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Abstract

An R-order bound for the Halley method is obtained in this work, where an analysis of the
vergence of the method is also presented under mild differentiability conditions. To do this,
technique is developed, where the involved operator must satisfy some recurrence relations.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of approximating a solution of a nonlinear equation

F(x) = 0 (1)

is very interesting, since we can then solve a large number of different types of prob
So, if F is a nonlinear operator defined on a nonempty open convex subsetΩ of a Banach
spaceX with values in a Banach spaceY , Eq. (1) can represent a differential equati
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a boundary value problem, an integral equation, etc. The normal way to approxim
solution of (1) is by means of iterative processes. An iterative process is defined
algorithm such that, from an initial approximationx0, it is constructed a sequence{xn} that
satisfies limn xn = x∗ andF(x∗) = 0.

In the study of iterative methods there are two especially important sides: the c
gence of the sequence{xn} to a solutionx∗ of (1) and the speed of this convergen
Moreover, different types of convergence analysis can be done. The semilocal conve
analysis takes into account some conditions for the operatorF and the initial approxima
tion x0 of the iteration considered for approximating the solutions of (1). If we only req
conditions for the operatorF , the convergence result is global, and if the solutionx∗ must
satisfy some conditions, the convergence result is local.

This paper considers Halley’s method (see [4])

yn = xn − [
F ′(xn)

]−1
F(xn),

H(xn, yn) = F(xn)
−1F ′′(xn)(yn − xn),

xn+1 = yn − 1

2
H(xn, yn)

[
I + 1

2
H(xn, yn)

]−1

(yn − xn), n � 0, (2)

for solution of (1). The Halley method is one of the well-known numerical processe
solving (1) (see [10], where an extensive reference list can be found). Basic result
cerning the convergence of the process, existence and uniqueness regions of solut
given by other authors (see [3,12] for the references appearing there). The results c
ing convergence have been published under assumptions of Newton–Kantorovich t
[4,5,11], an abundant list of references can be found, where several techniques for
sufficient conditions for the convergence of Halley’s iteration appear.

In this paper, we pay attention to the semilocal convergence analysis. Initially, se
the required assumptions to study the convergence of Halley’s method were:

(A1) suppose thatΓ0 = F ′(x0)
−1 ∈ L(Y,X) exists at somex0 ∈ Ω , whereL(Y,X) is the

set of bounded linear operators fromY into X and‖Γ0‖ � β,
(A2) ‖y0 − x0‖ = ‖Γ0F(x0)‖ � η,
(A3) ‖F ′′(x)‖ � M , x ∈ Ω ,
(A4) ‖F ′′′(x)‖ � N , x ∈ Ω .

Under assumptions (A1)–(A4) a semilocal convergence result is obtained. Next, this
can be modified by replacing condition (A4) for∥∥F ′′(x) − F ′′(y)

∥∥ � K‖x − y‖, K � 0, x, y ∈ Ω (3)

(see [1,4,11]), which is milder, and keeping (A1), (A2) and (A3). The next step is to
condition (3) by the following:∥∥F ′′(x) − F ′′(y)

∥∥ � L‖x − y‖p, L � 0, p ∈ [0,1], x, y ∈ Ω (4)

(see [7]). Notice that conditions (3) and (4) mean thatF ′′ is Lipschitz continuous inΩ and
F ′′ is (L,p)-Hölder continuous inΩ , respectively.



J.A. Ezquerro, M.A. Hernández / J. Math. Anal. Appl. 303 (2005) 591–601 593

lley’s
ethod

ar. We
6]:

s case,

al

rmer

ce

n

der
ystem
ethod
is of

ence.
Under conditions (3) and (4) the number of equations that can be solved by Ha
iteration is limited. For instance, we cannot analyze the convergence of the Halley m
to a solution of equations where additions of operators, which satisfy (3) or (4), appe
then consider the following nonlinear integral equation of mixed Hammerstein type [

x(s) +
m∑

i=1

b∫
a

ki(s, t)�i

(
x(t)

)
dt = u(s), s ∈ [a, b],

where−∞ < a < b < ∞, u, �i , andki , for i = 1,2, . . . ,m, are known functions andx
is a solution to be determined. If�′′

i (x(t)) is (Li,pi)-Hölder continuous inΩ , for i =
1,2, . . . ,m, the corresponding operatorF :Ω ⊆ C[0,1] → C[0,1],

[
F(x)

]
(s) = x(s) +

m∑
i=1

b∫
a

ki(s, t)�i

(
x(t)

)
dt − u(s), s ∈ [a, b], (5)

does not satisfy (3) neither (4) when, for instance, the max-norm is considered. In thi

∥∥F ′′(x) − F ′′(y)
∥∥ �

m∑
i=1

Li‖x − y‖pi , Li � 0, pi ∈ [0,1], x, y ∈ Ω.

To solve this type of equations and to relax conditions (3) and (4) we can consider∥∥F ′′(x) − F ′′(y)
∥∥ � ω

(‖x − y‖), x, y ∈ Ω, (6)

whereω(z) = ∑m
i=1 Liz

pi . We then require thatω(z) is a nondecreasing continuous re
function forz > 0, such thatω(0) � 0.

Obviously conditions (A4), (3) and (4) are relaxed by condition (6). Besides the fo
ones are generalized by the latter one ifω(z) = N , ω(z) = Kz andω(z) = Lzp , respec-
tively.

On the other hand, the convergence properties depends on the choice of the distan‖·‖,
but for a given distance the speed of convergence of the sequence{xn} is characterized by
the speed of convergence of the sequence of nonnegative numbers‖x∗ −xn‖. An important
measure of the speed of convergence is theR-order of convergence (see [8]). It is know
that a sequence{zn} converges withR-order at leastτ > 1 if there are constantsC ∈ (0,∞)

andγ ∈ (0,1) such thatzn � Cγ τn
, n = 0,1, . . . .

Under conditions (A1)–(A4) or (A1)–(A3) and (3), the Halley method is ofR-order
at least three (see [2]) and theR-order of Halley’s iteration has not been studied un
conditions (A1)–(A3) and (4). Here we present a new technique consisting of a s
of recurrence relations for analyzing the semilocal convergence of the Halley m
and prove that, under the mildest conditions (A1)–(A3) and (6), the Halley process
R-order at least two, but ifω(tz) � tqω(z), for z > 0, t ∈ [0,1], q ∈ [0,1], theR-order of
convergence is at least 2+ q. From this, theR-order at least 2+p is deduced if (A1)–(A3)
and (4) are satisfied.

Moreover, to find a priori estimates for the distances‖x∗ − xn‖, n = 1,2, . . . , we look
for a functionα :N → R+ such that‖x∗ − xn‖ � α(n), n = 1,2, . . . . On the basis of the
new technique developed here, a priori error bounds are derived for the Halley sequ
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Throughout the paper we denoteB(x, r) = {y ∈ X; ‖y−x‖ � r} andB(x, r) = {y ∈ X;
‖y − x‖ < r}.

2. Semilocal convergence of Halley’s method

To establish a semilocal convergence result for the Halley method, certain cond
for the operatorF and the initial approximationx0 are required. Conclusions about t
existence and uniqueness of solutions of (1) are also obtained. We provide the r
of existence and uniqueness of solutions from the theoretical significance of the
method, without finding the solutions themselves. This is sometimes more importan
the actual knowledge of a solution.

A new technique is developed to prove the semilocal convergence of sequen
where we construct, from some scalar parameters, a system of recurrence relation
two real sequences of positive real numbers are involved. The convergence of itera
is then guaranteed from the fact that (2) is a Cauchy sequence.

2.1. Recurrence relations

Let us suppose thatΓ0 = F ′(x0)
−1 ∈ L(Y,X) exists at somex0 ∈ Ω , whereL(Y,X)

is the set of bounded linear operators fromY into X. Moreover, we assume the followin
assumptions:

(C1) ‖Γ0‖ � β,
(C2) ‖y0 − x0‖ = ‖Γ0F(x0)‖ � η,
(C3) ‖F ′′(x)‖ � M,x ∈ Ω ,
(C4) ‖F ′′(x) − F ′′(y)‖ � ω(‖x − y‖), x, y ∈ Ω , whereω(z) is a nondecreasing continu

ous real function forz > 0, such thatω(0) � 0,
(C5) there exists a positive real functionϕ ∈ C[0,1], with ϕ(t) � 1, such thatω(tz) �

ϕ(t)ω(z), for t ∈ [0,1] andz ∈ (0,+∞).

Note that condition (C5) is not restrictive, since we can always considerϕ(t) = 1, as a
consequence ofω is a nondecreasing function, but its interest is to sharp the a priori
bounds. We denoteA = ∫ 1

0 (1− t)ϕ(t) dt .
From (C1)–(C5), we considera0 = Mβη and b0 = βηω(η). Observe that ifx1 ∈ Ω

anda0 < 2, we have‖H(x0, y0)‖ � a0 and, by the Banach lemma,[I + 1
2H(x0, y0)]−1 =

P(x0, y0) exists and‖P(x0, y0)‖ � 2
2−a0

, sincea0 < 2. Moreover, ifb0 <
a2

0−4a0+2
A(2−a0)

,

‖x1 − y0‖ � 1

2

∥∥H(x0, y0)
∥∥∥∥P(x0, y0)

∥∥‖y0 − x0‖ � a0

2− a0
‖y0 − x0‖

and

‖x1 − x0‖ � ‖x1 − y0‖ + ‖y0 − x0‖ � 2 ‖y0 − x0‖ < Rη,

2− a0
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where

R = 2

(2− a0)(1− 2
2−3a0

(
a2

0
2(2−a0)

+ Ab0))

.

This value ofR is deduced later. Consequently,y0, x1 ∈ B(x0,Rη). Furthermore, from

∥∥I − Γ0F
′(x1)

∥∥ � ‖Γ0‖
∥∥F ′(x0) − F ′(x1)

∥∥ � M‖Γ0‖‖x1 − x0‖ � 2a0

2− a0

and a0 < 2, it follows ‖I − Γ0F
′(x1)‖ < 1 and, by the Banach lemma,Γ1 exists and

‖Γ1‖ � 2−a0
2−3a0

‖Γ0‖. Therefore,x1 is well defined.
To prove the sequence{xn}, defined by (2), is well defined, we first define the followi

real functions:

f (x) = 2

2− x
, g(x) = 2− x

2− 3x
and h(x, y) = x2

2(2− x)
+ Ay (7)

that satisfy the properties appearing in the following lemma.

Lemma 2.1. Letf , g andh be the three scalar functions given in(7). Then

(a) f (x) andg(x) are increasing inx ∈ (0, 3−√
5

2 ),

(b) h(x, y) is increasing in its first and second arguments forx ∈ (0, 3−√
5

2 ) andy > 0.

Now, we introduce an approximation ofF in Lemma 2.2, where the approximatio
introduced in (2) are used. From a similar approximation presented in [4], the pro
Lemma 2.2 follows immediately.

Lemma 2.2. Let F be a nonlinear operator defined on an open convex subsetΩ of a
Banach spaceX with values in a Banach spaceY . Suppose that the operatorF has con-
tinuous second-order Fréchet-derivatives onΩ . Then, the following approximations is tru
for all n � 0:

F(xn+1) =
1∫

0

F ′′(yn + t (xn+1 − yn)
)
(1− t) dt (xn+1 − yn)

2

− 1

2

1∫
0

F ′′(xn + t (yn − xn)
)
t dt (yn − xn)P (xn, yn)H(xn, yn)(yn − xn)

+
1∫

0

[
F ′′(xn + t (yn − xn)

) − F ′′(xn)
]
(1− t) dt

× (yn − xn)P (xn, yn)(yn − xn),

whereP(xn, yn) = [I + 1H(xn, yn)]−1.
2
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Taking into account now the approximation of Lemma 2.2 forn = 0, we obtain the nex
bound∥∥F(x1)

∥∥ �
(

Mη

8
a2

0f (a0)
2 + Mη

4
a0f (a0) + Aηω(η)f (a0)

)
‖y0 − x0‖.

Next, we suppose

a0 ∈
(

0,
3− √

5

2

)
and b0 <

2(a2
0 − 3a0 + 1)

A(2− a0)
. (8)

Notice that the bounds for the parametersa0 andb0 have been restricted as a conseque
of the following required development. Thenf (a0)g(a0)h(a0, b0) = c0 < 1 and

‖y1 − x1‖ = ∥∥Γ1F(x1)
∥∥ � ‖Γ1‖

∥∥F(x1)
∥∥ � f (a0)g(a0)h(a0, b0)‖y0 − x0‖

= c0‖y0 − x0‖ < η,

so that

M‖Γ1‖‖y1 − x1‖ � M‖Γ0‖g(a0)c0‖y0 − x0‖ � a0g(a0)c0

and

‖Γ1‖ω
(‖y1 − x1‖

)‖y1 − x1‖ � ‖Γ0‖g(a0)ω
(
c0‖y0 − x0‖

)
c0‖y0 − x0‖

� b0g(a0)c0ϕ(c0).

Now, from the Banach lemma,P(x1, y1) = [I + 1
2H(x1, y1)]−1 exists, since‖H(x1, y1)‖ �

a0g(a0)c0, and‖P(x1, y1)‖ � f (a0g(a0)c0). Thus

‖x2 − y1‖ � 1

2
a0g(a0)c0f

(
a0g(a0)c0

)‖y1 − x1‖,
‖x2 − x1‖ � ‖x2 − y1‖ + ‖y1 − x1‖ � f

(
a0g(a0)c0

)‖y1 − x1‖
and, asf is increasing in(0, 3−√

5
2 ),

‖x2 − x0‖ � ‖x2 − x1‖ + ‖x1 − x0‖ � (1+ c0)f (a0)‖y0 − x0‖ < Rη,

sincea0g(a0)c0 < a0 < 3−√
5

2 .
Finally, from∥∥I − Γ1F

′(x2)
∥∥ � ‖Γ1‖

∥∥F ′(x1) − F ′(x2)
∥∥ � M‖Γ1‖‖x2 − x1‖

� a0g(a0)c0f
(
a0g(a0)c0

)
anda0g(a0)c0 < a0 < 3−√

5
2 , it follows ‖I − Γ1F

′(x2)‖ < 1 and, by the Banach lemm
Γ2 exists and‖Γ2‖ � g(a0g(a0)c0)‖Γ1‖. Consequently,x2 is also well defined.

Note that we can do thena0g(a0)c0 = a1 andb0g(a0)c0ϕ(c0) = b1 to define the follow-
ing real sequences:

an = an−1g(an−1)cn−1, n � 1,

bn = bn−1g(an−1)cn−1ϕ(cn−1), n � 1,

cn = f (an)g(an)h(an, bn), n � 1,

that satisfy the properties of Lemma 2.3.
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Lemma 2.3. Let f , g andh be the three scalar functions given in(7). If a0 andb0 satisfy
(8), then

(a) c0 < 1 andg(a0)c0 < 1,
(b) the sequences{an}, {bn} and{cn} are decreasing,

(c) an < 3−√
5

2 , for all n � 0.

Proof. Item (a) is trivial from the hypotheses. Next, we invoke the induction hypoth
and use Lemma 2.1 to prove item (b). Finally, as the sequence{an} is decreasing an

a0 ∈ (0, 3−√
5

2 ), it follows thatan < a0 < 3−√
5

2 , for all n � 0. �
Since our goal is to show the sequence{xn}, given by (2), is well defined, we present

Lemma 2.4 a system of recurrence relations from which we obtain the last. From a s
way that the mentioned above and using induction the proof of Lemma 2.4 follows.

Lemma 2.4. Under the hypotheses of Lemma2.3, the following items are true for alln � 1:

(I) Γn exists and‖Γn‖ = ‖F ′(xn)
−1‖ � g(an−1)‖Γn−1‖,

(II) ‖yn − xn‖ � cn−1‖yn−1 − xn−1‖ � cn
0‖y0 − x0‖ < η,

(III) M‖Γn‖‖yn − xn‖ � an,
(IV) ‖Γn‖ω(‖yn − xn‖)‖yn − xn‖ � bn,
(V) P(xn, yn) = [I + 1

2H(xn, yn)]−1 exists and‖P(xn, yn)‖ � f (an),
(VI) ‖xn+1 − yn‖ � an

2 f (an)‖yn − xn‖,
(VII) ‖xn+1 − xn‖ � f (an)‖yn − xn‖,

(VIII) ‖xn+1 − x0‖ � f (a0)
1−cn+1

0
1−c0

‖y0 − x0‖ < Rη, whereR = f (a0)
1−c0

.

2.2. A semilocal convergence result andR-order of convergence two

Once the sequence{xn} is well defined, the next goal is to prove that{xn} is a Cauchy
sequence and it is consequently convergent. To do this, we see that (2) is a Cauchy s
and the conditionan < 2 is satisfied, for alln � 1.

We first provide some properties that satisfy the sequences{an}, {bn} and{cn}.

Lemma 2.5. Let f , g and h be the three scalar functions given in(7) respectively and
defineγ = a1/a0. If (8) is satisfied, then

(i) f (γ x) < f (x), g(γ x) < g(x) and h(γ x, γy) < γh(x, y), for γ ∈ (0,1), with x ∈
(0, 3−√

5
2 ) andy ∈ (0,

2(x2−3x+1)
A(2−x)

),

(ii) an < γ 2n−1
an−1 < γ 2n−1a0, bn < γ 2n−1

bn−1 < γ 2n−1b0, for all n � 2 and cn <

γ 2n−1
cn−1 < γ 2n−1c0 = γ 2n

/g(a0), for all n � 1.

Proof. Item (i) is obvious, sincef andg are increasing in(0, 3−√
5

2 ) andh is increasing

in its first and second arguments for(0, 3−√
5) and(0,

2(x2−3x+1)
), respectively.
2 A(2−x)
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To prove (ii), invoke the induction hypothesis and use Lemma 2.1. Asa1 = γ a0, we
haveb1 = γ b0ϕ(c0) � γ b0, sinceϕ(c0) � 1, andc1 � γ c0. If we suppose that (ii) is tru
for n = k, then

ak+1 = akg(ak)ck < γ 2k−1
ak−1g

(
γ 2k−1

ak−1
)
γ 2k−1

ck−1

< γ 2k

ak−1g(ak−1)ck−1 = γ 2k

ak,

bk+1 = bkg(ak)ckϕ(ck) < bkg(a0)γ
2k−1c0ϕ(ck) � γ 2k

bk,

sinceϕ(ck) � 1, and

ck+1 = f (ak+1)g(ak+1)h(ak+1, bk+1) < γ 2k

f (ak)g(ak)h(ak, bk) = γ 2k

ck.

Moreover,

an < γ 2n−1
an−1 < γ 2n−1

γ 2n−2
an−2 < · · · < γ 2n−1a0,

bn < γ 2n−1
bn−1 < γ 2n−1

γ 2n−2
bn−2 < · · · < γ 2n−1b0,

cn < γ 2n−1
cn−1 < γ 2n−1

γ 2n−2
cn−2 < · · · < γ 2n−1c0.

The lemma is proved. �
We then provide the following semilocal convergence result, which is also used to

conclusions about the existence of a solution and the domain in which it is located,
with some error estimates that lead to Halley’s method converges withR-order of conver-
gence at least two under conditions (C1)–(C5).

Theorem 2.6. Let X and Y be two Banach spaces andF :Ω ⊆ X → Y a twice Fréchet
differentiable operator on a nonempty open convex domainΩ . We suppose thatΓ0 =
F ′(x0)

−1 ∈ L(Y,X) exists for somex0 ∈ Ω and conditions(C1)–(C5) hold. Denote
a0 = Mβη and b0 = βηω(η), and suppose(8). If B(x0,Rη) ⊆ Ω , whereR = f (a0)

1−c0
and

c0 = f (a0)g(a0)h(a0, b0), then the sequence{xn}, defined in(2) and starting fromx0,
converges to a solutionx∗ of Eq. (1), the solutionx∗ and the iteratesxn, yn belong to
B(x0,Rη). Furthermore, the following error bounds are obtained:

‖x∗ − xn‖ � f (a0)ηγ 2n−1 ∆n

1− γ 2n
∆

, n � 0, (9)

whereγ = a1/a0 and∆ = 1/g(a0).

Proof. Firstly, we prove that sequence (2) is a Cauchy one. From (II), we have

‖yn − xn‖ � cn−1‖yn−1 − xn−1‖ � · · · �
(

n−1∏
i=0

ci

)
‖y0 − x0‖

and, by Lemma 2.5, it follows that

n−1∏
ci <

n−1∏
γ 2i

∆ = γ 2n−1∆n,
i=0 i=0
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whereγ = a1/a0 < 1 and∆ = 1/g(a0) < 1. In consequence, fromm � 1,

‖xn+m − xn‖ � ‖xn+m − xn+m−1‖ + ‖xn+m−1 − xn+m−2‖ + · · · + ‖xn+1 − xn‖
� f (an+m−1)‖yn+m−1 − xn+m−1‖ + f (an+m−2)‖yn+m−2 − xn+m−2‖ + · · ·

+ f (an)‖yn − xn‖

� f (an)

n+m−1∑
i=n

(
i−1∏
j=0

cj

)
‖y0 − x0‖

� f (a0)ηγ 2n−1∆n 1− γ 2n(2m−1) ∆m

1− γ 2n
∆

, (10)

sinceγ 2i+2n � γ 2i+1
, for i = n,n + 1, . . . , n + m − 1. In addition,{xn} converges tox∗ =

limn xn.
Obviously,xm ∈ B(x0,Rη), for all m � 1, as ifn = 0 in (10), we obtain

‖xm − x0‖ � f (a0)η
1− γ 2m−1∆m

1− γ∆
< Rη.

Following a similar procedure, we haveyn ∈ B(x0,Rη), for all n � 0.
By letting nown → ∞ in (II), it follows that ‖ΓnF(xn)‖ → 0. Besides‖F(xn)‖ → 0,

since‖F(xn)‖ � ‖F ′(xn)‖‖ΓnF(xn)‖ and{‖F ′(xn)‖} is a bounded sequence. Therefo
F(x∗) = 0 by the continuity ofF in B(x0,Rη).

Finally, by lettingm → ∞ in (10), we obtain (9). �
Note that the following result on theR-order of Halley’s method is clear from (9).

Corollary 2.7. Under the conditions of Theorem2.6, the Halley method is ofR-order at
least two.

2.3. Uniqueness of the solution

Now we establish the uniqueness of the solutionx∗ of Eq. (1) by the next theorem.

Theorem 2.8. Let us suppose conditions(C1)–(C4)hold. The solutionx∗ of Eq. (1) is
unique in the regionB(x0,

2
Mβ

− Rη) ∩ Ω .

Proof. We assumez∗ is another solution of (1) inB(x0,
2

Mβ
− Rη) ∩ Ω . Then, from

1∫
0

F ′(x∗ + t (z∗ − x∗)
)
dt (z∗ − x∗) = F(z∗) − F(x∗) = 0,

we have to prove that the operatorT = ∫ 1
0 F ′(x∗ + t (z∗ − x∗)) dt is invertible to obtain

x∗ = z∗. By the Banach lemma, we have to prove‖I − T ‖ < 1. Indeed,
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‖I − T ‖ � ‖Γ0‖
1∫

0

∥∥F ′(x∗ + t (z∗ − x∗)
) − F ′(x0)

∥∥dt

� Mβ

1∫
0

∥∥x∗ + t (z∗ − x∗) − x0
∥∥dt

� Mβ

1∫
0

(
(1− t)‖x∗ − x0‖ + t‖z∗ − x0‖

)
dt

<
Mβ

2

(
Rη + 2

Mβ
− Rη

)
= 1.

This completes the proof.�

3. On the R-order of convergence

Observe that for the operator (5) we haveω(z) = ∑m
i=1 Liz

pi . In consequence,ω(tz) =∑m
i=1(Lit

pi zpi ), and then,ϕ(t) = tq , whereq = min{p1,p2, . . . , pm}, sincet ∈ [0,1] and
pi ∈ [0,1], for all i = 1,2, . . . ,m. In this situation,A = 1

(1+q)(2+q)
and the sequence{bn}

is reduced to

bn = bn−1g(an−1)c
1+q

n−1, n � 1.

Besides,

h(γ x, γ 1+py) < γ 1+ph(x, y), for γ ∈ (0,1), p ∈ [0,1],
with x ∈ (0, 3−√

5
2 ) andy ∈ (0,2(1+ q)(2+ q)x2−3x+1

2−x
). Hence, for alln � 2,

an < γ (2+q)n−1
an−1 < γ

(2+q)n−1
1+q a0,

bn <
(
γ (2+q)n−1)1+q

bn−1 < γ (2+q)n−1b0

and, for alln � 1,

cn < γ (2+q)n−1c0 = γ (2+q)n/g(a0).

Therefore, we obtain new error bounds for the Halley’s method

‖x∗ − xn‖ � f (a0)ηγ
(2+q)n−1

1+q
∆n

1− γ (2+q)n∆
, n � 0,

from which we derive that the Halley sequence converges withR-order at least 2+q, since

‖x∗ − xn‖ � f (a0)η

γ
1

1+q (1− ∆)

(
γ

1
1+q

)(2+q)n
, n � 0.
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Remark. Observe that ifF ′′ is Lipschitz continuous inΩ , thenF ′′ satisfies (3) andω(z) =
Kz, K � 0, so that Halley’s method is ofR-order at least three. IfF ′′ is (L,p)-Hölder
continuous inΩ , thenF ′′ satisfies (4),ω(z) = Lzp , L � 0, and the Halley process is
R-order at least 2+ p.
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