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Abstract

An R-order bound for the Halley method is obtained in this work, where an analysis of the con-
vergence of the method is also presented under mild differentiability conditions. To do this, a new
technique is developed, where the involved operator must satisfy some recurrence relations.
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1. Introduction

The problem of approximating a solution of a nonlinear equation
F(x)=0 1)

is very interesting, since we can then solve a large number of different types of problems.
So, if F is a nonlinear operator defined on a nonempty open convex sZhska Banach
spaceX with values in a Banach spadg Eq. (1) can represent a differential equation,
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a boundary value problem, an integral equation, etc. The normal way to approximate a
solution of (1) is by means of iterative processes. An iterative process is defined by an
algorithm such that, from an initial approximatiog, it is constructed a sequengs,} that
satisfies lim x, = x* and F (x*) = 0.

In the study of iterative methods there are two especially important sides: the conver-
gence of the sequende,} to a solutionx* of (1) and the speed of this convergence.
Moreover, different types of convergence analysis can be done. The semilocal convergence
analysis takes into account some conditions for the opefatamd the initial approxima-
tion xg of the iteration considered for approximating the solutions of (1). If we only require
conditions for the operataf, the convergence result is global, and if the solutirmust
satisfy some conditions, the convergence result is local.

This paper considers Halley’'s method (see [4])

Yu =X — [F')] " Fx),
H (X, ) = F ) 72 (60) 0 — xn),

1 1 -1
Xn+1=Yn — EH(xnaYIz)I:I+ EH(xn»yn)iI On —xn), n=0, (2

for solution of (1). The Halley method is one of the well-known numerical processes for
solving (1) (see [10], where an extensive reference list can be found). Basic results con-
cerning the convergence of the process, existence and uniqueness regions of solutions are
given by other authors (see [3,12] for the references appearing there). The results concern-
ing convergence have been published under assumptions of Newton—Kantorovich type. In
[4,5,11], an abundant list of references can be found, where several techniques for finding
sufficient conditions for the convergence of Halley's iteration appear.

In this paper, we pay attention to the semilocal convergence analysis. Initially, see [9],
the required assumptions to study the convergence of Halley's method were:

(A1) suppose thafp = F'(x0) "1 € L(Y, X) exists at someg € £2, whereL(Y, X) is the
set of bounded linear operators framinto X and| Ip| < 8,

(A2) llyo — xoll = [T F (x0) |l < 1,

(A3) IF" () <M, x e,

(Ad) ||[F"(x)|<N,xef.

Under assumptions (A1)—(A4) a semilocal convergence result is obtained. Next, this study
can be modified by replacing condition (A4) for
|F"@) = F"D| < Kllx =yl K>0 x,ye (3

(see [1,4,11]), which is milder, and keeping (A1), (A2) and (A3). The next step is to relax
condition (3) by the following:

|F"x)—F"(»)| <Llx=yll’, L>0, pel01], x,yeR (4)

(see [7]). Notice that conditions (3) and (4) mean thats Lipschitz continuous iif2 and
F” is (L, p)-Holder continuous 2, respectively.
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Under conditions (3) and (4) the number of equations that can be solved by Halley's
iteration is limited. For instance, we cannot analyze the convergence of the Halley method
to a solution of equations where additions of operators, which satisfy (3) or (4), appear. We
then consider the following nonlinear integral equation of mixed Hammerstein type [6]:

m b
x(s)+2/k,~(s,z)z,-(x(t))dt=u(s), s €la, b],
i=1y,

where—oco <a < b < o0, u, £;, andk;, fori =1,2,...,m, are known functions ansg
is a solution to be determined. #'(x(z)) is (L;, p;)-Holder continuous in2, for i =
1,2,...,m, the corresponding operatér: 2 C C[0, 1] — C[O0, 1],

m b
[F0)](s) =x(s)+kai(s,t)Ei(x(t)) dt —u(s), s €la,b], (5)

i=1y,

does not satisfy (3) neither (4) when, for instance, the max-norm is considered. In this case,

m
[F" )= F" (] < ZLiIIx =y, Li 20, pi€[0,1], x,y € 2.
i=1
To solve this type of equations and to relax conditions (3) and (4) we can consider
[F"x) = F"| <o(lx—yl), x yef, (6)

wherew(z) = > /" ; L;izP". We then require thab(z) is a nondecreasing continuous real
function forz > 0, such that» (0) > 0.

Obviously conditions (A4), (3) and (4) are relaxed by condition (6). Besides the former
ones are generalized by the latter one () = N, w(z) = Kz andw(z) = Lz”, respec-
tively.

On the other hand, the convergence properties depends on the choice of the dlistance
but for a given distance the speed of convergence of the seqiigyjds characterized by
the speed of convergence of the sequence of nonnegative nubers,, ||. An important
measure of the speed of convergence isRherder of convergence (see [8]). It is known
that a sequende,,} converges withR-order at least > 1 if there are constants € (0, co)
andy € (0,1) such that, <Cy™,n=0,1,....

Under conditions (A1)—(A4) or (A1)—(A3) and (3), the Halley method isRsbrder
at least three (see [2]) and thieorder of Halley’s iteration has not been studied under
conditions (A1)—(A3) and (4). Here we present a new technique consisting of a system
of recurrence relations for analyzing the semilocal convergence of the Halley method
and prove that, under the mildest conditions (A1)—(A3) and (6), the Halley process is of
R-order at least two, but & (tz) < 1w (z), forz > 0,1 € [0, 1], g € [0, 1], the R-order of
convergence is at leasti2g. From this, theR-order at least 2- p is deduced if (A1)—(A3)
and (4) are satisfied.

Moreover, to find a priori estimates for the distange$ — x, ||, n =1, 2, ..., we look
for a functione : N — R, such that|x* — x, || <a(r),n=1,2,.... On the basis of the
new technique developed here, a priori error bounds are derived for the Halley sequence.
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Throughout the paper we den@®éx, r) ={y € X; ||y—x| <r}andB(x,r) ={y € X;
Iy —xll <r}.

2. Semilocal convergence of Halley’s method

To establish a semilocal convergence result for the Halley method, certain conditions
for the operatorF and the initial approximationg are required. Conclusions about the
existence and uniqueness of solutions of (1) are also obtained. We provide the regions
of existence and uniqueness of solutions from the theoretical significance of the Halley
method, without finding the solutions themselves. This is sometimes more important than
the actual knowledge of a solution.

A new technique is developed to prove the semilocal convergence of sequence (2),
where we construct, from some scalar parameters, a system of recurrence relations where
two real sequences of positive real numbers are involved. The convergence of iteration (2)
is then guaranteed from the fact that (2) is a Cauchy sequence.

2.1. Recurrence relations

Let us suppose thafy = F'(xo) 1 € L(¥, X) exists at someg € £2, whereL(Y, X)
is the set of bounded linear operators fr@ninto X. Moreover, we assume the following
assumptions:

(C1) |10l < 8,

(C2) llyo — xoll = [ ToF (xo) | < n,

(C3) IF'(x) <M,x e,

(C4) |[F'(x) = F"DW| <o(lx =y, x,y € 2, wherew(z) is a nondecreasing continu-
ous real function for > 0, such thatv(0) > 0,

(C5) there exists a positive real functigne C[0, 1], with ¢(z) < 1, such thatw(1z) <
p@®)w(z), fort € [0, 1] andz € (0, +00).

Note that condition (C5) is not restrictive, since we can always congi¢ier= 1, as a
consequence @b is a nondecreasing function, but its interest is to sharp the a priori error
bounds. We denotg = fol(l — () dt.

From (C1)—(C5), we considery = MBn and bg = Bnw(n). Observe that ifc; € 2
andag < 2, we have| H (xg, yo)|| < ap and, by the Banach lemmg, + %H(xo, yo) 1=

. 2 . . a374a0+2
P (xo, yo) exists and| P (xo, yo) | < 7%, Sinceap < 2. Moreover, ifbg < 47—,
1 a0
lx1 = yoll < S|/ H (xo, yo) ||| P (xo. yo) | 1yo — xoll < lyo — xoll
2 2—ap
and
llx1 = xoll < [lx2 = yoll + llyo — xoll < llyo — xoll < Rn,

2—ap
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where
2

(2—aop)(1— > 3a0 3a0 (2(2 a0) + AbO))

This value ofR is deduced later. Consequentyy, x1 € B(xo, Rn). Furthermore, from

R =

2a9
2—ap

|1 — IoF (x| < 1ol || F/(x0) — F'(x2) || < M| Tollllx1 — xoll <

andag < 2, it follows ||I — I'pF’(x1)|| < 1 and, by the Banach lemmd} exists and
1N < 2% || Ig]l. Thereforex: is well defined.

To prove the sequende, }, defined by (2), is well defined, we first define the following
real functions:

2 —X 2
f(x)=m, gx )—— and h(x,y) = + Ay ()

X
2—3x 2(2—x)
that satisfy the properties appearing in the following lemma.

Lemma 2.1. Let f, g andk be the three scalar functions given(if). Then

(&) f(x) andg(x) are increasing inx € (0, 3‘7‘/5),
(b) A(x,y) isincreasing in its first and second argumentsfaz (0, 3%@) andy > 0.

Now, we introduce an approximation &f in Lemma 2.2, where the approximations
introduced in (2) are used. From a similar approximation presented in [4], the proof of
Lemma 2.2 follows immediately.

Lemma 2.2. Let F be a nonlinear operator defined on an open convex suf3sef a
Banach space&X with values in a Banach spadé Suppose that the operatét has con-
tinuous second-order Fréchet-derivatives@nThen, the following approximations is true
foralln>0:

1

F(Xp41) = / F" (4t (ng1 — y0)) (X — ) dt (g1 — yn)?
0

l\)ll—‘

1
/ FN xn +1(yn _xn))tdt O — xn) P (Xu, Yu) H (s Yn) (Yn — Xn)
0

1

4 / [F" (tn + G — 20) — F"(en)] (L= 1)
0
X (yn —xp) P (xp, )’n)()’n — Xn),

whereP (x,, y,) =1 + %H(xn, 1L
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Taking into account now the approximation of Lemma 2.24ef 0, we obtain the next
bound

Mn 5 2, Mn _
| F (x| < | —5~a5.f (@0)® + —ao f(ao) + Anw(n) f (ao) |Ilyo — xol.
8 4

Next, we suppose
3-5 2(a3 —3ag+1)

0 d p< ——. 8
a°€<’ 2 ) e T A2 ao) ®
Notice that the bounds for the paramet@fandbg have been restricted as a consequence
of the following required development. Theitag)g (ag)h(ag, bo) = co < 1 and

lyr—x1ll = | ILF (x| < 1| F(x) | < f (@0)g(a0)h(ao, bo)llyo — xol

= collyo — xoll <7,

so that

M T1llyr — x1ll < M| Tollg(ao)collyo — xoll < aog(ao)co
and

IT1llo(llyr — x1ll)lly1 — x1ll < [ITollg(@o)e(coll yo — xoll)collyo — xoll
< bog(ao)cog(co)-
Now, from the Banach lemma,(x1, y1) = [/ + 3 H (x1, y1)]~* exists, sincél H (x1, y1)|| <
aog(ap)co, and|| P (x1, y1)|l < f(aog(ao)co). Thus

1
llx2 — y1ll < ang(ao)COf(aog(ao)Co) ly1 — xall,

llx2 — x1ll < llx2 — y1ll + lly1 — x1ll < f(aog(ao)co)lly1 — x1
and, asf is increasing in0, 3‘—2ﬁ),
llx2 — xoll < llx2 — x1ll + [lx1 — xoll < (1 + co) f(a0)lyo — xoll < Rn,
sinceapg(ap)co < ag < 3_—2“/3
Finally, from
|1 = F )| < I F/ (1) = F'(x2) | < MU flacz = x|
< aog(ao)co f (aog (ao)co)
andaopg(ao)co < ag < 3_—2‘/5 it follows ||[I — I' F'(x2)|| < 1 and, by the Banach lemma,
I exists and| ;|| < g(aog(ao)co) || I ]|. Consequentlyys is also well defined.
Note that we can do thetyg (ag)co = a1 andbog (ap)cop(co) = b1 to define the follow-
ing real sequences:
an =ay-18(an-1)cu-1, n=1,
b, =bp_18(an-1)cn—19(ch-1), n=1,
cn = flan)g(an)h(an, by), n =1,
that satisfy the properties of Lemma 2.3.
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Lemma 2.3. Let f, g andh be the three scalar functions given(in). If ap andbg satisfy
(8), then

(@) co <1andg(ag)co < 1,
(b) the sequencels, }, {b,} and{c,} are decreasing,
(©) an < 352 foralln >0

Proof. Item (a) is trivial from the hypotheses. Next, we invoke the induction hypotheses
and use Lemma 2.1 to prove item (b). Finally, as the sequéngeis decreasing and

ag € (0, 3505), it follows thata, < ag < 352, foralln >0. O

Since our goal is to show the sequelieg}, given by (2), is well defined, we present in
Lemma 2.4 a system of recurrence relations from which we obtain the last. From a similar
way that the mentioned above and using induction the proof of Lemma 2.4 follows.

Lemma 2.4. Under the hypotheses of Lem&\8, the following items are true foratl > 1

(1) I exists and| Full = | F () ™ < g@n—-0) 1 T-all,

(D) Myn = xall < cp—allyn—1 — xn-1ll < cgllyo — xoll < n,
anm M lys — xall < an,

(V) [T llo(lyn — XD llyn — Xl < b,
(V) P(xn,yn) =1 + 3H(xy, ya) 7 exists and| P (x, y) |l < f(an),
(V) llxnt1 — ynll < %f(an)”yn —xull,

(VI (21 — Xl <f(an)||yn — ol

(VI Jlxp41 — xoll < f(ao) ||yo —xoll < Rn, whereR

2.2. A semilocal convergence result aRebrder of convergence two

Once the sequende, } is well defined, the next goal is to prove tHat,} is a Cauchy
sequence and itis consequently convergent. To do this, we see that (2) is a Cauchy sequence
and the conditiom,, < 2 is satisfied, for alk > 1.

We first provide some properties that satisfy the sequefaggs{b,} and{c,}.

Lemma 25. Let f, ¢ and i be the three scalar functions given () respectively and
definey = aj/ap. If (8)is satisfied, then

() fyx) < f(x), gyx) < g(x) and h(yx, yy) < yh(x,y), for y € (0,1), with x €

(0, 3%) andy € (0, 20;(23);31))

- n—1 n—1 "
(i) an < ¥% ap—1 <y Lag, by < y% bhy_1 < y% by, for all n > 2 and ¢, <

y? eu1 < y? oo =y? /g(ao), forall n > 1.

Proof. Item (i) is obvious, sincef andg are increasing ir0, 3‘—2ﬁ) and# is increasing

> .
2x—3tD)y respectively.

in its first and second arguments f@; 3‘—2“/5) and (0, 242
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To prove (ii), invoke the induction hypothesis and use Lemma 2.1a1As yag, we
haveb; = ybop(co) < ybo, sincep(co) < 1, ander < yco. If we suppose that (i) is true
forn =k, then

k —

2k—l 2 2k—1
a1 =argla)ck <y° “ar—1g(y

1
ak-1)y° ck-1
2k 2k
<y ap_18(ar—1)ck—1=7y" a,
k k
b1 = big(ar)ckp(cr) < brg(ao)y? "eop(cr) < y? by,
sincep(cr) < 1, and

k k
cir1 = f(arr)g(arrDh (@1, bir1) < v? flan)gla)h(ar, by) =y cx.
Moreover,

2nfl 2}171 2n72 on_q
an <Y ap-1 <Y Y ap—2 <--- <Y a

n—1 n—1 n—2
by < VZ by1< 72 Vz b

0,

2"—-1

n—2 <---<y° b,
2n—1 2n—1 2n—2 on_q

Ch <Y Ch—1 <Y 14 Ch2<---<Y €o-

The lemma is proved. O

We then provide the following semilocal convergence result, which is also used to draw
conclusions about the existence of a solution and the domain in which it is located, along
with some error estimates that lead to Halley’s method convergesRatttder of conver-
gence at least two under conditions (C1)—(C5).

Theorem 2.6. Let X and Y be two Banach spaces arfd: 2 C X — Y a twice Fréchet
differentiable operator on a nonempty open convex dongainNe suppose thafp =

F'(x0)~1 € L(Y, X) exists for somexg € £2 and conditions(C1)—(C5) hold. Denote
ap = Mpn and bo = fna (n), and suppose8). If B(xo, Rn) < £2, whereR = £ and

co = f(ap)g(ag)h(ao, bo), then the sequenc,}, defined in(2) and starting fromxg,

converges to a solution® of Eq. (1), the solutionx* and the iterates,, y, belong to
B(xo, Rn). Furthermore, the following error bounds are obtained

n
1—y2'A
wherey =aj/apand A = 1/g(ap).

Ilx* — xull < fao)ny? 2 , n=0, 9)

Proof. Firstly, we prove that sequence (2) is a Cauchy one. From (II), we have

n—1
WMWN<%4erﬂwﬂ<m<(HQ%W—m”
i=0

and, by Lemma 2.5, it follows that
n—1 n—1

1_[ ¢ < 1_[ yZiA = yzn_lA",
i=0

i=0
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wherey =aj/ag <1 andA =1/g(ag) < 1. In consequence, from > 1,

1xn4m — Xnll < Xntm — Xnpm—1l + | Xn4m—1 — Xntm—2ll + -+ + [ Xn41 — Xl
< f@nim-DNYntm—1 — Xnpm—1ll + [ @uym—-2) | Yntm—2 — Xngm—2ll + - -+
+ fla)llyn — xull

n+m-1/i-1
<ﬂ%)§j< qﬁm—mn
i=n j=0
- 1— yZ”(mel) A
< flagyny? ~tan

, 10
o (10)

Sincey2[+2n > y2i+1
lim, x,.
Obviously,x,, € B(xo, Rn), forallm > 1, as ifn = 0 in (10), we obtain

Jfori=n,n+1,...,n+m— 1. In addition,{x,} converges ta* =

2"—1 Am

1-—vy
I — xoll < f(ao)n

—— < Rn.
l-yA 7

Following a similar procedure, we hayg € B(xg, Rn), foralln > 0.

By letting nown — oo in (ll), it follows that || I}, F (x,,)|| — 0. Besideg| F (x,,)|| — O,
since || F ()|l < I F )15 F () || and{|| F/(x,,) |} is a bounded sequence. Therefore
F(x*) = 0 by the continuity ofF’ in B(xg, Rn).

Finally, by lettingm — oo in (10), we obtain (9). O

Note that the following result on the-order of Halley’s method is clear from (9).

Corollary 2.7. Under the conditions of Theoret6, the Halley method is oR-order at
least two.

2.3. Unigueness of the solution
Now we establish the uniqueness of the solutirof Eq. (1) by the next theorem.

Theorem 2.8. Let us suppose conditioff€1)—(C4)hold. The solutionc* of Eq. (1) is

unique in the regiorB (xo, Miﬁ —Rp)NLQ.

Proof. We assume* is another solution of (1) iB (xo, Miﬂ — Rn) N 2. Then, from

1
/ F(x* +1(2* —x") dr (" =) = F(z") — F(x") =0,
0

we have to prove that the operatbr= fol F'(x* +t(z* — x*))dt is invertible to obtain
x* =z*. By the Banach lemma, we have to prd\e— 7| < 1. Indeed,
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11 —T| <ol /l\F’(x* +1(z* —x%)) — F'(xo0)| dt
< Mﬂf”x* +1(z* — x*) — xo dt

1
< Mﬁ/((l— Dllx* = xoll +1l1z* — xoll) dt
0

M,B 2 _
5 (Rn—f-—ﬂ—Rn)_l.

This completes the proof.O

3. Onthe R-order of convergence

Observe that for the operator (5) we have) =) 7" ; L;z". In consequencey(tz) =
YL (LitPizPh), and thengp(t) =1, whereqg = min{p1, p2, ...,pm} sincer € [0, 1] and
pi €[0,1], foralli =1,2,...,m. In this situation,A = and the sequend@,,}
is reduced to

- (1+q)(2+q)
b, = bn—lg(an—l)c,::t?_a nz>1l
Besides,
h(yx,y™Py) <y™Ph(x,y), fory e (0,1), pe[0,1],
with x € (0, 3= f) andy € (0,2(1+ q) (2 + q) X531 r =3+l Hence, for alk > 2

@t+g"-1
ap-1<y M ap,

n—1\ 1+ n__
b, < (y(2+q) ) qbnfl < V(2+q) 1b0

n—1
ap <y

and, foralln > 1
cn <y @D "oy =y @D e (ag).
Therefore, we obtain new error bounds for the Halley’s method

@+q"-1 Al

* S — >
”X xn” f(ao)m/ i 1 _ y(2+q)71A k] n = Oa

from which we derive that the Halley sequence converges Ritirder at least 2- ¢, since

[l — x|l < n=0.

)

f (ao)n (v o sl

yHi(l—-24)
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Remark. Observe that if"” is Lipschitz continuous iw2, thenF” satisfies (3) and (z) =
Kz, K > 0, so that Halley’'s method is at-order at least three. If” is (L, p)-Holder
continuous ins2, then F” satisfies (4)w(z) = Lz?, L > 0, and the Halley process is of
R-order at least 2- p.
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