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a b s t r a c t

The problem of thermoelastic edge-cracking in two-layered bimaterial systems subjected to convective
heating is considered. The medium is assumed to be insulated on one surface and exposed to sudden con-
vective heating on another surface containing the edge crack. It is known that, when a bimaterial system’s
surface is heated, compressive stresses arise near the heating surface, forcing the crack surfaces together
over a certain cusp-shaped contact length. It is also known that, for a cooled bimaterial systems surface,
tensile stresses take place close to the cooling surface and tend to open the crack. So, the edge cracked
heating surface problem is treated as an embedded crack with a smooth closure condition of the crack
surfaces, with the crack contact length being an additional unknown variable. Superposition and uncou-
pled quasi-static thermoelasticity principles are adopted to formulate the problem. By using a Fourier
integral transform technique, the mixed boundary value problem is reduced to a Cauchy type singular
integral equation with an unknown function as the derivative of the crack surface displacement. The
numerical results of the stress intensity factors for an edge crack and a crack terminating at the interface,
are calculated and presented as a function of time, crack length, heat transfer coefficient, and thickness
ratio for two different bimaterial systems, namely a stainless steel layer welded on ferritic steel and a
ceramic layer coating on ferritic steel.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The study of thermoelastic crack problems in multi-layered
components has been undertaken by a number of researchers since
it is pertinent to many engineering applications. For example, cera-
mic thermal barrier coating is used in jet engines, stainless steel
cladding is used in pressure vessels and pipes, and a variety of
bonded materials are used in microelectronic devices. The study
of a cracked elastic plate subjected to thermal stresses due to sur-
face cooling and heating have been considered (Nied, 1983, 1987;
Lam et al., 1992; Fan and Yu, 1992; Rizk, 1993; Rizk and Radwan,
1993; Rizk, 2004, 2005). Crack problems in multi-layered materials
under thermal loading have also been investigated by many
researchers (Rizk and Erdogan, 1989; Erdogan and Rizk, 1992; Itou
and Rengen, 1993; Choi et al., 1995, 1998; Ikeda and Sun, 2001;
Choi, 2003; Itou, 2004; Rizk, 2008).

Thermal stresses may be generated by sudden cooling or heat-
ing of the surface of bimaterial systems. Most often, the mechani-
cal and thermal properties within the bimaterial systems are
different; resulting in very high thermal stresses and leading to se-
vere damage, especially in the presence of preexisting cracks. The
most important mode of mechanical failure is subcritical crack
propagation. This requires the determination of the stress intensity
ll rights reserved.
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factor as a function of time and crack length as well as the material
combination properties of the bimaterial systems. It is important
to note that the analysis of the problem under surface cooling is
different than the analysis under surface heating. The thermal
shock of the bimaterial systems subjected to surface cooling was
considered in Rizk (2008) in which very high tensile stresses take
place close to the cooled surface, which tend to open the crack sur-
faces. In the case of surface heating, compressive stresses are gen-
erated near the heated surface, forcing the crack surfaces to come
into contact along a certain contact length. By taking the crack con-
tact length into consideration, the crack will be cusp-shaped and a
smooth closure condition of the crack surfaces can be applied in
the analysis (Bakioglu et al., 1976). So, the problem is considered
to be an embedded crack problem with smooth closure conditions
at the crack surfaces. The crack contact length is an additional un-
known parameter that will be determined iteratively. This is
known as a non-linear crack contact problem.

In this work, the analysis of two-layered bimaterial systems
shown in Fig. 1, containing an edge crack (b < h1Þ and crack termi-
nating at the interface (b ¼ h1Þ normal to the interface, and that is
subjected to convective heating on the surface containing the crack
(x ¼ 0Þ is investigated. It is assumed that the bimaterial systems
consist of two dissimilar linear isotropic homogeneous materials
bonded along an ideal plane interface. Also, the problem is treated
as an uncoupled quasi-static isothermal problem, i.e. the inertia
effects are negligible and the thermoelastic coupling effects and
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Fig. 1. Crack geometry in the bimaterial systems under surface heating.
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possible dependence of the thermoelastic coefficients on the tem-
perature are also negligible. Since the problem is linear, the super-
position technique can be applied since the stress state of the final
solution is considered to be the sum of two solutions. The first
solution component consists of the transient thermal stresses for
the bimaterial plate in the absence of a crack. The second solution
component is obtained by considering the solution of the isother-
mal cracked problem (mixed boundary value problem) using the
thermal stresses obtained from the first component solution with
equal and opposite sign applied on the crack surfaces as the only
external loads. Since our interest is to determine the stress inten-
sity factors, it is sufficient to consider the stresses obtained only
from the cracked problem (perturbation problem). The Fourier
integral transform is used to formulate the cracked problem. By
expressing the displacement components in terms of a Fourier
integral transform, the problem will be reduced to a singular inte-
gral equation of the Cauchy type with an unknown function that is
defined as the derivative of the crack surface displacement. The
resulting singular integral equation is solved numerically using
the expansion method developed in Kaya and Erdogan (1987a,b).
The numerical results of the stress intensity factors are calculated
for both an edge crack and a crack terminating at the interface as a
function of normalized time, normalized crack length, normalized
coefficient of heat transfer, and the thickness ratio for two different
bimaterial systems combinations – called system A and system B.
System A represents a stainless steel layer (layer 1) welded on fer-
ritic steel (layer 2) with similar mechanical properties but different
thermal properties while system B corresponds to a ceramic coat-
ing layer (layer 1) bonded to ferritic steel (layer 2) in which the
mechanical and the thermal properties of the materials are
different.

2. Mathematical formulation

Fig. 1 illustrates the thermoelastic bimaterial systems for a
mathematical formulation. It is composed of two layers of dissimi-
lar materials with different thermoelastic properties. Layer 1, of
thickness h1, containing a crack of length l ¼ ðb� aÞ normal to the
interface, is bonded to layer 2, of thickness h2. The medium is ini-
tially assumed at homogenous temperature To. At t P 0, the plane
x ¼ 0 is subjected to sudden convective heating with ambient tem-
perature Ta while the other boundary x ¼ h1 þ h2 is assumed to be
insulated. The superposition technique is used to formulate the
problem where the total stress state is the sum of the two solutions.
First, the transient thermal stress solution is obtained for the ther-
mal uncracked medium. Second, the solution of the isothermal
cracked medium (mixed boundary value problem) is obtained
using the equal and opposite sign of the thermal stresses obtained
from the uncracked medium as the crack surface tractions. Since
the temperature distribution and the transient thermal stresses of
the uncracked medium are independent of whether the medium
is heated or cooled, the transient temperature and the transient
thermal stresses for the uncracked medium can be obtained from
Rizk (2008). So, the temperature distribution may be written as

h1ðx�; sÞ
ho

¼ 1� 2
X1
n¼1

1
kn

e�sk2
n ½cos knðx� � 1Þ cosðdRknÞ þ g sin knðx� � 1Þ sinðdRknÞ�

½ðkn=BiÞð1þ gdRÞ cos kn cosðdRknÞ � ðkn=BiÞðgþ dRÞ sin kn sinðdRknÞ
1

þðð1=BiÞ þ 1þ gdRÞ sin kn cosðdRknÞ þ ððg=BiÞ þ dRþ gÞ cos kn sinðdRknÞ�
;

0 6 x� 6 1 ð1Þ
h2ðx�; sÞ

ho

¼ 1� 2
X1
n¼1

1
kn

e�sk2
n ½cos dknðx� � 1Þ cosðdRknÞ þ sin dknðx� � 1Þ sinðdRknÞ�

½ðkn=BiÞð1þ gdRÞ cos kn cosðdRknÞ � ðkn=BiÞðgþ dRÞ sin kn sinðdRknÞ
1

þðð1=BiÞ þ 1þ gdRÞ sin kn cosðdRknÞ þ ððg=BiÞ þ dRþ gÞ cos kn sinðdRknÞ�
;

1 6 x� 6 1þ R ð2Þ

where hiðx; tÞ ¼ Tiðx; tÞ � To, ði ¼ 1;2Þ, ho ¼ Ta � To, x� ¼ x=h1,
s ¼ tD1=h2

1 is called the Fourier number (Pecht, 1991; Zudin, 2007),
g ¼ ðk02=k01Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=D2

p
, R ¼ h2=h1 (thickness ratio), d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=D2

p
,

Bi ¼ hh1=k01 is the Biot number (Pecht, 1991; Zudin, 2007), h is the
coefficient of heat transfer, and k0i, Di ði ¼ 1;2Þ are the coefficients of
thermal conductivity and the thermal diffusivity, respectively, and
kn are the roots of the transcendental equation

Bi½cos kn cosðdRknÞ � g sin kn sinðdRknÞ�
¼ kn½sin kn cosðdRknÞ þ g cos kn sinðdRknÞ� ð3Þ

and the transient thermal stresses may be given by

rT
iyyðx; tÞ ¼ rT

izzðx; tÞ ¼
Ei

1� ti
eoðtÞ þ

x
qðtÞ � a0ihiðx; tÞ

� �
ði ¼ 1;2Þ;

ð4Þ

where Ei, ti, a0i, ði ¼ 1;2Þ, are the Young modulus, the Poisson ratio,
and the coefficient of linear thermal expansion, respectively, eoðtÞ is
the uniform strain that is given by

eo ¼
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1�t1

� �
a01h1h1 þ E2

1�t2

� �
a02h2h2

E1
1�t1

� �
h1 þ E2

1�t2

� �
h2

; ð5Þ
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and the curvature 1=q is given by
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where I1 ¼ h3

1=12, I2 ¼ h3
2=12 are the moment of inertia about the

centroidal axes of layer 1 and layer 2, respectively, and
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where x1 is the distance between the centroidal axis of layer 1 and
the bending axis (isothermal plane, h1 ¼ h2, Burgreen, 1971). Refer-
ring to Fig. 1, the solution of the plane elasticity problem is required
to solve the following governing differential equations for the
displacements:

ðji � 1Þr2ui þ 2
@2ui

@x2 þ
@2v i

@x@y

 !
¼ 0 ði ¼ 1;2Þ; ð9Þ

ðji � 1Þr2v i þ 2
@2ui

@x@y
þ @

2v i

@y2

 !
¼ 0 ði ¼ 1;2Þ; ð10Þ

where ji ¼ ð3� 4tiÞ, ði ¼ 1;2Þ, for plane strain, and ui;v i, ði ¼ 1;2Þ,
are the x andy components of the displacement vectors, respectively.
Since y ¼ 0 is a plane of symmetry, then the problem will be consid-
ered for 0 < y <1which is subjected to the following conditions:
Table 1
Thermoelastic properties of the bimaterial systems used in the numerical results.

Bimaterial systems k02=k01 D2=D1 a02=a
0
1 E2=E1 t2=t1

A 3 3 0.75 1 1
B 3.385 4.07 2.2939 0.6111 1
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Fig. 2. Normalized thermal stresses for bimaterial system
r1xxð0; yÞ ¼ 0; r1xyð0; yÞ ¼ 0; ð11Þ
r1xxðh1; yÞ ¼ r2xxðh1; yÞ; r1xyðh1; yÞ ¼ r2xyðh1; yÞ; ð12Þ
u1ðh1; yÞ ¼ u2ðh1; yÞ; v1ðh1; yÞ ¼ v2ðh1; yÞ; ð13Þ
r2xxðh1 þ h2; yÞ ¼ 0; r2xyðh1 þ h2; yÞ ¼ 0; ð14Þ
r1xyðx;0Þ ¼ 0; 0 < x < h1 and r2xyðx;0Þ ¼ 0;
v2ðx; 0Þ ¼ 0; h1 < x < h1 þ h2; ð15Þ
uiðx; yÞ ! 0; v iðx; yÞ ! 0; ði ¼ 1;2Þ as y!1; ð16Þ
v1ðx; 0Þ ¼ 0; 0 < x < a; b < x < h1;

r1yyðx;0Þ ¼ �rT
1yyðx; tÞ; a < x < b; ð17Þ

where r1ijðx; yÞ, r2ijðx; yÞ, ði; j ¼ x; yÞ, are the stresses in layer 1 and
layer 2, respectively, and rT

1yyðx; tÞ is the thermal stress obtained
from the uncracked problem. Differential equations (9) and (10)
can be solved by expressing the displacement components ui; v i

ði ¼ 1;2Þ in terms of the Fourier integral transform, i.e.
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2
p
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where Ai, Bi, Fi, Gi ði ¼ 1;2Þ are the unknown functions to be deter-
mined. Substituting Eqs. (18) and (19) into Eqs. (9) and (10), and
solving the resulting ordinary differential equations and using the
stress–displacement relations with the conditions specified by
Eqs. (11)–(17) and defining a new unknown function uðxÞ ¼
@v1ðx;0Þ=@x, the problem will be reduced to, after lengthy but
straightforward manipulations, the following singular integral
equation of the unknown function uðxÞ:Z b

a

uðsÞ
ðs� xÞ dsþ

Z b

a
k1ðx; sÞuðsÞds

¼ �pðj1 þ 1Þ
4l1

rT
1yyðx; tÞ; a < x < b; ð20Þ

where the kernel k1ðx; sÞ can be found in Rizk (2008). It can be seen
that as long as the crack is away from the free surface ða > 0Þ and
the interface ðb < h1Þ, the kernel k1ðx; sÞ is bounded and the singular
integral equation (20) has only a Cauchy singularity. In the limiting
cases for an edge crack ða ¼ 0Þ and crack terminating at the inter-
face ðb ¼ h1Þ, some terms in the kernel k1ðx; sÞ become unbounded
and would contribute to the singular behavior of the solution. So,
the kernel k1ðx; sÞ may be written in the form (Rizk, 2008)
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Fig. 3. Normalized thermal stresses for bimaterial system B
where kb
1ðx; sÞ is bounded in the interval ½a; b� including a ¼ 0 and

b ¼ h1, and ks
1aðx; sÞ and ks

1bðx; sÞ are the singular terms as a ¼ 0
and b ¼ h1, respectively, and they are found to be

ks
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Such kernels are called generalized Cauchy kernels.
The singular behavior of the solution of the singular integral

equation (20) at the irregular points a and b can be examined by
following the Muskhelishvili technique (1953) using the function
theoretic method. Let the unknown function uðsÞ be expressed as

uðsÞ ¼ gðsÞ
ðs� aÞc1 ðb� sÞc2

; ð25Þ
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where gðsÞ is a bounded function in the closed interval ½a; b� and
nonzero at the end points a and b, and c1, c2 are the strength of
the singularity at the end points which should satisfy
0 < Reðc1; c2Þ < 1. Following Muskhelishvili (1953), as long as we
have an embedded crack in layer 1 ða > 0; b < h1Þ, the singularities
at the crack tips a and b are found to be c1 ¼ 1=2 and c2 ¼ 1=2.
While in the case of an edge crack ða ¼ 0; b < h1Þ, the singularity
at the crack tip b is c2 ¼ 1=2 and the singularity at the crack tip
a ¼ 0 would satisfy the following characteristic equation:

cospc1 � 2ðc1 � 1Þ2 þ 1 ¼ 0; ð26Þ

which has only one acceptable root given by c1 ¼ 0. For the case
of crack terminating at the interface ðb ¼ h1Þ, the singularity c2

at the tip b ¼ h1 would depend on the material properties and
its characteristic equation will be given by Rizk and Erdogan
(1989)

cospc2 �
1
2

c13c2ðc2 þ 1Þ � c12c2 � c11 ¼ 0; ð27Þ

where c11, c12, c13 are given by Eq. (24).
Our interest is to calculate the stress intensity factors for Mode I

which are defined at the crack tips a and b as
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KðaÞ ¼ lim
x!a�
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2ða� xÞ

p
r1yyðx;0Þ; ð28Þ

KðbÞ ¼ lim
x!bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� bÞ

q
r1yyðx;0Þ; ð29Þ

in which r1yyðx; 0Þ is the stress outside the crack in layer 1. Note
that Eq. (20) gives the stresses inside and outside the crack. Follow-
ing Muskhelishvili (1953) and using Eqs. (20) and (25), the stress
intensity factors for an embedded crack at a and b are given by

KðaÞ ¼ 4l1

j1 þ 1
2

b� a

� �1=2

gðaÞ; ð30Þ

KðbÞ ¼ � 4l1

j1 þ 1
2

b� a

� �1=2

gðbÞ; ð31Þ

and for an edge crack (a ¼ 0; b < h1Þ, the stress intensity factor at
the crack tip b is given by

KðbÞ ¼ � 4l1

j1 þ 1

ffiffiffi
2
p

gðbÞ: ð32Þ

For the crack terminating at the interface ðb ¼ h1Þ, the stress inten-
sity factor at b is defined by

Kðb ¼ h1Þ ¼ lim
x!hþ1

ffiffiffi
2
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where c2 is the singularity at crack tip b ¼ h1 which can be obtained
from Eq. (27), and r2yyðx;0Þ is the stress in layer 2. Following
Muskhelishvili (1953) and using Eqs. (20) and (25), the stress inten-
sity factor at the crack tip can be evaluated from

Kðb ¼ h1Þ ¼
4l2

1þ j2

ffiffiffi
2
p d21 þ d22c2

ðh1 � aÞc1 sin pc2

gðh1Þ; ð34Þ

where

d21 ¼
mðj2 þ 1Þ
2ðmþ j1Þ

� 3mðj2 þ 1Þ
2ðmj2 þ 1Þ ;

d22 ¼
mðj2 þ 1Þ
ðmj2 þ 1Þ �

mðj2 þ 1Þ
ðmþ j1Þ

; m ¼ l1

l2
; ð35Þ

and if a > 0ðb ¼ h1Þ, the stress intensity factor at the crack tip a will
be given by

KðaÞ ¼ 4l1

j1 þ 1

ffiffiffi
2
p 1

h1 � a

� �c2

gðaÞ: ð36Þ

In the formulation of the crack contact problem, we should in-
clude the crack contact length e in the compressive zone as an
additional unknown variable. The contact length would be calcu-
lated by using the smooth closure condition of the crack surface
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Fig. 5. Normalized crack contact length for bimaterial system A, at diffe
at x ¼ a, which is assured by the condition KðaÞ ¼ 0 (Bakioglu
et al., 1976). So, the edge crack problem under thermal heating is
solved as an embedded crack by fixing the crack length at x ¼ b
and then determining by iteration the location of the crack tip
x ¼ a at each time step such that the condition KðaÞ ¼ 0 is satisfied.
The numerical solution of the singular integral equation (20) is
achieved by the expansion method developed in Kaya and Erdogan
(1987a,b) and all the integrations appearing in the formulation are
carried out numerically using the Jacobi–Gauss Quadrature for-
mula and the Laguerre–Gauss Quadrature formula given in Stroud
and Secrest (1966).

3. Results and discussion

In this study, the typical results for the layered medium are car-
ried out for two different bimaterial systems, namely A and B.
Table 1 gives the ratio of the thermoelastic properties of the two
material pairs for each bimaterial system since the problem is for-
mulated in terms of normalized quantities. The system A is made
of a stainless steel (layer 1) welded onto a ferritic steel (layer 2)
while system B is fabricated from a ceramic (layer 1) bonded to a
ferritic steel (layer 2).
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Figs. 2 and 3 demonstrate sample results for the normalized
transient thermal stresses calculated from Eq. (4) and defined by
(rT

yyðx�; sÞ=rT
oÞ, where rT

o ¼ E1a01ho=ð1� t1Þ. These are displayed
versus the normalized coordinate distance x� ¼ x=h1 for both bima-
terial systems A and B, some values of Fourier number, and two val-
ues of thickness ratio h2=h1 ¼ 3:0; 9:0. The results are presented
only for the unit step function temperature change at the boundary
x ¼ 0 and the values of Biot number ðBi ¼ 1, Bi ¼ hh1=k01Þ, since it is
the most severe case. For small values of Fourier number s, the nor-
malized thermal stresses, for both bimaterial systems A and B, start
to be negative (compressive stresses) near the heating surface
(layer 1) and near the insulated surface (layer 2), while the stresses
are positive (tensile stresses) within layer 1 and layer 2. As the Fou-
rier number s grows, the behavior of the normalized thermal stres-
ses for system A would be different than for system B. Indeed, for
system A, as the time increases, the compressive zone will be
increasing in layer 1 to be totally under compressive stresses as
s!1 (steady state) whereas layer 2 would be maintained under
tensile stresses in the interior (h1 6 x < h1 þ h2Þ and compressive
stresses near the insulated surface (h1 < x 6 h1 þ h2Þ. However,
for system B, the compressive zone in layer 1 starts to increase as
the time increases and then decreases to be totally under tensile
stresses as s!1 (steady state) while layer 2 would be under ther-
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Fig. 6. Normalized stress intensity factors for bimaterial system B, at diff
mal stresses opposite to the initial behavior, i.e. compressive stres-
ses in the interior (h1 6 x < h1 þ h2Þ and tensile stresses near the
insulated surface (h1 < x 6 h1 þ h2Þ. Note that, for the steady state
case (s!1Þ, the normalized thermal stress distribution becomes
a linear function of x which can be shown from Eq. (4) with discon-
tinuity at the interface due to the dissimilarity of the thermoelastic
properties of the bimaterial systems. Also one can observe that, at
any instant of time, the conditions of the zero resultant force and
resultant moment at any cross-section are satisfied. During the ini-
tial very small time increments, the gradient of the normalized
transient thermal stresses is very high and becomes lower as the
time increases. The influence of the thickness ratio h2=h1 on the
normalized thermal stresses is also shown in the same figures.

The variation of the normalized stress intensity factors for an
edge crack problem (b=h1 < 1Þ defined by KðbÞ=rT

o

ffiffiffi
b
p

and the var-
iation of the normalized crack contact length e=b versus Fourier
number s ¼ tD1=h2

1 are presented in Figs. 4–7. The numerical re-
sults are presented for the two bimaterial systems A and B, two
values of thickness ratio h2=h1 ¼ 3:0; 9:0, two values of Biot num-
ber Bi ¼ 1; 20 and some values of normalized crack length
(b=h1 ¼ 0:3; 0:5; 0:7; 0:9Þ. Figs. 4 and 5 correspond to system A
while Figs. 6 and 7 stand for system B. For system A, the normal-
ized stress intensity factors are shown in Fig. 4a, b and the corre-
ized time, τ
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Table 2
Normalized stress intensity factors KðbÞ=rT

o

ffiffiffi
b
p

for an edge crack (b=h1 < 1Þ and
KðbÞ=rT

o bc2 for the crack terminating at the interface (b=h1 ¼ 1Þ for bimaterial system
B at steady state condition ðs!1Þ; h2=h1 ¼ 3:0; 9:0.

b=h1 h2=h1 ¼ 3:0 h2=h1 ¼ 9:0

KðbÞ=rT
o

ffiffiffi
b
p
ðs!1Þ

0.3 0.2022 0.7740
0.5 0.2821 0.8193
0.7 0.3776 0.8793
0.9 0.5134 0.9772

KðbÞ=rT
o bc2 ðs!1Þ

1.0 0.3724 0.6355
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sponding normalized crack contact lengths are depicted in Fig. 5a,
b. It is clear that the normalized stress intensity factor increases to
a maximum value as s increases and then it decreases to zero as
the medium reaches a steady state condition ðs!1Þ for all nor-
malized crack lengths and Biot numbers. By examining Fig. 5a, b
we can observe that, for all crack lengths, a complete crack closure
over the entire length of the crack (e ¼ bÞ will mainly occur due to
the thermal stress distribution in layer 1, as shown in Fig. 2a, b. As
the normalized crack length increases, the normalized stress inten-
sity factor increases as well and delays the time in which the max-
imum value is reached. The opposite occurs when the plate surface
is cooled (Rizk, 2008). So, the thermal fracture with surface heat-
ing, especially for a long crack, is more significant than for the
cooled surface. The influence of the Biot number (Bi ¼ hh1=k01Þ
and the thickness ratio (h2=h1Þ is also shown in the same figures
by reducing the normalized stress intensity factors as the Biot
number decreases and the thickness ratio increases. Note that
the Fourier number needed to reach a full crack contact length also
increases as the Biot number decreases.

For system B, Fig. 6a, b represent the variation of the normalized
stress intensity factors while Fig. 7a, b stand for the associated nor-
malized crack contact length. It is apparent that the variation of the
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normalized stress intensity factor, as well as the normalized crack
contact length for system B, is completely different than for system
A. Note that, the results in these figures are shown only for the
cases where the crack contact length exist ðe > 0Þ. It can be seen
that the normalized stress intensity factor starts to increase to a
maximum value as s increases, then decreases, and finally in-
creases again as normalized time s increases. This performance is
mainly a result of the thermal stress distribution in layer 1, as
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shown in Fig. 3a, b. It can be seen in Fig. 7a that, for h2=h1 ¼ 3:0 and
for b=h1 ¼ 0:3; 0:5, a complete crack closing over the entire length
of the crack ðe ¼ bÞ occurred for a period of time, after which it
started to open again until it reached a fully edge crack case
ðe ¼ 0; a ¼ 0Þ while for larger cracks ðb=h1 ¼ 0:7; 0:9Þ, a partial
crack contact length over the whole crack length ðe < bÞ will take
place at which the normalized stress intensity factor has a mini-
mum value. In case of h2=h1 ¼ 9:0, a complete crack closure
ðe ¼ bÞ is occurred for b=h1 ¼ 0:3; 0:5; 0:7 and partial crack con-
tact length ðe < bÞ will be happening for b=h1 ¼ 0:9. It appeared
in these figures that the stress intensity factor for h2=h1 ¼ 3:0 is
greater than for h2=h1 ¼ 9:0. Also, as the normalized crack length
b=h1 increases, the values of the normalized stress intensity factor
increases and is delayed. The effect of the Biot number is also
shown in the figures by reducing the normalized stress intensity
factors as the Biot number decreases. When the problem reaches
the edge crack case ðe ¼ 0; a ¼ 0Þ, and by observing the thermal
stresses shown in Fig. 3, the normalized stress intensity factor cal-
culated from Eq. (32) would increase as the normalized time (sÞ in-
creases until it reaches the steady state case ðs!1Þ. The results
for the normalized stress intensity factor at the steady state case
ðs!1Þ are presented in Table 2. We can see from Table 2 that
the normalized stress intensity factor increases as the normalized
crack length increases and the results obtained for h2=h1 ¼ 9:0
are higher than the results obtained for h2=h1 ¼ 3:0. This is because
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(b=h1 ¼ 1Þ.
the steady state thermal stress distribution in layer 1 for
h2=h1 ¼ 9:0 is greater than for h2=h1 ¼ 3:0 as shown in Fig. 3.

The normalized stress intensity factors and the normalized
crack contact length for the crack terminating at the interface
(b=h1 ¼ 1:0Þ defined by Eq. (34) are depicted in Figs. 8,9 for the
two bimaterial systems A and B, some values of Biot number
(Bi ¼ 1; 20; 10; 5Þ and two values of thickness ratio h2=h1 ¼
3:0; 9:0. Observe that the results depicted in Figs. 8 and 9 are only
for the edge-crack contact lengths ðe > 0Þ. Since the adjacent mate-
rials for system A have the same mechanical properties
(E1 ¼ E2; t1 ¼ t2Þ, then the singularity at the crack tip (b ¼ h1Þ
would be c2 ¼ 1=2 while for system B the mechanical properties
are different and the singularity at the crack tip would be
c2 ¼ 0:552538 which can be calculated from Eq. (27). The influence
of the Biot number on the normalized stress intensity factors is
made obvious since the stress intensity factors are reduced as
the Biot number decreases. The results for system A are depicted
in Fig. 8a, b which show a complete crack closure over the entire
crack length ðe ¼ bÞ. The influence of the thickness ratio on the nor-
malized stress intensity factors is also shown in the figures. For
system B, Fig. 9a demonstrates the variation of the normalized
stress intensity factors and Fig. 9b illustrates the corresponding
normalized crack contact length. A partial crack contact length
over the whole crack length ðe < bÞ will occur and then it starts
to open again until it reaches the fully edge crack case
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ðe ¼ 0; a ¼ 0Þ. The results of normalized stress intensity factors for
the steady state fully edge crack problem ðs!1Þ are presented in
Table 2. It seems that, the normalized stress intensity factor ob-
tained for the thickness ratio h2=h1 ¼ 9:0 is greater than for
h2=h1 ¼ 3:0 which mainly as a result of the steady state thermal
stress distribution in layer 1 shown in Fig. 3.

Our purpose in solving this problem is to enable the prediction
of failure for bonded dissimilar materials by providing the solution
needed for assessing the crack propagation and arrest process in a
coated medium containing a certain initial flaw and subjected to
thermal loading. This requires the determination of the stress
intensity factors as functions of time and dimensions concerning
the size of the crack.

For system B, the results displayed in Fig. 6 show that the
normalized stress intensity factor started to increase with time
followed by a sharp decrease and finally an increase again to reach
a maximum value at the steady state condition (s!1Þ. The results
of these maximum normalized stress intensity factors are presented
in Table 2. Usually, an important mode of mechanical failure in such
materials is the subcritical crack growth. The cracks generally start
from microflaws near or at the interface, or at the surface and grow
perpendicularly to the nominal interface. Whether further fracture
propagation would be the cleavage of the adjacent medium (steel),
debonding along the interface, or reflection back into the first
medium (ceramic) may depend on the relative strength to load
factor ratios for various possible fracture modes. A fracture criterion
based on the maximum stress concept has been proposed in Cook
and Erdogan (1972) and can very well be applied here to determine
if failure at the interface is imminent and if so what possible mode
of crack propagation will take place. Validity of this criterion would
have to be established by experimental studies.

4. Conclusion

The thermoelastic properties of the bimaterial systems have a
great influence on the transient thermal stresses and consequently
on the resulting stress intensity factors. For system A, a crack con-
tact length increases as the normalized time increases and a com-
plete crack closure occurred as s!1 (steady state). The
corresponding stress intensity factor increases to a maximum
value after short time and then decreases to zero. For system B,
the situation is different, in which a fully edge crack contact length
occurs for a short crack while a partial crack contact length occurs
for deep cracks and as s increases it is opened once again to be-
come fully edge crack case. The normalized stress intensity factor
started to increase with time followed by a sharp decrease and fi-
nally an increase again to reach a maximum value at the steady
state condition (s!1Þ. Also, the results of the normalized stress
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intensity factor for surface heating are increasing as the normal-
ized crack length increases, in contrast to those obtained for sur-
face cooling. So, in the thermal cycling process, we should take
into consideration the changes in the stress intensity factor for
both cooling and heating, particularly for deep cracks. The effect
of the Biot number is quite significant on the stress intensity factor
by decreasing it as the Biot number decreases. Also, as the thick-
ness ratio increases, the stress intensity factor decreases for both
bimaterial systems as long as the crack contact length exists but,
in case of a steady state condition, the stress intensity factor for
system B becomes larger as the thickness ratio increases.
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