvn

m!n! hm,n(x, y | τ). (3.7)

Again replacing m by m − M , n by n − N and using Eq. (2.5) in the r.h.s. of Eq. (3.7), we find

∞∑
m,n=0

umvn

m!n! hm,n(y, x | τ) =
∞∑

m,n=0

m,n∑
M,N=0

(y − x)M(x − y)N

M!N !(m − M)!(n − N)!hm−M,n−M(x, y | τ)umvn, (3.8)

which on equating the coefficients of like powers of u and v, yields the assertion (3.5) of Theorem 3.2. �
Remark 1. Taking τ = 0 in Eq. (3.5) and using Eq. (1.12), we get

m,n∑
M,N=0

(
m

M

)(
n

N

)(
y − x

x

)M(
x − y

y

)N(
x

y

)m(
y

x

)n

= 1. (3.9)

By using relations (1.8), the summation formulae (3.1) and (3.5) can be expressed in terms of the associated
Laguerre polynomials L

(α)
n (x). Also, summation formulae (3.1) and (3.5) can be expressed in terms of the Laguerre

2D polynomials Lm,n(I ;Z, Z̄) and Laguerre polynomials Ln(x) by using relations (1.9) and (1.10), respectively.

4. Concluding remarks

In the previous sections, we have derived several implicit summation formulae for Hermite polynomials Hn(x)

and for i2V2I1PHP hm,n(x, y | τ) by using different analytical means on their respective generating functions. This
process can be extended to establish summation formulae for more generalized forms of Hermite polynomials.

To give an example, we consider the 4-variable 2-index 1-parameter Hermite polynomials (4V2I1PHP) Hm,n(x, z;
y,w | τ) defined as [3]:

Hm,n(x, z;y,w | τ) = m!n!
min(m,n)∑

s=0

τ s

s!(m − s)!(n − s)!Hm−s(x, z)Hn−s(y,w) (4.1)

with the generating function

exp
(
xu + zu2 + yv + wv2 + τuv

) =
∞∑

m,n=0

umvn

m!n! Hm,n(x, z;y,w | τ). (4.2)

If we rewrite the generating function (4.2) as:

exp
(
zu2 + wv2 + τuv

) = exp(−xu − yv)

∞∑
m,n=0

umvn

m!n! Hm,n(x, z;y,w | τ),

and then following the lines of the proof of Theorem 3.2, we get the following implicit summation formula involving
4V2I1PHP Hm,n(x, z;y,w | τ):

Hm,n(y, z;x,w | τ) =
m,n∑ (

m

M

)(
n

N

)
(y − x)M(x − y)NHm−M,n−N(x, z;y,w | τ). (4.3)
M,N=0



416 S. Khan et al. / J. Math. Anal. Appl. 344 (2008) 408–416
From Eqs. (4.2) and (1.5), we note that

Hm,n(x,0;y,0 | τ) = hm,n(x, y | τ). (4.4)

Therefore, by taking z = w = 0 in formula (4.3) and using Eq. (4.4), we get formula (3.5).
Also, from Eq. (4.1), we have

Hm,n(x, z;y,w | 0) = Hm(x, z)Hn(y,w). (4.5)

Thus, by taking τ = 0 in formula (4.3) and using Eq. (4.5), we get the following summation formula involving
product of 2VHKdFP Hn(x, y)

Hm(y, z)Hn(x,w) =
m,n∑

M,N=0

(
m

M

)(
n

N

)
(y − x)M(x − y)NHm−M(x, z)Hn−N(y,w), (4.6)

which on taking z = w = −1 and replacing x by 2x, y by 2y and using relation (1.2a), yields the following summation
formula involving product of Hermite polynomials Hn(x):

Hm(y)Hn(x) =
m,n∑

M,N=0

(
m

M

)(
n

N

)
2M+N(y − x)M(x − y)NHm−M(x)Hn−N(y). (4.7)

Similarly, taking z = w = − 1
2 in Eq. (4.6) and using relation (1.2b), we get the following summation formula

involving product of Hermite polynomials Hen(x):

Hem(y)Hen(x) =
m,n∑

M,N=0

(
m

M

)(
n

N

)
(y − x)M(x − y)N Hem−M(x)Hen−N(y). (4.8)
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