
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Cell Reports

Resource
Detection of Misfolded AbOligomers
for Sensitive Biochemical Diagnosis
of Alzheimer’s Disease
Natalia Salvadores,1,4 Mohammad Shahnawaz,1,4 Elio Scarpini,2 Fabrizio Tagliavini,3 and Claudio Soto1,*
1Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School
at Houston, 6431 Fannin Street, Houston, TX 77030, USA
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SUMMARY

Alzheimer’s disease (AD) diagnosis is hampered by
the lack of early, sensitive, and objective laboratory
tests. We describe a sensitive method for biochem-
ical diagnosis of AD based on specific detection of
misfolded Ab oligomers, which play a central role in
AD pathogenesis. The protein misfolding cyclic
amplification assay (Ab-PMCA), exploits the func-
tional property of Ab oligomers to seed the poly-
merization of monomeric Ab. Ab-PMCA allowed
detection of as little as 3 fmol of Ab oligomers.
Most importantly, using cerebrospinal fluid, we
were able to distinguish AD patients from control
individuals affected by a variety of other neurode-
generative disorders or nondegenerative neurolog-
ical diseases with overall sensitivity of 90% and
specificity of 92%. These findings provide the
proof-of-principle basis for developing a highly sen-
sitive and specific biochemical test for AD diagnosis.
INTRODUCTION

Alzheimer’s disease (AD) is themost common cause of dementia

in the elderly population and one of the leading causes of death

in the developed world (Hebert et al., 2003). The disease is typi-

cally characterized by a progressive amnestic disorder followed

by impairment of other cognitive functions and behavioral abnor-

malities associated with specific neuropathological changes, in

particular accumulation of protein aggregates in the form of

amyloid plaques and neurofibrillary tangles (Terry, 1994).

Although the etiology of the disease is not yet clear, compelling

evidence suggests that misfolding, oligomerization, and accu-

mulation of amyloid aggregates in the brain is the triggering fac-

tor of the pathology (Selkoe, 2000; Haass and Selkoe, 2007;

Soto, 2003). Amyloid aggregates are composed predominantly

of a 42-residue peptide called amyloid-b (Ab), which is the
product of the enzymatic processing of a larger amyloid precur-

sor protein (Selkoe, 2000). Abmisfolding and fibrillar aggregation

follow a seeding-nucleation mechanism that involves the forma-

tion of several intermediates, including soluble oligomers and

protofibrils (Caughey and Lansbury, 2003; Soto et al., 2006; Jar-

rett and Lansbury, 1993). Recent findings have shown that Ab

oligomers, rather than large amyloid fibrils, might be the culprit

of neurodegeneration in AD (Walsh and Selkoe, 2007; Haass

and Selkoe, 2007; Glabe and Kayed, 2006; Klein et al., 2004).

AD belongs to a large group of diseases associated with mis-

folding, aggregation and tissue accumulation of proteins (Soto,

2003). These diseases, termed protein misfolding disorders

(PMDs), include Parkinson’s disease, type 2 diabetes, Hunting-

ton’s disease, amyotrophic lateral sclerosis, systemic amyloid-

osis, prion diseases, and many others (Soto, 2003; Luheshi

and Dobson, 2009). In all these diseases, misfolded aggregates

composed of different proteins are formed by a similar mecha-

nism resulting in the accumulation of toxic structures that induce

cellular dysfunction and tissue damage (Caughey and Lansbury,

2003; Soto et al., 2006; Jarrett and Lansbury, 1993).

One of the major problems in AD is the lack of a widely

accepted early, sensitive, and objective laboratory diagnosis to

support neuropsychological evaluation, monitor disease pro-

gression, and identify affected individuals before they display

the clinical symptoms (Parnetti and Chiasserini, 2011; Urbanelli

et al., 2009). For diseases affecting the brain, a tissue with low

regeneration capacity, it is crucial to intervene before irreversible

neuropathological changes occur. Therefore, early diagnosis of

AD is of utmost importance. Several lines of evidence point

that the process of Ab misfolding and oligomerization begins

years or decades before the onset of clinical symptoms and sub-

stantial brain damage (Braak et al., 1999; Buchhave et al., 2012).

Recent studies have shown that Ab oligomers are naturally

secreted by cells and circulate in AD biological fluids (Gao

et al., 2010; Head et al., 2010; Walsh et al., 2002; Klyubin

et al., 2008; Georganopoulou et al., 2005; Fukumoto et al.,

2010). Thus, detection of soluble Ab oligomers might represent

the best strategy for early and specific biochemical diagnosis

of AD. The challenge of this approach is that the quantity of Ab
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oligomers is likely very small in tissues other than the brain. An

additional difficulty for specific detection of Ab oligomers is

that their sequence and chemical structure is the same as the

native Ab protein.

Our strategy to detect misfolded oligomers is to use their

functional property of being capable of catalyzing the polymeri-

zation of the monomeric protein. For this purpose, we invented

the protein misfolding cyclic amplification (PMCA) technology in

order to achieve the ultrasensitive detection of misfolded aggre-

gates through amplification of the misfolding and aggregation

process in vitro (Saborio et al., 2001). So far, PMCA has been

applied to detect minute quantities of oligomeric misfolded prion

protein (PrPSc) implicated in prion diseases (Morales et al.,

2012). Using PMCA, we were able to detect the equivalent of

a single particle of misfolded PrP oligomer (Saá et al., 2006b)

and strikingly to identify PrPSc in the blood and urine of infected

animals at symptomatic and presymptomatic stages of the dis-

ease (Castilla et al., 2005; Saá et al., 2006a; Gonzalez-Romero

et al., 2008). The basis for the PMCA technology is the fact

that the process of misfolding and aggregation of Ab, PrP, and

the other proteins implicated in PMDs follow a seeding-nucle-

ation mechanism (Soto et al., 2002, 2006). In a seeded-nucle-

ated polymerization, the limiting step is the formation of stable

oligomeric seeds that, depending on the conditions, may take

a very long time to form or not occur at all. Once formed, oligo-

mers grow exponentially by recruiting and incorporating protein

monomers into the growing polymer. Addition of preformed

seeds into a solution containing the monomeric protein acceler-

ates protein misfolding and aggregation (Soto et al., 2006; Jar-

rett and Lansbury, 1993). Thus, measuring seeding activity could

be used to estimate the presence and quantity of oligomers in a

given sample. To increase the sensitivity of detection, PMCA

combines steps of growing polymers with multiplication of olig-

omeric seeds to reach an exponential increase of misfolding and

aggregation (Soto et al., 2002). In this study, we describe the im-

plementation and optimization of PMCA for highly sensitive

detection of misfolded Ab oligomers and show its application

to detect these structures in the cerebrospinal fluid (CSF) of

AD patients.

RESULTS

Cyclic Amplification of Amyloid-b Misfolding
To implement the experimental conditions for Ab-PMCA, we per-

formed studies using in-vitro-produced oligomeric seeds.

Because it is still unknown which of the different species of Ab

oligomers is most relevant for AD pathology, we decided to

work with amixture of oligomers of different sizes generated dur-

ing the process of fibril formation. Ab oligomers were prepared

by incubation of monomeric (seed-free) synthetic Ab1-42

(10 mM) at 25�C with stirring. After 5 hr of incubation, we

observed an abundance of globular oligomers by electronmicro-

scopy with only a small amount of protofibrils and fibrils

(Figure 1A). These aggregates were positive with the A11 olig-

omer-specific antibody (Kayed et al., 2003; data not shown).

After longer incubation, protofibrillar and fibrillar structures

were observed. The size of the aggregates was determined by

filtration through filters of defined pore size and western blotting
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after SDS-PAGE separation. Oligomers formed by incubation for

5 hr migrated as�170 kDa SDS-resistant aggregates, with a mi-

nor band at 17 kDa (Figure 1B).

Low concentrations of seed-free Ab1-42 (2 mM) were incu-

bated at 22�Cwith constant shaking (100 rpm) for different times

alone or in the presence of distinct concentrations of synthetic

Ab oligomers, prepared by incubation during 5 hr as described

above. Ab aggregation was studied by the fluorescence emis-

sion of the amyloid-binding dye Thioflavin T (ThT) (LeVine,

1993; Soto et al., 1995). The peptide concentration, tempera-

ture, and pH of the buffer are critical to control the extent of

the lag phase and reproducibility among experiments. Under

these conditions, no spontaneous Ab aggregation was detect-

able during the time in which the experiment was performed

(125 hr). However, Ab aggregation was observed in the pres-

ence of 0.3–8.4 fmol of Ab oligomers (Figure 1C). To increase

the efficiency of seeding, and thus the limit of detection of Ab

oligomers, we introduced cycles of amplification, combining

phases of polymer growing with multiplication of seeds as in

the PMCA assay. For this purpose, we subjected the samples

to intermittent shaking, which has been previously shown to

dramatically accelerate the seeded conversion of recombinant

prion protein (Atarashi et al., 2008). Under these conditions,

the kinetic of Ab aggregation induced by 8,400, 300, 80, and

3 fmol of Ab oligomers was clearly faster and easily distinguish-

able from that observed in the absence of Ab seeds (Figure 1D).

This result indicates that, using the Ab-PMCA assay, we should

be able to detect as little as 3 fmol of Ab oligomers in a given

sample.

Detection of Ab Oligomers in the Cerebrospinal Fluid
of AD Patients
To study the usefulness of the Ab-PMCA assay to detect seed-

ing-competent Ab oligomers in biological fluids, we analyzed

aliquots of CSF from 50 AD patients, 39 cognitively normal indi-

viduals affected by nondegenerative neurological diseases

(NNDs), and 37 patients affected by non-AD neurodegenerative

diseases (NANDs) including other forms of dementia. The exper-

iments as well as the initial part of the analysis were done blindly,

because the investigator was unaware of which samples were

coming from AD or controls. Figure 2A shows the average

kinetics of aggregation of five representative samples from the

AD, NND, and NAND groups. The result indicates that CSF

from AD patients accelerates significantly Ab aggregation as

compared to control CSF (p < 0.001). To determine the effect

of individual samples on Ab aggregation, we estimated the lag

phase (Figure 2B), defined as the time required to get a ThT fluo-

rescence larger than 40 arbitrary units (after subtraction of the

blank). This value was selected considering that it corresponds

to approximately five times the reading of the buffer alone. We

also estimated the P90, which corresponds to the extent of Ab

aggregation at 90 hr (Figure 2C). By comparing both parameters

among the experimental groups, a highly significant difference

was observed between AD and control samples from individuals

with nondegenerative neurological diseases or with non-AD

neurodegenerative diseases. No correlation was detected

between the aggregation parameters and the age of the AD pa-

tients, which indicates that the levels of themarker are not simply



Figure 1. Detection of Synthetic Ab Oligomers by Ab-PMCA

(A) To prepare Ab oligomers, solutions of Ab1-42 at 10 mMwere incubated for different times at 25�Cwith shaking. At various time points, samples were visualized

by electron microcopy after negative staining. At 5 hr of incubation, aggregates consist mainly of globular oligomers, whereas at 10 hr, there are mostly pro-

tofibrils, and at 24 hr, we can observe a large amount of long fibrils.

(B) Preparations of oligomers were characterized by SDS-PAGE followed by western blot with 4G8 antibody. The mixture at 5 hr of incubation was also

characterized by strong reactivity with A11 antibody and by a native size ranging from 30 to 1,000 kDa, as evaluated by filtration using filters of defined pore size.

(C) Seeding of Ab aggregation was studied incubating a solution of 2 mMseed-free Ab1-42 in 100mMTris-HCl (pH 7.4) in the presence of 5 mMThioflavin T, with or

without different quantities of synthetic Ab oligomers (prepared by incubation during 5 hr, as indicated in A) with constant, but low, agitation (100 rpm) at 22�C.
(D) The same samples as in (C) were incubatedwith cyclic agitation (1min stirring at 500 rpm followed by 29minwithout shaking). Aggregationwasmeasured over

time by the Thioflavin T (ThT) binding to amyloid fibrils using a plate spectrofluorometer (excitation: 435; emission: 485 nm). Graphs show the mean and SE of

three replicates. The concentration of Ab oligomers was estimated assuming an average molecular weight of 170 kDa.
a reflection of age but rather whether or not the patients contain

seeding-competent Ab aggregates in their CSF. Using the values

for lag phase, we calculated the sensitivity, specificity, and

predictive value of the Ab-PMCA test (Table 1). To determine

the appropriate cutoff points and the performance of the test,

we carried out a detailed statistical analysis of the receiver oper-

ating characteristics (ROC) (Figure S1). In relation to the control

group consisting of age-matched individuals with nondegenera-

tive neurological diseases, we estimated a 90.0% sensitivity and

84.2% specificity, whereas for the clinically more relevant differ-

entiation of AD from other neurodegenerative diseases including

other forms of dementia, we obtained a staggering 100% sensi-

tivity and 94.6% specificity (Table 1). If confirmed with a larger

number of patients, the ability of Ab-PMCA to distinguish

AD from other forms of neurodegenerative diseases might be

very useful in clinic. The overall sensitivity and specificity consid-

ering all control individuals was 90% and 92%, respectively

(Table 1).
To confirm that Ab-PMCA detects a seeding activity associ-

ated to Ab oligomers present in CSF, we performed immuno-

depletion experiments. The methodology for efficient immuno-

depletion of Ab oligomers was first optimized by using

synthetically prepared Ab oligomers. Incubation with Dyna-

beads conjugated with a mixture of sequence (4G8) and confor-

mational (A11) antibodies led to the complete removal of these

structures (Figure 3A). Next, application of immunodepletion to

three AD CSF samples showed that the kinetic of Ab aggrega-

tion in the Ab-PMCA reaction was comparable to that observed

in control CSF samples, and both were significantly different

from the aggregation observed with AD CSF prior to immunode-

pletion (Figure 3B). A similar result was observed when immuno-

depletion was done only using the A11 conformational antibody

(Figure 3C), which recognizes specifically oligomers (Kayed

et al., 2003). These results indicate that the seeding activity

observed in AD CSF samples was indeed associated to Ab

oligomers.
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Figure 2. Detection of Seeding Activity in

Human CSF Samples from Controls and

AD Patients by Ab-PMCA

(A) Representative aggregation curves of seed-

free Ab1-42 in the presence of CSF samples

from AD patients, people affected by non-

neurodegenerative neurological diseases (NND),

and patients suffering from neurodegenerative

diseases other than AD (NAND). The values

represent the average and SE of five different

patients, representative of the average results in

each group. For this purpose, we selected as

representative for each group, the patients in

which the kinetic parameters (lag phase and P90)

were closer to the average obtained in each group.

(B) The lag phase of Ab aggregation in Ab-PMCA

was compared for the three groups of patients.

Lag phase was defined as the time (in hours)

required to reach a ThT signal more than 40 arbi-

trary units. One sample from the NND group did

not reach a ThT signal of 40 during the duration of

the aggregation experiment. Thus, the lag phase

for this sample is >300 hr. This sample was not

included in the graph and was not utilized to

calculate sensitivity and specificity in Table 1.

(C) The extent of amyloid formation obtained after

180 Ab-PMCA cycles, i.e., 90 hr of incubation

(P90), was measured in each patient. For the graphs in (B) and (C), we show the values obtained in individual samples, which correspond to the average of

three independent experiments. Data were analyzed by one-way ANOVA, followed by the Tukey’s multiple comparison post hoc test. The differences

between AD and samples from the other two groups were highly significant with p < 0.001 (***).
DISCUSSION

AD is one of the most important public health problems in the

developed world. Among the ten leading causes of death, AD

is the only one that lacks effective ways to prevent, cure, or

even slow its progression. Part of the difficulties in developing

an efficient treatment for this devastating disease is the absence

of an early and objective biochemical diagnosis that will enable

to recognize patients before substantial brain damage has

occurred (Parnetti and Chiasserini, 2011; Blennow et al., 2010;

Urbanelli et al., 2009). Indeed, many of the failures in recent clin-

ical trials with compounds aimed to modify the disease progres-

sion have been attributed to the lack of early diagnosis that

prevents beginning treatment before it is too late (Galimberti

and Scarpini, 2012). Currently, diagnosis is achieved by clinical

assessment, neuroimaging, and CSF measurements of the
Table 1. Estimation of Sensitivity, Specificity, and Predictive Value

Groups Sensitivity (%)a Specificity (%)b

AD versus NAND 100.0 94.6

AD versus NND 90.0 84.2

AD versus controlse 90.0 92.0

For estimation of sensitivity, specificity, and predictive value, we used the r

receiver operating characteristics (ROC) curve analysis using the MedCalc
aSensitivity was estimated by the formula (true positives/[true positives + fa
bSpecificity was estimated by the formula (true negatives/[false positives +
cPositive predictive value was estimated by the formula (true positives/[true
dNegative predictive value was estimated by the formula (true negatives/[tr
eControls refer to the samples from NND plus NAND.
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levels of Ab42, tau, and phospho-tau, with definitive confirmation

relying on postmortem identification of amyloid plaques and

neurofibrillary tangles in the brain (Parnetti and Chiasserini,

2011; Urbanelli et al., 2009). Recent advances in neuroimaging

using amyloid tracers offer a promising alternative to increase

accuracy of diagnosis (Klunk et al., 2004; Klunk and Mathis,

2008), but it is unclear whether these methods will identify pa-

tients before irreversible brain damage has occurred. Identifica-

tion of biomarkers that could be used for noninvasive, sensitive,

and objective detection of the disease process years or even

decades before the onset of brain abnormalities and clinical

symptoms are of utmost importance (Parnetti and Chiasserini,

2011; Blennow et al., 2010; Urbanelli et al., 2009). Although it is

widely accepted that combining the measurements of Ab1-42,

total tau, and phosphorylated tau in CSF can provide a relatively

high sensitivity and specificity for AD diagnosis (Blennow et al.,
for Ab-PMCA Using CSF Samples

Positive Predictive Value (%)c Negative Predictive Value (%)d

96.2 100.0

88.2 86.5

88.2 93.2

esults of the lag phase as shown in Figure 2B. Cutoffs were estimated by

software (see Figure S1).

lse negatives] ) 3 100.

true negatives]) 3 100.

positives + false positives]) 3 100.

ue negatives + false negatives]) 3 100.



Figure 3. Seeding Activity in AD CSF Is

Removed by Ab Oligomers Immunodepletion

To test whether the seeding activity observed

in human AD CSF was dependent on Ab aggre-

gates, we removed these structures from CSF

samples by immunodepletion using Dynabeads

coated with a mixture of antibodies recognizing

specifically the sequence of Ab (4G8) and the

conformation of Ab oligomers (A11) (Kayed et al.,

2003).

(A) The procedure for immunodepletion was opti-

mized using synthetically prepared Ab oligomers

spiked into human CSF at quantities detectable by

western blot. Three consecutive rounds of incuba-

tion with antibody-coated Dynabeads were

sufficient to efficiently remove the Ab oligomers

observed at around 170 kDa in our western blots.

(B) Samples of AD CSF before or after immu-

nodepletion with 4G8 and A11 antibodies were used

to seed Ab aggregation in the Ab-PMCA assay.

(C) Samples of AD CSF were also depleted only with

the A11 conformational antibody and aggregation

monitored by Ab-PMCA assay. As in Figures 1 and

2, Ab aggregation was measured by ThT fluores-

cence emission at different times of incubation.

Values represent the average and SE of three

different replicates.
2010), other CSF markers are needed that can more specifically

differentiate AD from other dementias. It is also necessary to

identify markers that correlate with the severity of dementia in

patients with AD and, more importantly, can identify the patho-

logical process earlier during the presymptomatic period of the

disease.

Recent compelling evidence indicates that the formation of

misfolded Ab oligomersmight be a critical event in AD pathogen-

esis (Walsh and Selkoe, 2007; Haass and Selkoe, 2007; Glabe

and Kayed, 2006; Klein et al., 2004). Indeed, both synthetic

and natural Ab oligomers have been shown to induce apoptosis

in cell cultures at very low concentrations (Dahlgren et al., 2002;

El-Agnaf et al., 2000; Shankar et al., 2007), block long-term

potentiation in brain slice cultures (Wang et al., 2002; Walsh

et al., 2002), and impair synaptic plasticity and memory in ani-

mals (Cleary et al., 2005; Shankar et al., 2007). These findings,

in addition to the fact that Ab oligomers are small and soluble

structures, suggest that they could be circulating in biological

fluids and offer a specific marker for AD. Considering the well-

established observation that the levels of total Ab1-42 are lower

in AD than in controls, it might be surprising that, in our study, we

found that Ab oligomers are elevated in AD patients. However,

our assay measures the levels of seeding-competent Ab oligo-

mers, which are likely a very small proportion of total Ab in

CSF. A rough estimation based on the comparison with the

amplification results obtained with synthetic oligomers is that

the material we are measuring is below 100 pg/ml (expressed

as monomer). Our assay does not distinguish oligomers pro-

duced by Ab40 or Ab42; thus, in our estimation, oligomers repre-

sent a very small fraction (less than 1%) of total Ab. Therefore, it
is perfectly possible that a decline in total Ab42 coincides with an

overall increase of oligomers in AD patients. Indeed, recent

studies have shown that Ab oligomers might be present in low

quantities in CSF and that their levels are elevated in the CSF

of people affected by AD (Pitschke et al., 1998; Klyubin et al.,

2008; Georganopoulou et al., 2005; Gao et al., 2010; Santos

et al., 2012).

In this study, we adapted the PMCA technology to cyclically

amplify the process of Ab misfolding and aggregation, leading

to the highly sensitive and specific detection of soluble Ab oligo-

mers. PMCAwas originally developed to replicate the misfolding

and aggregation of the prion protein implicated in prion diseases

and is now considered a major technological breakthrough that

has been instrumental to understand the prion biology and to

detect misfolded prions in various biological fluids (Morales

et al., 2012). PMCA is a cyclical process that enables exponential

increase of the detection signal in a manner analogous to the

amplification of DNA by PCR (Soto et al., 2002). PMCA takes

advantage of the fact that the process of protein misfolding

and aggregation associated with Ab, PrP, and other proteins

implicated in PMDs follows a seeding-nucleation mechanism

and is dependent on the formation and number of oligomeric

seeds present in the reaction (Soto et al., 2002, 2006). To achieve

exponential amplification, PMCA consists of cycles of incubation

for the elongation of the polymers, followed by breaking the

aggregates to multiply the number of seeds. For amplification

of prions, PMCA traditionally uses sonication as a mechanical

force to break big polymers into smaller species (Morales

et al., 2012). However, as shown by Caughey and colleagues,

sonication can be replaced by strong shaking to achieve
Cell Reports 7, 261–268, April 10, 2014 ª2014 The Authors 265



similar results using a procedure called shaking-based PMCA or

quaking-induced conversion (Atarashi et al., 2008). In adapting

PMCA for AD, we found that shaking is more compatible with

the fragile nature of Ab aggregates.

In our current setting, Ab-PMCA enables detection of as little

as 3 fmol of Ab oligomers. This level of sensitivity can be further

increased by additional development of the technology, as was

also the case in prion diseases. Indeed, in our original proof-

of-concept study using PMCA for prion detection, the increase

of sensitivity was only around 60-fold (Saborio et al., 2001),

which contrast with the striking 3 billion folds obtained after

further development (Saá et al., 2006b). Nevertheless, even

with the current status of the Ab-PMCA technology, we were

able to distinguishwith a high degree of sensitivity and specificity

CSF samples coming from individuals diagnosed with AD,

patients affected by other neurodegenerative disorders, and

people suffering from nondegenerative neurological diseases

(Table 1). Sensitivity, specificity, and predictive value of the

Ab-PMCA assay are higher than the currently widely used ELISA

tests measuring the levels of Ab42, tau, and phospho-tau in CSF.

The sensitivity and specificity of these methods range between

80% and 90%, depending on the study (Mulder et al., 2010; Sun-

derland et al., 2003; Maddalena et al., 2003). A crucial feature for

an assay aimed for routine use in AD diagnosis is its reproduc-

ibility and repeatability. Several variables need to be carefully

controlled to maintain a good reproducibility, including Ab con-

centration, temperature, buffer composition, pH, shaking rate,

etc. It is also possible that, with different batches of Ab, the

kinetic of aggregation and the parameters most useful to

compare different group of samples may be different, but still

AD samples induce accelerated Ab aggregation compared to

controls (Figure S2). Experiments displayed in this article were

carried out blindly and independently by two different investiga-

tors at distinct times and using samples obtained from three

different locations. However, during the course of the study,

we found that an entire set of CSF samples coming from a fourth

location was not amenable to the assay, because using these

samples Ab did not aggregate at all, not even after spiking with

large concentrations of synthetic oligomers. We suspect that

preanalytical factors related to sample collection influenced

the assay. We are actively investigating what this interference

could be. Nevertheless, more work needs to be done to assess

reproducibility in a large number of samples, with distinct

reagents, equipment, and samples coming from different

locations.

Future studies should include larger populations of AD

patients and controls and direct comparisons with the diag-

nostic accuracy obtained by measuring Ab42, total tau, and

phospho-tau in CSF and by positron emission tomography

amyloid imaging with specific ligands. Also, it will be important

to investigate the presence of Ab oligomers in patients affected

by mild cognitive impairments, which is considered a precursor

for AD (Petersen et al., 2009), as well as in asymptomatic car-

riers of familial AD to analyze the utility of Ab-PMCA for pre-

symptomatic detection of AD. Longitudinal studies from indi-

vidual patients would also be needed to evaluate the

relationship between the detection of Ab oligomers and the

progression of the disease. Finally, adaptation of Ab-PMCA
266 Cell Reports 7, 261–268, April 10, 2014 ª2014 The Authors
to detect Ab oligomers, which may potentially be circulating

in the blood of AD patients, may offer a great opportunity for

more-routine testing.

EXPERIMENTAL PROCEDURES

Biological Samples

We used CSF samples from 50 patients with the diagnosis of probable AD as

defined by the DSM-IV and the National Institute of Neurological and Com-

municative Disorders and Stroke-Alzheimer’s Disease and Related Disorders

Association guidelines (McKhann et al., 1984) and determined using a variety

of tests, including routine medical examination; neurological evaluation;

neuropsychological assessment; MRI; and measurements of CSF levels of

Ab1-42, total tau, and phospho-tau. The mean age of AD patients at the

time of sample collection was 71.0 ± 8.1 years (range 49–84). As controls,

we used CSF from 39 patients affected by NND, including 12 cases of normal

pressure hydrocephalus, seven patients with peripheral neuropathy, seven

with diverse forms of brain tumor, two with ICTUS, one with severe cephalgia,

three with encephalitis, one with hypertension, and six with unclear diagnosis.

The mean age at which CSF samples were taken from this group of patients

was 64.6 ± 14.7 years (range 31–83). We also used as controls CSF samples

from 37 individuals affected by NAND, including ten cases of fronto-temporal

dementia (five behavioral and five language variants); six patients with

Parkinson’s disease (including four associated with dementia and one with

motor neuron disease); six with progressive supranuclear palsy; six with spino-

cerebellar ataxia (one associated with dementia); four with amyotrophic lateral

sclerosis; two with Huntington’s disease; one with mitochondria encephalo-

myopathy, lactic acidosis, and stroke-like episodes; one with Lewy body

dementia; and one with vascular dementia. The mean age at sample collection

for this group was 63.8 ± 11.1 years (range 41–80). CSF samples were

collected in polypropylene tubes following lumbar puncture at the L4/L5 or

L3/L4 interspace with atraumatic needles after one night fasting. The samples

were centrifuged at 3,000 g for 3 min at 4�C, aliquoted, and stored at �80�C
until analysis. CSF cell counts, glucose, and protein concentration were deter-

mined. Albumin was measured by rate nephelometry. To evaluate the integrity

of the blood brain barrier and the intrathecal immunoglobulin G (IgG) produc-

tion, the albumin quotient (CSF albumin/serum albumin) 3 103 and the IgG

index (CSF albumin/serum albumin)/(CSF IgG/serum IgG) were calculated

(Sellebjerg and Christiansen, 1996). The study was conducted according to

the provisions of the Helsinki Declaration and was approved by the Ethics

Committee.

Production of Synthetic Ab and Preparation of Ab Aggregates

Ab1-42 was synthesized using solid-phase N-tert-butyloxycarbonyl chemistry

at the W. Keck Facility at Yale University and purified by reverse-phase high-

performance liquid chromatography. The final product was lyophilized and

characterized by amino acid analysis and mass spectrometry. To prepare

stock solutions free of Ab aggregated seeds, we used our previously described

protocol (Morales et al., 2010), which involves dissolution of aggregates in high

pH and filtration through 30 kDa cutoff filters to remove remaining aggregates.

To prepare different types of aggregates, solutions of seed-free Ab1-42

(10 mM) were incubated for different times at 25�C in 0.1 M Tris-HCl (pH 7.4)

with agitation. This preparation contains a mixture of Ab monomers as well

as fibrils, protofibrils, and soluble oligomers in distinct proportions depending

on the incubation time. The degree of aggregation was characterized by ThT

fluorescence emission, electron microscopy after negative staining, dot blot

studies with the A11 conformational antibody (Kayed et al., 2003), and western

blot after gel electrophoresis using the 4G8 Ab antibody.

Cyclic Amplification of Ab Misfolding and Aggregation

Solutions of 2 mM aggregate-free Ab1-42 in 0.1 M Tris-HCl (pH 7.4; 200 ml total

volume) were placed in opaque 96-well plates and incubated alone or in the

presence of synthetic Ab aggregates or 40 ml of CSF aliquots. Samples were

incubated in the presence of 5 mM ThT and subjected to cyclic agitation

(1 min at 500 rpm followed by 29 min without shaking) using an Eppendorf

thermomixer, at a constant temperature of 22�C. At various time points, ThT



fluorescence was measured in the plates at 485 nm after excitation at 435 nm

using a plate spectrofluorometer.

Determination of Sensitivity, Specificity, and Predictive Value

The differences in the kinetic of aggregation between different samples were

evaluated by the estimation of two different kinetic parameters: the lag phase

and P90. Lag phase is defined as the time required to reach a ThT fluorescence

of 40 arbitrary units. This value was selected because it corresponds to

approximately five times the value of the buffer alone. The P90 corresponds

to the extent of aggregation (measured as ThT fluorescence) at 90 hr.

Sensitivity, specificity, and predictive value were determined using the lag

phase data, with cutoff thresholds determined by ROC curve analysis, using

the MedCalc software (version 12.2.1.0).

Statistical Analysis

The significance of the differences in Ab aggregation kinetics in the presence

of human CSF samples was analyzed by one-way ANOVA, followed by the

Tukey’s multiple comparison post hoc test. The level of significance was set

at p < 0.05. Statistical tests were performed using the GraphPad Prism 5.0

software.
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