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Abstract

The category of discourse is Arf, consisting of archimedean f-rings with identity and ‘-
homomorphisms which preserve the identity. Based on a notion of Wickstead, an f-ring A is
said to be strongly !1-regular if for each countable subset D ⊆ A of pairwise disjoint elements
there is an s∈A such that d2s = d, for each d∈D, and xs = 0, for each x∈A which annihilates
each d∈D. It is shown that strong !1-regularity is monore9ective in Arf; indeed, A is strongly
!1-regular if and only if it is laterally 
-complete and has bounded inversion, if and only if A
is von Neumann regular and laterally 
-complete. Recently the authors have characterized the
category of laterally 
-complete archimedean ‘-groups with weak unit as the epire9ective class
generated by the class of all laterally complete archimedean ‘-groups. This, together with the
above characterization of strong !1-regularity, leads to a description of the subcategory upon
which the maximal functorial ring of quotients �(Q) in Arf re9ects. c© 2002 Elsevier Science
B.V. All rights reserved.

MSC: Primary 06F25; 18A40; 54G05; secondary 18A20

0. Introduction

The seed for this investigation is already contained in our Arst two forays into the
subject of functorial rings of quotients [10,11]. We have learned since then that, in a
category like Arf, whose objects are the archimedean f-rings with identity, and mor-
phisms are the ‘-homomorphisms which are also ring homomorphisms that preserve
the identity, general principles predict that there is a monore9ection which is the largest
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functorial ring of quotients. The reader is referred to [12,15]; very little of the cate-
gorical ediAce of those papers need be recalled here, but we shall incorporate what is
necessary for good reading. SuHce it to say for now that the relevant notion of the
latter two papers is that, under certain “completion” operators, there always exists a
largest monore9ection.

Along with the ideas referred to above, there is now a signiAcant body of information
about W, whose objects are the archimedean ‘-groups with a designated weak order
unit, and morphisms are the ‘-homomorphisms which preserve the designated units,
and about the monore9ections of W. Indeed, the reader should expect W to hover in
the background throughout this article. The information about W most relevant to our
concerns here is that , the subcategory of all laterally 
-complete objects in W, is
monore9ective [14], and that  is the least epire9ective class containing the class of
all laterally complete objects in W [19].

We proceed now to introduce the concepts which will be needed in the sequel, and
to clarify those already mentioned in the preceding two paragraphs. It is understood
that all rings in this article are commutative and possess an identity. A semiprime ring
is one having no nilpotent elements but 0; as is well known, A is semiprime precisely
when the intersection of all its prime ideals is zero.

A lattice-ordered group is a group G which has an underlying lattice structure
so that a6 b implies that a + c6 b + c, for each c∈G; all lattice-ordered groups
are also assumed to be abelian. The lattice-ordered group G is archimedean if, for
each 06 a; b∈G, na6 b, for each positive integer n, implies that a = 0. It is well
known that an archimedean lattice-ordered group is abelian anyway [5, 11.1.3]. We
use the familiar abbreviation “‘-group” for “lattice-ordered group”; indeed, the preAx
‘ for words such as “homomorphism”, “subgroup”, etc., shall indicate that the lattice
structure is preserved as well as the addition, multiplication, etc. An f-ring A is a ring
which is (additively) an ‘-group, so that whenever a∧b = 0, it follows that a∧bc = 0,
for all c6 0 in A. An archimedean f-ring with identity is necessarily commutative, by
[5, 12.3.2], as well as semiprime [5, 12.3.8]. Note as well that in a semiprime f-ring
A ab = 0 precisely when |a|∧|b|= 0, which implies that the concepts of minimal prime
ideal and minimal prime convex ‘-subgroup agree in A.

We shall try, within reason, to explain all relevant concepts; for any unexplained
terminology on ‘-groups and f-rings we refer the reader to [1,5,8].

1. Strong forms of von Neumann regularity

De�nition and Remark 1.1. (a) Let A be a ring. Recall that A is said to be von Neu-
mann regular if for each a∈A there is a b∈A such that a2b = a. Following Wickstead
[30], we say that A is strongly regular if for each subset D of A of pairwise annihilat-
ing elements and any partition D = D1∪D2 of D, there is a b∈A such that d2b = d, for
each d∈D1, and db = 0, for each d∈D2. Wickstead uses this notion to characterize
the semiprime rings which are complete rings of quotients. We explain, presently.
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Next, we need the concept of a ring of quotients, in the sense of Lambek [25].
Recall that if A6B (that is, if A is a subring of B preserving the identity) we say that
B is a ring of quotients of A if for each b1; b2 ∈B, with b2 �= 0, there is an a∈A so
that ab1; ab2 ∈A, with ab2 �= 0. Among the rings of quotients of A there is a maximum,
denoted QA, which we refer to as the complete ring of quotients of A. We shall also
say that A is a complete ring of quotients if A = QA.

In [30], Wickstead studies the connection between complete rings of quotients and
self-injectivity. This is not relevant to our purposes. However, the strong regularity per
s9e is interesting, in that it is closely related to lateral completeness. Theorem 1.5 will
give an account of this. Some preliminaries need go Arst, however.

(b) Let G be an ‘-group. Recall that G is laterally complete (resp. laterally 
-
complete) if every subset (resp. every countable subset) of pairwise disjoint elements
of G has a supremum.

Recall that if X ⊆ G, then

X⊥ = {g∈G: |g| ∧ |x|= 0 for each x∈X }:
The convex ‘-subgroup C of G is a polar if C = X⊥, for a suitable X ⊆ G; equiva-
lently, if C⊥⊥ = C. It is well known that the set of polars of G is a complete boolean
algebra under inclusion. We write a⊥ for {a}⊥.

Recall that G is projectable if G = a⊥⊥ + a⊥, for each a∈G. G is orthocomplete
if it is both laterally complete and projectable.

(c) Recall the following terminology: if G is an ‘-subgroup of H we say that
G is essential in H (or that H is an essential extension of G) if for each convex
‘-subgroup C of H , C ∩G = {0} implies that C = {0}. The embedding is dense if for
each 0 ¡ h∈H there is a 0 ¡ g∈G such that g6 h. It is clear that dense ‘-subgroups
are essential.

From a categorical point of view, H is an essential extension of G if and only if
each ‘-homomorphism f : H → K which is one-to-one when restricted to G is, in fact,
one-to-one.

(d) If A is an f-ring, say that it has the bounded inversion property if a¿ 1 implies
that a is invertible. The concept of bounded inversion probably Arst appeared in [22];
it is often attributed to Melvin Henriksen. Every full ring of real-valued continuous
functions C(X ) on a topological space X has the bounded inversion property. Von
Neumann regularity implies the bounded inversion property.

Associated with the classes of ‘-groups and f-rings introduced in 1:1 are operators,
which are hulls and, in some cases, functors. Let us review some of the ones which
will rear their heads in this development.

Remark 1.2. (a) It is well known that each ‘-group G has a unique lateral completion
lG: lG is laterally complete, G6 lG is dense, and no proper ‘-subgroup H of lG
containing G is laterally complete (see [8, Section 39]. It is also well known that if G
is an f-ring then so is lG; this appears as Theorem 4:6 of [6]. Similar remarks apply to
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the lateral 
-completion G6 l(!1)G; if one takes the time to read [6], and the material
leading up to Theorem 4:6 of that paper, this becomes evident. In the archimedean case
the reader is referred to [16]. Among other things found there (and elsewhere) is the
fact, due to Bernau, that any laterally 
-complete archimedean ‘-group is projectable,
and hence orthocomplete.

For use further on, we introduce the following notation. If G is projectable and
a; b∈G, then a[b] stands for the projection of a on b⊥⊥. In an f-ring which is
projectable, note that 1[b] is always an idempotent.

(b) Likewise, there is an orthocompletion G6 oG: oG is orthocomplete, contains
G as an essential ‘-subgroup, and no proper ‘-subgroup H of oG contains G and is
orthocomplete. As explained in [26], if G is a semiprime f-ring then oG is an f-ring;
indeed, oG is an ‘-subring of QG. Moreover, G is a complete ring of quotients if and
only if G is orthocomplete and every regular element of G is invertible. (In a ring R,
0 �= x∈R is regular if it is not a divisor of zero.) Note, in view of the comments in
(a), that for archimedean ‘-groups, l = o.

Finally, if we denote the classical ring of quotients of G by qG, then it is shown in
[26], Theorem 2:4, that QG = qoG, for any semiprime f-ring G. If G is archimedean
then the operators can be reversed, QG = oqG [26, Corollary 2:7:1]. For the sake
of completeness we record the well known fact from the theory of commut-
ative rings that, for any R, qR = R if and only if each regular element of R is
invertible.

(c) Regarding the bounded inversion property, we recall from [10] that for each
f-ring A we may form the ring of quotients

bA = {a=d:a; d∈A and d¿ 1}:

bA is an ‘-subring of qA, and A6 bA is the re9ection of the category of semiprime
f-rings in the subcategory of rings with the bounded inversion property. Although
much more will be said about re9ections in 4:1, let us specify what we mean for
bA: for each ring ‘-homomorphism f : A → B, assuming that B satisAes the bounded
inversion property, there is a unique ring ‘-homomorphism f̂ : bA → B extending f,
and, in fact, f̂(a=d) = f(a)f(d)−1, whenever d¿ 1.

As observed in [26], it is unknown whether oqA = qoA, for each semiprime f-ring
A, although there is strong evidence to believe it is not so. The operators b and o do
commute, however.

Theorem 1.3. Let A be a semiprime f-ring. Then
(a) If A satis<es the bounded inversion property; then so does oA.
(b) If A is orthocomplete then bA is too.
(c) boA = obA.
(d) obA = A if and only if A is orthocomplete and satis<es the bounded inversion

property.
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Proof. (a) We recall what is necessary about the so-called Banaschewski representation
(see [26]). oA may be constructed as follows: begin with a set of prime ‘-ideals P for
which ∩P= {0}. Endow P with the hull-kernel topology. For each dense open set V
in P we consider the ring of functions AV consisting of all f :V → ⋃

p∈V A=p such
that f(p)∈A=p and for each p∈V there is an open neighborhood of p; U ⊆ V and
an a∈A, such that f(m) = m + a, for each m∈U. One then considers the AV, over
all dense open V and forms the direct limit with restrictions as bonding maps. The
limit is oA.

Now to the proof; assume A has the bounded inversion property. Suppose that
16f∈ oA. Then over a dense open set V of P, take f described as in the previous
paragraph; we refer to the notation introduced there. Clearly, when f(m) = m+a, with
a∈A, for all m in the neighborhood U of p, we may assume that a¿ 1; else replace it
with a∨1. Thus, each such a is invertible in A. We can then deAne, in AV, the element
g in the obvious way: for each p∈V, g(m) = m + a−1, for each m∈U. It is easy to
check that this deAnes g∈AV unambiguously, and that by doing this, compatibly, over
the direct limit, the result is g∈ oA. Evidently, g is the inverse of f.

(b) We imitate the proof of Theorem 2:5 in [26]. Start with {a!=d!: !∈"}, pairwise
disjoint, and with each d!¿ 1. As in the cited proof, one may replace each d! with
d![a!] + (1 − 1[a!]). Then a!=d! = a!=(d![a!] + (1 − 1[a!])), for each !∈". Taking
suprema: a =

∨
! a!; x =

∨
! d![a!], and e =

∨
! 1[a!], it follows that d = x+(1−e)¿ 1

and that a=d =
∨

! a!=d!. This shows that bA is laterally complete.
For f-rings with 1 it suHces, to prove projectability, to show that 1 has a projection

on each x⊥⊥, along x⊥. But here this is clear, as (a=d)⊥ = a⊥, for each fraction in
qA, and A was assumed to be projectable. This proves (b).

(c) The embeddings A6 oA and A6 bA are always essential. By (a), A6 obA
is an essential embedding into an orthocomplete f-ring with the bounded inversion
property. Thus, obA contains a copy of oA, and, owing to the functorial feature of b,
this embedding extends to an embedding boA6 obA. On the other hand, since b is a
re9ection for which X 6 bX is always essential, applying b to the extension A6 oA
yields the essential embedding bA6 boA into an orthocomplete f-ring. Then, by the
minimality of the orthocompletion, the extension boA6 obA must be surjective.

We will prove in the next section that bo = Q for archimedean f-rings. Without
archimedeaneity this is false.

Example 1.4. boA �= QA, in general. Putting it di=erently, if boA = A, A need not be
a complete ring of quotients.

Consider the ring of formal power series in one variable Z[[T ]], with integer coef-
Acients. It is lexicographically ordered via

1�T�T 2� · · ·�Tn� · · · :

In this situation the elements which are ¿ 1 are those power series whose constant
coeHcients are ¿ 1. As is well known, the inverse of such a power series is one with
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rational coeHcients. The point is that in bZ[[T ]] all elements are power series with
rational coeHcients. This is not qZ[[T ]]; for example, bZ[[T ]] does not include the
Maclaurin series

T−1 + 1 + T + · · · :
The next theorem includes Wickstead’s result that, for any semiprime ring QA = A

is equivalent to strong regularity. For f-rings there are a few new wrinkles.

Theorem 1.5. For a semiprime f-ring A the following are equivalent:
(a) A is a complete ring of quotients.
(b) A is strongly regular.
(c) A is von Neumann regular and laterally complete.
(d) A is orthocomplete and each regular element is invertible.

Proof. The equivalence of (a) and (b) is due to Wickstead. That (a) and (d) are
equivalent is in [26], as has already been observed. We prove that (b) ⇒ (c) ⇒ (d).

(b) ⇒ (c): Obviously, strong regularity implies von Neumann regularity. Now, sup-
pose that {a!: !∈"} is a pairwise disjoint set of positive elements in A. Expand this
to a maximal pairwise disjoint set by adjoining {bi: i∈ I}. Then there is an s∈A such
that sa2

! = a!, for each !∈", and sbi = 0, for each i∈ I . Without loss of generality,
s¿ 0. Next, choose t¿ 0 such that ts2 = s. The reader will then easily verify that
a ≡ t2s =

∨
! a!.

(c) ⇒ (d): In any von Neumann regular ring the regular elements are invertible;
this is well known. All that is left to do then is to prove that A is projectable. Now, if
a∈A, then, as A is von Neumann regular, there is an idempotent e∈A so that Aa = Ae.
Thus, A = Aa + A(1 − e), and it is easy to see that Aa = a⊥⊥, while A(1 − e) = a⊥.

2. Representations and ringi�cation

This is an expository section, in which we document the background for this paper on
the Yosida and Henriksen–Johnson representations, and the concept of ringiAcation of
archimedean ‘-groups. Our main references for the discussion are [20,21]. The reader
might also have a look at [23].

De�nition and Remark 2.1. Before getting started, we distinguish, between a convex
‘-subgroup of an abelian ‘-group, which is an ‘-subgroup that is also order-convex,
and an ‘-ideal of an f-ring, which is a convex ‘-subgroup and a ring ideal.

(a) Suppose that G is an archimedean ‘-group with designated weak unit u ¿ 0; that
is, (G; u) is a W-object. (To say that u is a weak unit is to say that u∧ g = 0 implies
that g = 0.) Y (G; u) stands for the Yosida space of u; that is Y (G; u) consists of all
the convex ‘-subgroups which are maximal with respect to not containing u, and it
bears the hull-kernel topology. Y (G; u) is, thus, a compact HausdorP space.
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When the object is an f-ring A and the designated unit is the identity 1—that is,
when A is an Arf-object—there is a canonical isomorphic copy of Y (A; 1), namely the
space of all maximal ‘-ideals m(A). For each maximal ‘-ideal M there is a unique
convex ‘-subgroup M ′ ∈Y (A; 1) containing M . The map M �→ M ′ is a homeomorphism
of Y (A; 1) onto m(A).

(b) Let X be a compact HausdorP space. D(X ) denotes the set of all continuous
functions f on X with values in the two-point compactiAcation of the reals R, with
the additional stipulation that f−1R is dense. It is well known that, in general, D(X )
is not a group or a ring under pointwise addition and multiplication, respectively. It is
a lattice under pointwise suprema and inAma.

One uses the term ‘-group in D(X ) for an ‘-group G ⊆ D(X ), when in G each
sum k = g + h satisAes k(x) = g(x) + h(x) on a dense subset of points of X . One uses
a similar convention with the term f-ring in D(X ).

Here is a formulation of the representation theorems:
(i) The Yosida representation: Suppose that G is an archimedean ‘-group with weak

unit u ¿ 0. Then there is an ‘-isomorphism - from G onto an ‘-group G′ in
D(Y (G; u)), carrying u onto the constant function 1, so that G′ separates the
points of Y (G; u).

(ii) The Henriksen–Johnson representation: Suppose that A is an archimedean f-ring.
Then there is a ring ‘-isomorphism - from A onto an f-ring A′ in D(m(A)),
carrying the identity to the constant function 1, so that A′ separates the points
of m(A).

Note that a subset S ⊆ D(X ) is said to separate the points of X if for each pair
of distinct points x and y in X there is an f∈ S such that f(x) �= f(y). It is easy to
show that the separation of points makes the spaces above unique (up to homeomor-
phism). Thus, the Henriksen–Johnson representation is a special case of the Yosida
representation, and (ii) essentially says that the latter preserves the ring structure.

Now for the second part of this section: the passage from the category W to Arf.

Remark 2.2. There is an obvious “forgetful” functor from Arf to W, which ignores
the ring structure on an archimedean f-ring. Let us denote this functor by ’. On the
other hand, suppose that A is a W-object with positive designated unit uA. Then there
is an archimedean f-ring rfA and a W-embedding rf

A : A → rfA (so that rf
A (uA) = 1),

such that if f : A → B is a W-morphism into the archimedean f-ring B, then there is
a unique ring ‘-homomorphism Qf : rfA → B so that Qf · rf

A = f; this is proved in [20],
and there is also a very readable discussion of this subject in the introduction to [21].

In fact, rf · ’ is the identity functor. Of course, rf is the left adjoint of ’. What
is implied by the above, and was explicitly shown by Conrad [7, 2.2] is that each
W-object A admits at most one f-ring multiplication making the designated unit uA the
identity. In addition, a W-morphism between Arf-objects is multiplicative. EPectively,
then Arf is a monore9ective (full) subcategory of W, and we shall think of it as such.
The re9ection rf and each embedding A6 rfA are referred to as ringi<cation.
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One more note: we have already remarked, in 1.2(a), that the lateral
completion of an f-ring is an f-ring. In symbols, with fRng denoting the
category of f-rings, we have lfRng ⊆ fRng. The “reverse” fails. If L stands for
the class of laterally complete objects in W, then rfL * L. An example may be
found in [21].

3. Strong !1-regularity and archimedean f -rings

We deAne the central concept of this article.

De�nition and Remark 3.1. We say that A is strongly !1-regular if for each
countable subset D of A of pairwise annihilating elements there is an s∈A so that
d2s = d, for each d∈D and xs = 0 whenever xD = 0. It should be evident that
strong regularity implies strong !1-regularity, which, in turn, implies von Neumann
regularity.

The reader may observe that, given the concept of strong regularity, our notion of
strong !1-regularity does not strike one as the most natural one to consider. We oPer
no notion of “!1-regularity”, making it fair to ask why one should wish to carry
the modiAer “strong”. Another possible deAnition of strong !1-regularity might be
the following: for each countable subset D of A, and each partition of D = D1 ∪ D2,
there exists : : :; the reader may complete the sentence. The one we have introduced
is ostensibly stronger; more importantly, it does what we want. Whether the two are
equivalent is another story; we do not know, but we have not really dwelt on the
question either.

We now state the main theorem of this section; the proof depends on a lemma which
follows some observations.

Theorem 3.2. For a semiprime f-ring A the following are equivalent:
(a) A is strongly !1-regular.
(b) A is von Neumann regular and laterally 
-complete.

If A is also archimedean then these are equivalent to
(c) A is laterally 
-complete and has the bounded inversion property.

Remark 3.3. That (a) implies (b) in Theorem 3.2 follows from the proof that (b)
implies (c) in Theorem 1.5.

We should recall some facts prior to the proof of Theorem 3.2.

De�nition and Remark 3.4. (a) The topological spaces which occur in this article will
be Tychono=: that is, HausdorP, with the additional property that for each closed set
K and each point p not in K , there is a continuous real-valued function g such that
g(p) = 1 and g(K) = {0}.
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Recall that, if f∈C(X )

coz(f) = {x∈X : f(x) �= 0}
is called the cozeroset of f. A space is TychonoP if and only if it is HausdorP and
the cozerosets form a base for the open subsets. For this and for any unexplained
topological terminology the reader should consult [9].

We shall also use the notation coz(f), as above, for a function f∈D(X ).
(b) Recall that a space X is basically disconnected if the closure of each coze-

roset of X is open. It is shown in [13] that for any W-object (G; u) which is laterally

-complete, Y (G; u) is basically disconnected. This is true, in particular, for any lat-
erally 
-complete archimedean f-ring A. It is well known that any compact basically
disconnected space is zero dimensional; that is, that the clopen sets form a base for
the open sets. If X is compact and zero dimensional, each cozeroset can be written as
a countable disjoint union of clopen sets (see [27, 4.5]).

The following lemma is needed in the proof of Theorem 3.2. It is interesting in its
own right.

Lemma 3.5. Suppose that A is a laterally 
-complete archimedean f-ring which sat-
is<es the bounded inversion property. Then A is von Neumann regular.

Proof. According to 3:4(b), m(A) is basically disconnected. It suHces to prove the
regularity condition for positive elements. So suppose that a ¿ 0. We identify A with
its image in D(m(A)) under the Henriksen–Johnson representation. Write coz(a) as
a disjoint union of clopen sets Un (n ¡ !). Let en denote the characteristic function
of Un; it is shown in [13, 3:2 and 2:2(b)], that aen ∈A. Next, put cn = aen + 1 − en.
Since Un is compact, each cn exceeds a nonzero constant function, and by the bounded
inversion property must be invertible. Let dn = c−1

n , and form

d ≡
∨

n

dnen;

this supremum exists on account of the lateral 
-completeness. We observe that d
inverts a on each Un and is zero oP the closure of coz(a). The reader should then
have no trouble verifying that a2d = a.

Proof of Theorem 3.2. We have already observed how to get (a) ⇒ (b). As for the
converse, it suHces (by taking positive and negative parts) to verify strong !1-regularity
for positive elements. So, if {an: n ¡ !} is a set of pairwise disjoint elements, we may
form a =

∨
n an. Next, pick s∈A so that a2s = a and set c = s2a. It must be shown that

a2
nc = an, for each n ¡ !, and that xc = 0, whenever xan = 0, for all n ¡ !. We check

the Arst part and leave the other to the reader.
If a2

nc �= an, there is a minimal prime ideal such that an(1 − anc) �∈ P, whence an �∈
P. But since an is disjoint to

∨
m �=n am, it follows that a = an mod P. Furthermore,
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as ≡ 1 mod P, whence

anc ≡ asas ≡ 1 mod P;

which is a contradiction.
Now assume that A is archimedean. As we have already observed, von Neumann

regularity implies the bounded inversion property, it is clear that (b) implies (c). The
converse is Lemma 3.5.

To conclude the section, let us record a corollary of our results hitherto, character-
izing in yet a diPerent way the archimedean complete f-rings of quotients.

Corollary 3.6. Suppose that A is an archimedean f-ring. Then it is a complete ring of
quotients if and only if it is laterally complete and has the bounded inversion property.
Moreover,

bl = lb = Q;

for archimedean f-rings.

Proof. The necessity is clear from Theorem 1.5. The suHciency follows from Lemma
3.5. The Anal statement is a consequence of Theorem 1.3 and the observation that o = l
for archimedean ‘-groups.

4. The strongly !1-regular re-ection

The objective of this section is to show that the subcategory SR of Arf whose objects
are the strongly !1-regular f-rings is monore9ective, and to describe the monore9ection
in SR. We begin with the appropriate categorical preliminaries.

We assume that the reader is intuitively familiar with the notion of a category
and associated concepts, such as monomorphism, epimorphism, functor, etc. Our basic
reference will be [24]. Every subcategory here is assumed to be full: that is, if B is a
subcategory of A, and f : B → C is an A-morphism between objects in A, then f is,
in fact, in B.

We now review the basic features of epire9ections.

De�nition and Remark 4.1. (a) Let A be a category, and B be a subcategory of A. B
is re@ective in A (or a re@ective subcategory of A) if for each A-object A there is a
B-object rA and a morphism ra : A → rA so that, for each B-object B and morphism
f : A → B there is a unique morphism f∗ : rA → B such that f∗ · rA = f.

Intuitively, this should be a familiar concept; for ampliAcation the reader should
consult [24, Chapter X]. For now let us review some of the basic language associated
with re9ections. First, if B is re9ective in A, then a functor emerges: we denote it
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by r, having already said in the deAnition what it does to objects; if g : A1 → A2 is a
morphism then r(g) is the unique morphism (guaranteed by the deAnition) such that

r(g) · rA1 = rA2 · g:

The functor r is the actual re@ection. In the language of adjoint functors, r :A → B is
the left adjoint of the inclusion functor j :B→ A [24, Section 27]. In this perspective
r (with object subscripts) may also be viewed as a natural transformation from 1A, the
identity functor, to the composite j · r. Each rA is called a re@ection map. r is called
an epire@ection (resp. monore@ection) if each re9ection map is epic (resp. monic).
Every monore9ection is an epire9ection (24; 36:3]. If r :A → B is an epire9ection
(resp. monore9ection) we say that B is an epire@ective (resp. monore@ective) sub-
category of A.

There is a well established literature on epire9ections [24, Section 27]; we prefer to
postpone a review of it until the next section.

(b) When considering composition of monore9ections there is a useful principle,
which appears in [14, Proposition 2:7(b)]. Let us suppose that r and s are mono-
re9ections on the subcategories Br and Bs, respectively. According to [14, Proposition
2:7(b)], if sBr ⊆ Br , then s · r monore9ects on Br ∩ Bs, with re9ection maps srA · rA.
Note that if the inclusion rBs ⊆ Bs also holds then r and s commute, because r · s and
s · r re9ect on Br ∩ Bs, and must therefore agree.

Next, let us recall from [18] some aspects of the laterally 
-complete re9ection

 :W → .

Proposition 4.2 (Hager and Martinez [18, Corollary 2:4]). Let A be an Arf-object.
Then the extension A6 
A is an Arf-morphism. 
; restricted to Arf ; monore@ects
into the subcategory r of laterally 
-complete f-rings.

It will also be useful to have the following description of 
A, from [18, Section 4].

Remark 4.3. For the moment, let X be any TychonoP space. B(X ) will denote the
algebra of all real-valued Baire (measurable) functions. (Recall that a subset of X
is Baire measurable if it lies in the boolean 
-algebra generated by the zerosets of
X . Then f∈RX is Baire if the inverse image of any open interval in R is Baire
measurable.)

Next, suppose that A is an archimedean f-ring, and let Y = m(A). We consider the
subalgebra B!;A(Y ) of B(Y ) deAned as follows: f∈B!;A(Y ) ⇔ f∈B(Y ) and there is
a countable partition of Y , Y =

⋃
n Yn, into Baire measurable sets Yn, and there exists

a sequence an of elements of A such that f|Yn = an|Yn , for each n ¡ !. Then


A = lim→ B!;A(U );

where U ranges over the members of (A−1R)7, the Alter base of all countable inter-
sections of sets in A−1R. In this direct limit the bonding maps are restrictions: with
U; V ∈ (A−1R)7, and V ⊆ U , B!;A(U ) → B!;A(V ) is the restriction of a function to V .
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Let us denote by BI the monore9ective subcategory of Arf consisting of all f-rings
with the bounded inversion property; the re9ection b :Arf → BI has been described
in 1.2(c). We are now able to state the main result of this section. The proof will be
accomplished through two lemmas.

Theorem 4.4. In Arf ; b · 
 = 
 · b; and

9 ≡ b · 

re@ects onto the subcategory SR=BI ∩ r .

The keys to the proof of Theorem 4.4 are the two lemmas which follow, together
with 4:1(b).

Lemma 4.5. 
BI ⊆ BI; that is; if A satis<es the bounded inversion property then so
does 
A.

Proof. We use the characterization of 
A outlined in 4.3. Suppose f¿ 1 in 
A. Then,
modulo the equivalence relation of identiAcation in a direct limit, we may view the
situation as follows: there exists a partition of m(A) by Baire sets Yn (n ¡ !) and an ∈A
(n ¡ !) such that f|Yn = an|Yn . Without loss of generality (by changing to an ∨ 1, if
necessary), we may assume that each an¿ 1. Since A possesses the bounded inversion
property, we have bn = a−1

n in A, for each positive integer n. DeAne g by g|Yn ≡ bn|Yn ;
according to the remarks of 4:3 it should be evident that g∈ 
A and also that fg = 1.

Lemma 4.6. br ⊆ r; that is; if A is a laterally 
-complete Arf-object then bA is
again laterally 
-complete.

Proof. This is a special case of the proof of Theorem 1.3(b), restricted to countable
pairwise disjoint sets.

Proof of Theorem 4.4. That SR=BI∩r is part of Theorem 3.2. Apply the preceding
lemmas and the comment in 4:1(b).

5. SR from complete rings of quotients

The goal in this section is to incorporate the material from [17], describing  as
the epire9ective subcategory generated by the class of laterally complete W-objects, in
order to obtain SR as the epire9ective subcategory generated by the complete rings of
quotients in Arf.

First, some general comments about epire9ective subcategories are in order; we refer
the reader to [24, Section 37]. We model what follows on our account in [19, Theo-
rem 2:1].
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De�nition and Remark 5.1. Let A be a category which is cowellpowered, has prod-
ucts, each morphism f has an essentially unique factorization f = m·e, with e epic and
m extremal monic, and suppose that the composition of extremal monics is extremal
monic. (We leave the interested reader to consult [24] for most of these technical con-
ditions. We explain the label “extremal” below.) The characterization of epire9ective
subcategories that we need here is contained in [24, Theorem 37:2]. We also incorpo-
rate into the formulation below the notion of a least epire9ective class containing any
collection of objects; for this we refer the reader to [24, 37:5 and 37:6].

The subcategory B of A is epire@ective if and only if it is closed under products
and extremal subobjects. Moreover, each class of objects C is contained in a least
epire@ective subcategory R(C) of A. B∈R(C) if and only if B is an extremal
subobject of a product of objects in C.

Let us explain extremal subobjects. Let m : A → B be a monomorphism. We say
that m is extremal if for any factorization m = h · e, with e epic, it follows that e is
an isomorphism. If m is an extremal monomorphism then we also say that A is an
extremal subobject of B. The problem with extremal subobjects is that, typically, they
are diHcult to characterize. In any case, here is at least one common way one might
encounter them. If h ·m = 1A, with m : A → B, then m is extremal. Such morphisms are
called sections.

Note that if a class C of A-objects is already product closed, then

R(C) = {A: A is an extremal subobject of some C ∈C}:

The following is one of the main accomplishments of [19].

Theorem 5.2. Every laterally 
-complete W-object is an extremal subobject of a lat-
erally complete one. Thus; R(L) = ; where L denotes the ( product closed ) class of
all laterally complete W-objects.

A careful reading of the proof of Theorem 5.2 will reveal this:

Theorem 5.3. Every strongly !1-regular Arf-object is an extremal subobject of a
complete ring of quotients in Arf . Thus; R(Q) =SR; where Q stands for the ( product
closed ) class of archimedean complete rings of quotients.

Proof. It is well known that Q is product closed; see [25]. In view of Theorems 1.5
and 3.2 it is clear that an extremal subobject of a complete ring of quotients is laterally

-complete and has bounded inversion, and therefore strongly !1-regular. To complete
the proof then it is the Arst claim that must be established.

Now suppose that A is strongly !1-regular. The relevant portion of the proof of
Theorem 5.2 goes like this. One looks for P-sets of m(A); recall that a P-set T of
a TychonoP space X is one which has the feature that any real-valued continuous
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function f which vanishes on T also vanishes on a neighborhood of T . Let T be
such a P-set. The point is that, Arst, the restriction map g �→ g|T is a surjective
‘-homomorphism of A onto the W-object A|T of all such restrictions. In our context,
since A is a ring, so is A|T . It is not hard to see that A|T also has the bounded inversion
property.

Next, one passes to LT , the lateral completion of A|T ; this is now also an f-ring.
Owing to Corollary 3.6, LT inherits the bounded inversion property. Finally, it is shown
in [19] that there are enough nonempty P-sets so that the induced map A → ∏

T LT is
an embedding, and extremal. Obviously,

∏
T LT satisAes the bounded inversion property

as well.
To summarize, each strongly !1-regular Arf-object A is an extremal subobject in W

of a laterally complete archimedean f-ring B with the bounded inversion property. By
Theorem 1.5, B is a complete ring of quotients. The only comment that need to be
added to this is that all the morphisms in these arguments preserve multiplication, so
that A is, indeed an extremal subobject of B in Arf.

6. The maximum roq-functor on Arf

In [19] the maximum monore9ection in W beneath the lateral completion is
described. Here we use similar ideas to get at the maximal roq-functor in Arf.

We begin with a review of maximum monore9ections beneath a completion. We give
the deAnition of a completion, for the record, but refer the reader to the discussions in
[12,15], and (of course) also to [24] for any unexplained technical terms.

De�nition and Remark 6.1. Suppose that A is a category. A completion is an operator
; which assigns to each A-object A an object ;A along with a monomorphism ;A : A →
;A, so that if ;A = f · g, with g : A → B and f : B → ;A, and f monic and g epic, then
there is an isomorphism h : ;B → ;A such that h ·;B = f. We say that a completion ; is
idempotent if each ;;A is an isomorphism. Obviously, monore9ections are idempotent
completion operators.

Next, we deAne the partial ordering for monore9ections. Suppose that r and t are
monore9ections of A into subcategories Br and Bt , respectively. We say that r6 t
if, for each A-object A, there is a monomorphism mA : rA → tA so that mA · rA = tA.
Since a monore9ection is necessarily an epire9ection, it follows that r6 t and t6 r
imply that r = t, and that 6 deAnes a partial ordering. Observe that r6 t if and only
if Bt ⊆ Br .

Suppose now that ; is a completion operator. We consider the monore9ections r
such that, for each A-object A, there is a monomorphism mA : rA → ;A such that
;A = mA · rA. Evidently, this extends the deAnition in the preceding paragraph. The
maximum monore9ection in this class (if it exists) will be denoted by �(;). We
refer to it as the maximum monore@ection beneath ;. The following theorem is
proved in [12], as Theorem 4:2. We are purposely vague about the hypotheses on the
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category; it is up to the reader to check the reference. The hypotheses are satisAed in
both W and Arf. In any event, the existence of these maxima is not an issue in this
paper:

Suppose that A is a category subject to certain constraints. Then, for any com-
pletion ;, �(;) exists.

Ref. [19] is dedicated to describing �(l) in W. We are about to do the same with
�(Q) in Arf.

Next, we summarize the Arst section of [19], on maximum monore9ections under
an essential completion.

De�nition and Remark 6.2. (a) First, recall that a monomorphism m : A → B of the
category A is essential if g : B → C is monic whenever g ·m is monic. If m is essential
we also say that B is an essential extension of A, or that A is an essential subobject
of B. This general deAnition specializes to the one given earlier (1:1(c)) for W.

A monore9ection r is called essential if each re9ection map rA is essential. The
subcategory into which r re9ects is said to be essentially re@ective. Likewise, a com-
pletion ; is essential if each ;A is essential. There is no reason for a Arst factor of an
essential extension to be essential. We say that a completion (resp. monore9ection) ;
is restrictably essential if, for each A-object A and each factorization ;A = f · g, with
f monic, g is necessarily essential.

(b) Let us assume that ; is a restrictably essential idempotent completion, and denote
by C the class of ;-closed objects; that is, A∈C if and only if ;A is an isomorphism.
Evidently, C is the range of ;. We also assume that A possesses a maximum essential
monore9ection, which we denote by <; the range of < is denoted by E. Suppose as well
that A, has a maximum monore9ection, denoted by =. We now recite [17, Theorem
1:1]:

Let Q; stand for the monore@ection into R(C) and �(;) for the mono-
re@ection into R(C ∪ E). Assume in addition that A has intersections. Then
we have
(i) R(C ∪ E) is the least essentially epire@ective subcategory containing C.
(ii) �(;) is the largest monore@ection beneath ;.
(iii) �(;)A = <A ∩ Q;A6 =A.
(iv) In the lattice of monore@ections on A, we have �(;) = < ∧ Q;.

Note that R(C) is, indeed, monore9ective, as each A-object A may be embedded in
the object ;A in C ⊆ R(C).

We are almost to the highlight of this section. Let us Arst recall for the reader what
the maximum essential monore9ection looks like in Arf.
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Remark 6.3. Suppose that G is a W-object. We denote by c3G the following direct
limit:

c3G = lim→ C(U );

where U ranges over (G−1R)7, and once again the bonding maps are restrictions.
(Note: as before, we identify G with its image under the Yosida representation.) It is
shown in [4], Theorem 9:2, that c3 is the maximum essential monore9ection in W. c3G
is often called the closure of A under countable composition. The notion of countable
composition was introduced in [22]; the closure itself Arst occurs in [2,3].

Now, since c3G is always a ring, we get that c3 majorizes the ringiAcation functor
rf. Thus, restricted to Arf, c3 is the maximum essential monore9ection in that category.
As set out in 6:2(b), we use < for c3, acting on Arf, and the range of < is denoted by
E. Observe that, per 6:2(b),

�(l) = < ∧ 
 (see [19]):

The main result of this section reads as follows. Recall that Q stands for the class
of complete rings of quotients in Arf.

Theorem 6.4. In Arf ;

�(Q) = < ∧ 9

and �(Q) re@ects into R(E∪Q); which is the least essentially epire@ective subcategory
containing all complete rings of quotients in Arf : �(Q) is also the largest roq-functor
in Arf .

Proof. To apply our result from [17] (6:2(b) above) all we need do is verify that
A6QA is a restrictably essential, idempotent completion. That it is a completion and
idempotent is well known. On the other hand, suppose B is any ring of quotients of
A, and f is any ring homomorphism out of B whose restriction to A is one-to-one.
If f(b) = 0, while b �= 0, then (by deAnition of ring of quotients) there is an a∈A
so that ab∈A and is not zero. But then f(ab) = f(a)f(b) = 0, which contradicts our
assumption.

Knowing that the operator Q is a restrictably essential, idempotent completion allows
us to invoke 6:2(b). Let us recite: Q is the range of Q; Arf certainly has intersections;
and as we pointed out in 6.3, < is the largest essential monore9ection.

In view of Theorems 1.3 and 4.4 it is reasonable to wonder whether the func-
tors b and �(l) commute. They do not. The example which witnesses this involves
integer-valued functions. We do not know whether an example exists which is a vector
lattice.
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Example 6.5. �(Q) = �(l) · b, but b · �(l) �= �(Q).
First, the reason why �(Q) = �(l) · b: now, for each Arf-object A, we have

(�(l) · b)A = <bA ∩ 
bA = <A ∩ 9A = �(Q)A;

because <bA = <A, since < is the largest essential monore9ection and, thus, b ¡ <.
However, suppose that A = C(=!;Z), the ring of all continuous integer-valued func-

tions on the Stone– UCech compactiAcation of the discrete natural numbers. This is the
ring of all sequences of integers of Anite range. It is easy to see that <A = C(=!). On
the other hand, 
A is complicated, but consists of integer valued Baire functions on
=!. This implies that any f∈ <A ∩ 
A must be a bounded sequence of integers; the
point is that <A ∩ 
A = A, and therefore b(�(l)A) = bA. Note that bA is the ring of
rational sequences of Anite range. Hence,

�(Q)A = �(l)bA = <bA ∩ 
bA;

Anally, note that if g is the function deAned by g(n) = 1=n and by being identically
zero on =! \ !, then g∈ 
bA, and, therefore, g∈ �(l)bA, but g �∈ bA.

We conclude this article with some applications of Theorem 6.4 and the information
about the strongly !1-regular re9ection. Let us begin with an easy corollary of Theorem
6.4.

Corollary 6.6. Suppose that A is an Arf-object. Then �(Q)A = A if and only if A is
an extremal subobject of B × C; where C is a complete ring of quotients in Arf and
B = <B.

Proof. This is immediate from Theorem 6.4, after one re9ects that both Q and E are
closed under products.

In many ways Corollary 6.6 is unsatisfactory. In fact, we know of no explicit alge-
braic characterization of the objects A for which �(Q)A = A.

We consider one application which was also highlighted in [18]. For each compact
(HausdorP) and zero-dimensional space X , let S(X ) be the algebra generated by all the
idempotents in C(X ), or, if the reader prefers, the algebra of Anite linear combinations
of characteristic functions of clopen subsets of X . We will describe �(Q)S(X ).

Proposition 6.7. Suppose that X is a compact; zero-dimensional space. Then

�(Q)S(X ) = {f∈C(X ): f has countable image}:

Proof. Begin by noting that S(X ) has the bounded inversion property. Thus, by The-
orem 4.4, 
S(X ) = 9S(X ). [18, Corollary 4:10(c)] tells us that


S(X ) = {f∈B(X ): f has countable image}:
As <S(X ) = C(X ), the proposition follows from Theorem 6.4.
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So when is �(Q)S(X ) = C(X )? There is a tidy answer to that; let us give it. First,
we record the following deAnition.

De�nition 6.8. Let X be a compact space. Recall that X is scattered if every closed
subspace Y has a point which is isolated in Y . It is well known that a compact
scattered space is necessarily zero dimensional. By a result of Rudin [28], a compact
metric space is scattered precisely when it is countable.

Proposition 6.9. With X compact and zero-dimensional; �(Q)S(X ) = C(X ) if and
only if X is scattered.

Proof. [19, Corollary 5:8(c)] states that �(l)S(X ) = C(X ) if and only if X is scattered.
Moreover, S(X )∈BI; therefore �(l)S(X ) = �(Q)S(X ), by appealing to Example 6.5.

Note added in proof (31 July 2001). We have just realized that there is an overlap
between our Theorem 1.5 and Theorem 5.1 in [29]. We apologize for the oversight.

References

[1] M. Anderson, T. Feil, Lattice Ordered Groups; An Introduction, Reidel, Dordrecht, 1988.
[2] E.R. Aron, Embedding lattice-ordered algebras in uniformly closed algebras, University of Rochester

Dissertation, 1971.
[3] E.R. Aron, A.W. Hager, Convex vector lattices and ‘-algebras, Topology Appl. 12 (1981) 1–10.
[4] R.N Ball, A.W. Hager, Algebraic extensions of an archimedean lattice-ordered group, I, J. Pure Appl.

Math. 85 (1993) 1–20.
[5] A. Bigard, K. Keimel, S. Wolfenstein, Groupes et Anneaux RXeticulXes, Lecture Notes in Mathematics,

Vol. 608, Springer, Berlin, 1977.
[6] P. Conrad, The hulls of representable ‘-groups and f-rings, J. Austral. Math. Soc. XVI (part 4) (1973)

385–415.
[7] P. Conrad, The additive group of an f-ring, Canad. J. Math. 21 (1974) 1157–1168.
[8] M. Darnel, The Theory of Lattice-Ordered Groups, Pure & Applied Mathematics, Vol. 187, Marcel

Dekker, Basel, 1995.
[9] L. Gillman, M. Jerison, Rings of Continuous Functions, Graduate Texts in Mathematics, Vol. 43,

Springer, Berlin, 1976.
[10] A.W. Hager, J. Martinez, Functorial rings of quotients, I, in: W.C. Holland, J. Martinez (Eds.),

Proceedings Conference on Ord. Algebraic Structures, Gainesville, 1991, Kluwer, Dordrecht, 1993,
pp. 133–157.

[11] A.W. Hager, J. Martinez, Functorial rings of quotients, II, Forum Math. 6 (1994) 597–616.
[12] A.W. Hager, J. Martinez, Maximum monore9ections, Appl. Cat. Struct. 2 (4) (1994) 315–329.
[13] A.W. Hager, J. Martinez, >-projectable and laterally >-complete archimedean lattice-ordered groups, in:

S. Berhanu (Ed.), Proceedings Conference in Memory of T. Retta, Temple, PA=Addis-Ababa, 1995,
Ethiopian J. Sci. (1996) 73–84.

[14] A.W. Hager, J. Martinez, The laterally 
-complete re9ection of an archimedean ‘-group, in: W.C.
Holland, J. Martinez (Eds.), Proceedings Conference Ord. Algebraic Structures, CuraZcao, 1995, Kluwer,
Dordrecht, 1997, pp. 217–236.

[15] A.W. Hager, J. Martinez, Pushout-invariant extensions and monore9ections, J. Pure Appl. Algebra 129
(1998) 263–295.

[16] A.W. Hager, J. Martinez, Hulls for various kinds of >-completeness in archimedean lattice-ordered
groups, Order 16 (1999) 89–103.



A.W. Hager, J. Martinez / Journal of Pure and Applied Algebra 169 (2002) 51–69 69

[17] A.W. Hager, J. Martinez, Maximum monore9ections and essential extensions, Appl. Categ. Struct., to
appear.

[18] A.W. Hager, J. Martinez, More on the laterally 
-complete re9ection of an archimedean lattice-ordered
group, Order 15 (1999) 247–260.

[19] A.W. Hager, J. Martinez, Functorial approximation to the lateral completion of an archimedean ‘-group
with weak unit, Rend. Sem. Mat. Univ. Padova 105 (2001) 87–110.

[20] A.W. Hager, L.C. Robertson, Representing and ringifying a Riesz space, Proceedings Symposium on
Ordered Groups and Rings, Rome, 1975, Symposium Mathematics, Vol. 21, 1977, pp. 411–431.

[21] A.W. Hager, L.C. Robertson, On the embedding into a ring of an archimedean ‘-group, Canad. J. Math.
XXXI (1) (1979) 1–8.

[22] M. Henriksen, J.R. Isbell, D.G. Johnson, Residue class Aelds of lattice-ordered algebras, Fund. Math.
50 (1961) 110–117.

[23] M. Henriksen, D.G. Johnson, On the structure of a class of lattice-ordered algebras, Fund. Math. 50
(1961) 73–94.

[24] H. Herrlich, G. Strecker, Category Theory, Sigma Series in Pure Mathematics, Vol. 1, Heldermann
Verlag, Berlin, 1979.

[25] J. Lambek, Lectures on Rings and Modules, 3rd Edition, Chelsea, New York, 1986.
[26] J. Martinez, The maximal ring of quotients of an f-ring, Algebraic Univ. 33 (1995) 355–369.
[27] J.R. Porter, R.G. Woods, Extensions and Absolutes of HausdorP Spaces, Springer, Berlin, 1989.
[28] W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. AMS 8 (1957) 39–42.
[29] A.W. Wickstead, The injective null of an Archimedean f-algebra, Comp. Math. 62 (1987) 329–342.
[30] A.W. Wickstead, An intrinsic characterization of self-injective semiprime commutative rings, Proc. Roy.

Irish Acad., Sect. A 90A (1) (1989) 117–124.


