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Abstract

A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs. In this paper,
the s-regular elementary abelian coverings of the complete bipartite graph K3,3 and the s-regular cyclic
or elementary abelian coverings of the complete graph K4 for each s � 1 are classified when the fibre-
preserving automorphism groups act arc-transitively. A new infinite family of cubic 1-regular graphs with
girth 12 is found, in which the smallest one has order 2058. As an interesting application, a complete list
of pairwise non-isomorphic s-regular cubic graphs of order 4p, 6p, 4p2 or 6p2 is given for each s � 1 and
each prime p.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider an undirected finite connected graph without loops or multiple
edges. For a graph X, we denote by V (X), E(X) and Aut(X) its vertex set, edge set and au-
tomorphism group, respectively. For u,v ∈ V (X), denote by uv the edge incident to u and v

in X, and by NX(u) the neighborhood of u in X, that is, the set of vertices adjacent to u in X.
A graph X̃ is called a covering of a graph X with projection p : X̃ → X if there is a surjection
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p :V (X̃) → V (X) such that p|NX̃(ṽ) :NX̃(ṽ) → NX(v) is a bijection for any vertex v ∈ V (X)

and ṽ ∈ p−1(v). A covering X̃ of X with a projection p is said to be regular (or K-covering) if
there is a semiregular subgroup K of the automorphism group Aut(X̃) such that the graph X is
isomorphic to the quotient graph X̃/K , say by h, and the quotient map X̃ → X̃/K is the com-
position ph of p and h (for the purpose of this paper, all functions are composed from left to
right). If K is cyclic or elementary abelian then X̃ is called a cyclic or an elementary abelian
covering of X, and if X̃ is connected K becomes the covering transformation group. The fibre of
an edge or a vertex is its preimage under p. An automorphism of X̃ is said to be fibre-preserving
if it maps a fibre to a fibre, while every covering transformation maps a fibre onto itself. All of
fibre-preserving automorphisms form a group called the fibre-preserving group.

An s-arc in a graph X is an ordered (s + 1)-tuple (v0, v1, . . . , vs) of vertices of X such that
vi−1 is adjacent to vi for 1 � i � s, and vi−1 �= vi+1 for 1 � i < s; in other words, a directed
walk of length s which never includes a backtracking. A graph X is said to be s-arc-transitive
if Aut(X) is transitive on the set of s-arcs in X. In particular, 0-arc-transitive means vertex-
transitive, and 1-arc-transitive means arc-transitive or symmetric. A graph X is said to be edge-
transitive if Aut(X) is transitive on E(X) and half-transitive if X is vertex-transitive, edge-
transitive, but not arc-transitive. A subgroup of the automorphism group of a graph X is said
to be s-regular if it acts regularly on the set of s-arcs of X. In particular, if the subgroup is
the full automorphism group Aut(X) of X then X is said to be s-regular. Thus, if a graph X

is s-regular then Aut(X) is transitive on the set of s-arcs and the only automorphism fixing an
s-arc is the identity automorphism of X. It may be easily seen that if X is edge-transitive but not
vertex-transitive then X is necessarily bipartite, and if X has regular valency then the two parts
of bipartition have equal cardinality. Such a graph will be referred to as a semisymmetric graph.

Clearly, a cycle is s-arc-transitive for any s � 0. Tutte [49,50] showed that every finite con-
nected cubic symmetric graph is s-regular for some s � 1, and this s is at most five. Many
people have investigated the automorphism groups of cubic symmetric graphs, for example see
[7,8,11,43]. Djoković and Miller [11] constructed an infinite family of 2-regular cubic graphs,
and Conder and Praeger [8] constructed two infinite families of s-regular cubic graphs for s = 2
or 4. Also, several different types of infinite families of tetravalent 1-regular graphs have been
constructed in [27,33,39,45,47]. The first cubic 1-regular graph was constructed by Frucht [21]
and later Miller [43] constructed an infinite family of cubic 1-regular graphs of order 2p, where
p � 13 is a prime congruent to 1 modulo 3. By Cheng and Oxley’s classification of symmetric
graphs of order 2p [5], Miller’s construction is actually the all cubic 1-regular graphs of order
2p. Marušič and Xu [42] showed a way to construct a cubic 1-regular graph Y from a tetravalent
half-transitive graph X with girth 3 by letting the triangles of X be the vertices in Y with two tri-
angles being adjacent when they share a common vertex in X. Using the Marušič and Xu’s result,
Miller’s construction can be generalized to graphs of order 2n, where n � 13 is odd such that
3 divides ϕ(n), the Euler function (see [1,41]). It may be shown that all cubic 1-regular Cayley
graphs on the dihedral groups are exactly those graphs generalized by Miller’s construction. Re-
cently, more 1-regular cubic graphs were constructed by the authors [15–17]. Also, as shown in
[40] or [41], one can see an importance of a study for cubic 1-regular graphs in connection with
chiral (that is regular and irreflexible) maps on a surface by means of tetravalent half-transitive
graphs or in connection with symmetries of hexagonal molecular graphs on the torus.

Covering techniques have long been known as a powerful tool in topology and graph the-
ory. Regular covering of a graph is currently an active topic in algebraic graph theory. Malnič
et al. [37] classified the cubic semisymmetric cyclic coverings of the bipartite graph K3,3 when
the fibre-preserving group contains an edge-, but not vertex-transitive subgroup. By using the
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covering technique, cubic semisymmetric graphs of order 6p and 2p3 were classified in [29,38].
Some general methods of elementary abelian coverings were developed in [13,35,36]. By using
the method developed in [36], Malnič and Potočnik [32] classified the vertex-transitive elemen-
tary abelian coverings of the Petersen graph when the fibre-preserving group is vertex-transitive.
To investigate the s-regular cyclic or elementary abelian coverings of a graph, we like to assume
that the fibre-preserving group is arc-transitive. As a part of this paper, we classify the s-regular
cyclic or elementary abelian coverings of the complete graph K4 and the s-regular elementary
abelian coverings of the complete bipartite graph K3,3 for each 1 � s � 5. The s-regular cyclic
coverings of the complete bipartite graph K3,3 are classified for each 1 � s � 5 in [18]. For the
hypercube Q3, its s-regular cyclic or elementary abelian coverings are given in [19,20]. As an
application of those classifications, this paper provides a classification of s-regular cubic graphs
of order 4p, 4p2, 6p and 6p2 for each 1 � s � 5 and each prime p. In particular, we find a new
infinite family of cubic 1-regular graphs, in which the smallest one has order 2058. Each graph
in this infinite family has girth 12 and a solvable automorphism group so that it does not belong
to any family of cubic 1-regular graph discussed in the previous paragraph. As mentioned in the
previous paragraph, there are infinitely many cubic 1-regular graphs of order 2p (see [5]). In this
paper, we show that besides a few sporadic graphs, there are an infinite family of cubic 1-regular
graphs of order 6p or 6p2 respectively, and another infinite family of cubic 2-regular graphs of
order 6p (see Theorems 5.2 and 5.3). Surprisingly, there are only five connected cubic symmet-
ric graphs of order 4p or 4p2 (see Theorem 6.2). A similar work for order 8p or 8p2 was done
in [20].

2. Preliminaries related to coverings

Let X be a graph and K a finite group. By a−1 we mean the reverse arc to an arc a. A voltage
assignment (or, K-voltage assignment) of X is a function φ :A(X) → K with the property that
φ(a−1) = φ(a)−1 for each arc a ∈ A(X). The values of φ are called voltages, and K is the
voltage group. The graph X ×φ K derived from a voltage assignment φ :A(X) → K has vertex
set V (X) × K and edge set E(X) × K , so that an edge (e, g) of X ×φ K joins a vertex (u, g) to
(v,φ(a)g) for a = (u, v) ∈ A(X) and g ∈ K , where e = uv.

Clearly, the derived graph X ×φ K is a covering of X with the first coordinate projection
p :X ×φ K → X, which is called the natural projection. By defining (u, g′)g := (u, g′g) for
any g ∈ K and (u, g′) ∈ V (X ×φ K), K becomes a subgroup of Aut(X ×φ K) which acts
semiregularly on V (X ×φ K). Therefore, X ×φ K can be viewed as a K-covering. For each
u ∈ V (X) and uv ∈ E(X), the vertex set {(u, g) | g ∈ K} is the fibre of u and the edge set
{(u, g)(v,φ(a)g) | g ∈ K} is the fibre of uv, where a = (u, v). Conversely, each regular cover-
ing X̃ of X with a covering transformation group K can be derived from a K-voltage assignment.
Given a spanning tree T of the graph X, a voltage assignment φ is said to be T -reduced if the
voltages on the tree arcs are the identity. Gross and Tucker [23] showed that every regular cov-
ering X̃ of a graph X can be derived from a T -reduced voltage assignment φ with respect to an
arbitrary fixed spanning tree T of X. It is clear that if φ is reduced, the derived graph X ×φ K is
connected if and only if the voltages on the cotree arcs generate the voltage group K .

Let X̃ be a K-covering of X with a projection p. If α ∈ Aut(X) and α̃ ∈ Aut(X̃) satisfy
α̃p = pα, we call α̃ a lift of α, and α the projection of α̃. Concepts such as a lift of a subgroup
of Aut(X) and the projection of a subgroup of Aut(X̃) are self-explanatory. The lifts and the
projections of such subgroups are of course subgroups in Aut(X̃) and Aut(X), respectively. In
particular, if the covering graph X̃ is connected, then the covering transformation group K is the
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lift of the trivial group, that is, K = {̃α ∈ Aut(X̃): p = α̃p}. Clearly, if α̃ is a lift of α, then Kα̃

are the all lifts of α.
Let X×φ K → X be a connected K-covering derived from a T -reduced voltage assignment φ.

The problem whether an automorphism α of X lifts or not can be grasped in terms of voltages as
follows. Observe that a voltage assignment on arcs extends to a voltage assignment on walks in a
natural way. Given α ∈ Aut(X), we define a function α from the set of voltages on fundamental
closed walks based at a fixed vertex v ∈ V (X) to the voltage group K by

(
φ(C)

)α = φ
(
Cα

)
,

where C ranges over all fundamental closed walks at v, and φ(C) and φ(Cα) are the voltages
on C and Cα , respectively. Note that if K is abelian, α does not depend on the choice of the
base vertex, and the fundamental closed walks at v can be substituted by the fundamental cycles
generated by the cotree arcs of X.

The next proposition is a special case of [30, Theorem 4.2].

Proposition 2.1. Let X×φ K → X be a connected K-covering derived from a T -reduced voltage
assignment φ. Then, an automorphism α of X lifts if and only if α extends to an automorphism
of K .

For more results on the lifts of automorphisms of X, we refer the reader to [2,3,10,31,34]. Let
X be a graph and let N be a subgroup of Aut(X). Denote by X the quotient graph corresponding
to the orbits of N , that is the graph having the orbits of N as vertices with two orbits adjacent
in X whenever there is an edge between those orbits in X. In view of Theorem 9 of [28] (see
also [46]), we have

Proposition 2.2. Let X be a connected symmetric graph of prime valency and G an s-arc-
transitive subgroup of Aut(X) for some s � 1. If a normal subgroup N of G has more than two
orbits, then it is semiregular and G/N is an s-arc-transitive subgroup of Aut(X ) where X is the
quotient graph of X corresponding to the orbits of N . Furthermore, X is a regular covering of X

with the covering transformation group N .

The next proposition was first mentioned in [12, Lemma 2.2] with no restriction on the voltage
group K . However, it is not true if K is not abelian. For a correction, see [14].

Proposition 2.3. [12, Lemma 2.2] Let X ×φ K be a connected regular covering of a graph X

with the covering transformation group K , and let α ∈ Aut(X) be an automorphism one of whose
liftings α̃ centralizes K . If K is abelian then φ(Cα) = φ(C) for any cycle C of X.

Two coverings X̃1 and X̃2 of X with projections p1 and p2 respectively, are said to be equiva-
lent if there exists a graph isomorphism α̃ : X̃1 → X̃2 such that α̃p2 = p1. We quote the following
proposition.

Proposition 2.4. [25,48] Two connected regular coverings X ×φ K and X ×ψ K , where φ and
ψ are T -reduced, are equivalent if and only if there exists an automorphism σ ∈ Aut(K) such
that φ(u, v)σ = ψ(u,v) for any cotree arc (u, v) of X.

The next proposition is due to Burnside.
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Proposition 2.5. [26, Chapter IV, Theorem 2.6] Let G be a finite group and let P be a Sylow
p-subgroup of G. Let NG(P ) denote the normalizer of P in G and CG(P ) the centralizer of P

in G. If NG(P ) = CG(P ), then G has a normal subgroup N such that G/N ∼= P .

3. Graph constructions and isomorphisms

Denote by Zn the cyclic group of order n, as well as the ring of integers modulo n. Let Z∗
n be

the multiplicative group of Zn consisting of numbers coprime to n, and for a prime p let Zm
p be

the elementary abelian group Zp × Zp × · · · × Zp (m times), as well as the m-dimensional row
vector space over the field Zp . In this section, we construct some examples of cubic symmetric
graphs to use later for classifications of cubic symmetric graphs of order 4p, 4p2, 6p or 6p2.
The first example is the well-known generalized Petersen graphs, while others come from the
cyclic or the elementary abelian coverings of the complete graph K4 or the bipartite graph K3,3.

Example 3.1. Let n � 3 and k ∈ Zn\{0}. The generalized Petersen graph P(n, k) is the graph
with vertex-set {xi, yi | i ∈ Zn} and edge set {xixi+1, xiyi, yiyi+k | i ∈ Zn}.

In the following examples, let V (K4) = {a,b, c,d} and V (K3,3) = {u,v,w,x,y, z} be the
vertex sets of K4 and K3,3 as illustrated in Figs. 3 and 1, respectively. The first letter of the
names of the graphs in those examples is E or C which stands for elementary abelian or cyclic,
and the second one is C or B which stands for the complete graph K4 or the bipartite graph K3,3.
For example, EB stands for an elementary abelian covering graph of the bipartite graph K3,3.

Example 3.2. Let p be a prime and let Z3
p be the 3-dimensional row vector space over the

field Zp . Take the standard basis vectors: e1 = (1,0,0), e2 = (0,1,0) and e3 = (0,0,1). The
graph ECp3 is defined to have vertex set V (ECp3) = V (K4) × Z3

p and edge set

E(ECp3) = {
(a, x)(b, x), (a, x)(c, x), (a, x)(d, x), (b, x)(c, x + e1), (c, x)(d, x + e2),

(d, x)(b, x + e3) | x ∈ Z3
p

}
.

Later in Theorem 6.1, it will be shown that the graph ECp3 can be described as a Z3
p-covering

of the complete graph K4 and it is a cubic 2-regular graph.

Example 3.3. Let n = p or p2 such that p − 1 is divisible by 3 and let λ be an element of order 3
in the multiplicative group Z∗

n of Zn. The graphs CBn and CBn are defined to have the same
vertex set V (CBn) = V (CBn) = V (K3,3) × Zn and edge sets

E(CBn) = {
(u, i)(x, i), (u, i)(y, i), (u, i)(z, i), (v, i)(y, i), (v, i)(x, i + λ + 1),

(v, i)(z, i + 1), (w, i)(x, i − 1), (w, i)(y, i − λ − 1), (w, i)(z, i) | i ∈ Zn

}
,

E(CBn) = {
(u, i)(x, i), (u, i)(y, i), (u, i)(z, i), (v, i)(y, i), (v, i)

(
x, i + λ2 + 1

)
,

(v, i)(z, i + 1), (w, i)(x, i − 1), (w, i)
(
y, i − λ2 − 1

)
, (w, i)(z, i) | i ∈ Zn

}
,

respectively. It is easy to see that both CBn and CBn are cubic and bipartite. Note that there are
only two elements of order 3 in Z∗

n, that is, λ and λ2. The graph CBn is obtained by replacing λ

with λ2 in each edge of CBn. It will be shown that CBn
∼= CBn in Lemma 3.7. Thus, the graph

CBn is independent of the choice of λ. It will be shown that the graphs CBp and CBp2 (p > 3)
are 1-regular in Lemma 5.1.
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Example 3.4. Let p be a prime and let Z2
p be the 2-dimensional row vector space over the field

Zp . Take the standard basis vectors: e1 = (1,0) and e2 = (0,1). The graphs EBp2 and EBp2 are

defined to have the same vertex set V (EBp2) = V (EBp2) = V (K3,3) × Z2
p and edge sets

E(EBp2) = {
(u, x)(x, x), (u, x)(y, x), (u, x)(z, x), (v, x)(y, x), (v, x)(x, x + e2),

(v, x)(z, x + e1), (w, x)(x, x − e1), (w, x)(z, x), (w, x)(y, x − e2) | x ∈ Z2
p

}
,

E(EBp2) = {
(u, x)(x, x), (u, x)(y, x), (u, x)(z, x), (v, x)(y, x), (v, x)(x, x + e2),

(v, x)(z, x + e1), (w, x)(z, x), (w, x)(x, x + e2),

(w, x)(y, x − e1 + e2) | x ∈ Z2
p

}
,

respectively. It will be shown that EBp2 ∼= EBp2 in Lemma 3.7. Both graphs are bipartite and
2-regular as covering graphs of the complete bipartite graph K3,3 (see Theorem 4.1).

Example 3.5. Let p = 3 or p be a prime such that p − 1 is divisible by 3. Let Z3
p be the 3-

dimensional row vector space over the field Zp . Take the standard basis vectors: e1 = (1,0,0),
e2 = (0,1,0) and e3 = (0,0,1). If p = 3 let λ = 1 and if p > 3 let λ be an element of order 3
in the multiplicative group Z∗

p of Zp . The graphs EBp3 and EBp3 are defined to have the same

vertex set V (EBp3) = V (EBp3) = V (K3,3) × Z3
p and edge sets

E(EBp3) = {
(u, x)(x, x), (u, x)(y, x), (u, x)(z, x), (v, x)(y, x), (w, x)(z, x),

(v, x)(x, x + e3), (v, x)(z, x + e1), (w, x)(x, x + e2),

(w, x)
(
y, x − e1 − λe2 + (1 + λ)e3

) | x ∈ Z3
p

}
,

E(EBp3) = {
(u, x)(x, x), (u, x)(y, x), (u, x)(z, x), (v, x)(y, x), (w, x)(z, x),

(v, x)(x, x + e3), (v, x)(z, x + e1), (w, x)(x, x + e2),

(w, x)
(
y, x − e1 − λ2e2 + (

1 + λ2)e3
) | x ∈ Z3

p

}
,

respectively. The graph EBp3 is obtained by replacing λ with λ2 in each edge of EBp3 . It will

be shown that EBp3 ∼= EBp3 in Lemma 3.7. Thus, the graph EBp3 is independent of the choice
of λ because λ and λ2 are the only two elements of order 3 in Z∗

p for p > 3. The graph EB33 is
3-regular and EBp3 (p > 3) is 1-regular as covering graphs of the complete bipartite graph K3,3
(see Theorem 4.1).

Example 3.6. Let p be a prime and let Z4
p be the 4-dimensional row vector space over the

field Zp . Take the standard basis vectors: e1 = (1,0,0,0), e2 = (0,1,0,0), e3 = (0,0,1,0) and
e4 = (0,0,0,1). The graph EBp4 is defined to have vertex set V (EBp4) = V (K3,3) × Z4

p and
edge set

E(EBp4) = {
(u, x)(x, x), (u, x)(y, x), (u, x)(z, x), (v, x)(y, x), (v, x)(x, x + e3),

(w, x)(z, x), (v, x)(z, x + e1), (w, x)(x, x + e2), (w, x)(y, x + e4) |x ∈Z4
p

}
.

The graph EBp4 is 3-regular as a covering graph of the complete bipartite graph K3,3 (see
Theorem 4.1).

Among the examples of cubic symmetric graphs constructed above, some of them are isomor-
phic.
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Lemma 3.7. EBp2 ∼= EBp2 , EBp3 ∼= EBp3 , CBp
∼= CBp and CBp2 ∼= CBp2 .

Proof. To show EBp2 ∼= EBp2 , we define a map α from V (EBp2) to V (EBp2) by

(u, ke1 + �e2) �→ (
u, (k + �)e1 − ke2

)
,

(v, ke1 + �e2) �→ (
w, (k + � + 1)e1 − (k + 1)e2

)
,

(w, ke1 + �e2) �→ (
v, (k + � − 1)e1 − ke2

)
,

(x, ke1 + �e2) �→ (
x, (k + �)e1 − ke2

)
,

(y, ke1 + �e2) �→ (
y, (k + �)e1 − ke2

)
,

(z, ke1 + �e2) �→ (
z, (k + �)e1 − ke2

)
,

where k, � ∈ Zp . Clearly,

NEB
p2

(
(w, ke1 + �e2)

) = {(
x, (k − 1)e1 + �e2

)
,
(
y, ke1 + (� − 1)e2

)
, (z, ke1 + �e2)

}
,

NEB
p2

(
(w, ke1 + �e2)

α
) = NEB

p2

((
v, (k + � − 1)e1 − ke2

))

= {(
x, (k + � − 1)e1 + (1 − k)e2

)
,
(
y, (k + � − 1)e1 − ke2

)
,(

z, (k + �)e1 − ke2
)}

.

Now, one can easily show that[
NEB

p2

(
(w, ke1 + �e2)

)]α = NEB
p2

(
(w, ke1 + �e2)

α
)
.

Similarly, one can show that[
NEB

p2

(
(e, ke1 + �e2)

)]α = NEB
p2

(
(e, ke1 + �e2)

α
)

for e = u or v. This implies that α is an isomorphism from EBp2 to EBp2 because the graphs

are bipartite, that is, EBp2 ∼= EBp2 .

If p = 3, then EBp3 = EBp3 by definition. Hence, to prove the last three isomorphic rela-
tions, we assume that n = p or p2 such that p − 1 is divisible by 3. For such an n, by [17,
Lemma 3.4], λ is an element of order 3 in Z∗

n if and only if λ2 +λ+ 1 ≡ 0 (mod n). With the aid
of this property, one can prove that the following two maps β and γ are actually isomorphisms
to show EBp3 ∼= EBp3 and CBn

∼= CBn for n = p or n = p2.

For i, j, k ∈ Zp , a map β from V (EBp3) to V (EBp3) is defined by

(u, ie1 + je2 + ke3) �→ (
u,−ie1 + (

k − λ2i
)
e2 + (j − λi)e3

)
,

(v, ie1 + je2 + ke3) �→ (
w,−ie1 + (

k − λ2i
)
e2 + (j − λi)e3

)
,

(w, ie1 + je2 + ke3) �→ (
v,−ie1 + (

k − λ2i
)
e2 + (j − λi)e3

)
,

(x, ie1 + je2 + ke3) �→ (
x,−ie1 + (

k − λ2i
)
e2 + (j − λi)e3

)
,

(y, ie1 + je2 + ke3) �→ (
z,−ie1 + (

k − λ2i
)
e2 + (j − λi)e3

)
,

(z, ie1 + je2 + ke3) �→ (
y,−ie1 + (

k − λ2i
)
e2 + (j − λi)e3

)
,

and for i ∈ Zn, a map γ from V (CBn) to V (CBn) is defined by

(u, i) �→ (u, λi), (v, i) �→ (w, λi), (w, i) �→ (v, λi),

(x, i) �→ (x, λi), (y, i) �→ (z, λi), (z, i) �→ (y, λi). �
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4. Elementary abelian coverings of K3,3

In [18], the authors classified the s-regular cyclic coverings of the complete bipartite graph
K3,3. In this section, we classify the s-regular elementary abelian coverings of K3,3.

Theorem 4.1. Let X̃ be a connected regular covering of the complete bipartite graph K3,3, whose
covering transformation group is elementary abelian but not cyclic and whose fibre-preserving
group is arc-transitive. Then, X̃ is 1-, 2- or 3-regular. Furthermore,

(1) X̃ is 1-regular if and only if X̃ is isomorphic to one of EBp3 for a prime p such that p − 1
is divisible by 3 (defined in Example 3.5).

(2) X̃ is 2-regular if and only if X̃ is isomorphic to one of EBp2 for a prime p (defined in
Example 3.4).

(3) X̃ is 3-regular if and only if X̃ is isomorphic to EB33 or one of EBp4 for a prime p (defined
in Example 3.6).

Remark. From Theorem 4.1, one can construct an infinite family of cubic 1-regular graphs of
type EBp3 , where p − 1 is divisible by 3. Since 7 is the smallest such a prime, the smallest
cubic 1-regular graph in this family has order 2058. By Example 3.5, (u,0), (y,0), (w, e1 +
λe2 − (1 +λ)e3), (z, e1 +λe2 − (1 +λ)e3), (u, e1 +λe2 − (1 +λ)e3), (x, e1 +λe2 − (1 +λ)e3),
(w, e1 + (λ − 1)e2 − (1 + λ)e3), (y,−e2), (u,−e2), (z,−e2), (w,−e2) and (x,0) consist of the
vertices of a 12-cycle in EBp3 . Thus, one may prove that this infinite family of cubic 1-regular
graph has girth 12.

Proof. Let X̃ = K3,3 ×φ Zm
p (m � 2) be a covering graph of the graph K3,3 satisfying the hy-

potheses in the theorem, where p is a prime and φ = 0 on the spanning tree T which is depicted
by dark lines in Fig. 1. We assign voltages z1, z2, z3 and z4 to the cotree arcs as shown in Fig. 1
where zi ∈ Zm

p (i = 1,2,3,4). Note that the vertices of K3,3 is labelled by u, v, w, x, y and z.
By the hypotheses, the fibre-preserving group, say L̃, of the covering graph K3,3 ×φ Zm

p acts arc-
transitively on K3,3 ×φ Zm

p . Hence, the projection of L̃, say L, is arc-transitive on the base graph
K3,3. Clearly, L is also vertex transitive on K3,3. Since K3,3 ×φ Zm

p is assumed to be connected,
〈z1, z2, z3, z4〉 = Zm

p .
By the act-transitivity of L, |L|= |L̃/Zm

p | is divisible by 18. Since Aut(K3,3)∼= (S3 ×S3)�Z2,
L and Aut(K3,3) have the same normal Sylow 3-subgroup, say P3. Thus, we may assume P3 =
〈α1〉× 〈α2〉, where α1 = (uvw) and α2 = (xyz). It is easy to see that P3 has two orbits, which are

Fig. 1. The complete bipartite graph K3,3 with voltage assignment φ.
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Table 1
Fundamental cycles and their images with corresponding voltages

C φ(C) Cα1 φ(Cα1 ) Cα2 φ(Cα2 ) Cβ φ(Cβ) Cγ φ(Cγ ) Cδ φ(Cδ)

vzuy z1 wzvy −z1 − z4 vxuz z3 − z1 ywxv z2 − z3 − z4 wyuz z4 yvxw z3 + z4 − z2
wxuz z2 uxvz z1 − z3 wyux z4 − z2 zuxw −z2 vxuy z3 zuxv z1 − z3
vxuy z3 wxvy z2 − z3 − z4 vyuz −z1 yuxv −z3 wxuz z2 yuxw z4 − z2
wyuz z4 uyvz z1 wzux −z2 zvxw z3 − z1 − z2 vzuy z1 zwxv z1 + z2 − z3

actually the two bipartite subsets of the graph K3,3. Since L is vertex-transitive on V (K3,3) and
Aut(K3,3) has no element of order 8, there exists either an involution, say β , or an element of
order 4, say δ, in L, which interchanges the two bipartite subsets of the graph K3,3. It is also easy
to see that β is a product of three transpositions and δ is a product of one cycle of length 4 and
a transposition. Clearly, we may assume β = (ux)(vy)(wz) and by considering the conjugates of
δ under the elements α1 and α2, one may assume δ = (vywz)(ux). Thus, α1, α2 ∈ L, and either
β ∈ L or δ ∈ L. Set γ = δ2. Then, α1, α2, β , γ and δ are automorphisms of K3,3. It is easy to
prove that 〈α1, α2, β〉 ∼= Z2

3 � Z2, 〈α1, α2, β, γ 〉 ∼= Z2
3 � Z2

2 and 〈α1, α2, β, δ〉 ∼= (S3 × S3) � Z2,
which are 1-regular, 2-regular and 3-regular, respectively.

Denote by i1i2 · · · is the cycle having the consecutively adjacent vertices i1, i2, . . . , is . There
are four fundamental cycles vzuy, wxuz, vxuy and wyuz in K3,3, which are generated by the
four cotree arcs (v, z), (w,x), (v,x) and (w,y), respectively. Each cycle maps to a cycle of the
same length under the actions of α1, α2, β , γ and δ. We list all these cycles and their voltages in
Table 1, in which C denotes a fundamental cycle of K3,3 and φ(C) denotes the voltage on C.

Consider the mapping α1 from the set of voltages on the four fundamental cycles of K3,3 to
the elementary abelian group Zm

p , defined by φ(C)α1 = φ(Cα1), where C ranges over the four

fundamental cycles. Similarly, we can define α2, β , γ and δ. By Proposition 2.1, either α1, α2
and β or α1, α2 and δ can be extended to automorphisms of Zm

p . We denote by α∗
1 , α∗

2 , β∗ and
δ∗ these automorphisms, respectively. Then, α∗

1 and α∗
2 always exist and either β∗ or δ∗ exists.

Since α∗
1 and α∗

2 always exist, by Table 1, z
α∗

1
1 = −z1 − z4 and z

α∗
2

1 = z3 − z1. If z1 = 0 then
z3 = z4 = 0, contrary to the fact that 〈z1, z2, z3, z4〉 = Zm

p (m � 2). Thus, z1 �= 0 and similarly,

all z2, z3, z4 �= 0. Now, we consider three cases: K = Z2
p , Z3

p or Zm
p (m � 4).

Case I. K = Zm
p (m � 4).

In this case, 〈z1, z2, z3, z4〉 = K implies that m = 4 and z1, z2, z3, z4 are linearly independent.
By Table 1, it is easy to check that φ((vzuy)α), φ((wxuz)α), φ((vxuy)α) and φ((wyuz)α) are
linearly independent for α = α1, α2, β or δ. Thus, α1, α2, β , δ can be extended to automorphisms
of Z4

p and by Proposition 2.1, α1, α2, β and δ lift to automorphisms of K3,3 ×φ Zm
p . Since

Aut(K3,3) = 〈α1, α2, β, δ〉, Aut(K3,3) lifts and so Aut(X̃) contains a 3-regular subgroup. By
Djoković and Miller [11, Theorem 3], no s-regular group for s > 3 contains a 3-regular subgroup
and so X̃ is 3-regular. By Proposition 2.4 with the linear independence of z1, z2, z3 and z4, one
may assume that z1 = e1, z2 = e2, z3 = e3 and z4 = e4 are the standard basis of the vector space
Z4

p . By Example 3.6, X̃ ∼= EBp4 .

Case II. K = Z2
p .

Suppose that z1 and z3 are linearly dependent. Then, one may assume that z3 = kz1 for

some k ∈ Zp and z3 �= 0 implies that k �= 0. By Table 1, z
α∗

1
3 = kz

α∗
1

1 and z
α∗

2
3 = kz

α∗
2

1 imply
that z2 = (1 − k)z4 and kz3 = (k − 1)z1. Substituting z3 = kz1 to the second equation, one has
k2 − k + 1 = 0 in the field Zp . We know that β or δ lifts. If β lifts then z

β∗ = kz
β∗

implies
3 1
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that (k − 1)z3 = kz2 − kz4 = k(1 − k)z4 − kz4 = −k2z4. It follows that z4 = k−2(1 − k)z3,
where k−2 is the inverse of k2 in Z∗

p (k �= 0). Thus, K = 〈z1, z2, z3, z4〉 = 〈z1〉, which is im-

possible because K = Z2
p . If δ lifts then zδ∗

3 = kzδ∗
1 implies that kz3 = (k − 1)z2 + (1 − k)z4 =

−(1 − k)2z4 + (1 − k)z4 = −(k2 − k + 1)z4 + z4 = z4 and we have the same contradiction as
above. Thus, z1 and z3 are linearly independent.

Since K has dimension 2, one may assume that z2 = kz1 + �z3 for some k, � ∈ Zp . Then,

z
α∗

1
2 = kz

α∗
1

1 + �z
α∗

1
3 and z

α∗
2

2 = kz
α∗

2
1 + �z

α∗
2

3 imply (1 + k − k�)z1 + (�− �2 − 1)z3 + (k + �)z4 = 0
and z4 = −�z1 + (k + �)z3. It follows that (1 + k − �2 − 2k�)z1 + (k2 + � + 2k� − 1)z3 = 0. By
the linear independence of z1 and z3, one has

1 + k − �2 − 2k� = 0, (1)

k2 + � + 2k� − 1 = 0. (2)

By (1) + (2), (k + �)(k − � + 1) = 0. Thus, k = −� or k = � − 1.
Suppose that δ lifts. Then, zδ∗

2 = kzδ∗
1 + �zδ∗

3 implies that z1 + (k + �)z2 − (k + 1)z3 − (k +
�)z4 = 0. Substitute z2 = kz1 + �z3 and z4 = −�z1 + (k + �)z3 to this equation and consider the
coefficient of z3. The linear independence of z1 and z3 implies the following equation

k2 + k� + k + 1 = 0. (3)

Recall that k = −� or �− 1. If k = −� then � = 1 by Eq. (3). Thus, k = −� = −1 and by Eq. (1),
1 = 0, a contradiction. If k = �− 1 then 2�2 − 2�+ 1 = 0 by Eq. (3) and 3�2 − 3� = 0 by Eq. (1).
This implies �2 − �− 1 = 0 and so 3 = 0 again by 2�2 − 2�+ 1 = 0. It follows that p = 3. In this
case, 2�2 − 2� + 1 �= 0 for each � = 0,1,2, a contradiction. Thus, δ cannot lift.

Note that β or δ lifts. Then, β lifts because δ cannot. Substituting z2 = kz1 + �z3 and z4 =
−�z1 +(k+�)z3 to the image of z2 = kz1 +�z3 under β , one has (k2 +k+k�)z1 −(k2 +k)z3 = 0.
Thus, k2 + k = 0 and k2 + k + k� = 0. It follows that k� = 0, that is k = 0 or � = 0. If k = −�

then k = � = 0, implying that z2 = 0, a contradiction. Thus, k = � − 1 and since k = 0 or � = 0,
one has � = 0 and k = −1 or k = 0 and � = 1.

For � = 0 and k = −1, one has z2 = −z1 and z4 = −z3. Note that z1 and z3 are linearly inde-
pendent. By Table 1, it is easy to check that α1, α2, β and γ can be extended to automorphisms
of Z2

p , but δ cannot. By Proposition 2.1, α1, α2, β lift, but δ cannot. Since 〈α1, α2, β, γ 〉 is 2-
regular, Aut(X̃) contains a 2-regular subgroup, say B , lifted by 〈α1, α2, β, γ 〉. We claim that X̃ is
actually 2-regular. Suppose to the contrary that X̃ is s-regular for some s � 3. By Djoković and
Miller [11, Theorem 3], if an s-regular group for s � 3 contains a 2-regular subgroup then s = 3.
Thus, X̃ is 3-regular. Let A = Aut(X̃). Then, |A : B| = 2 and B � A. By Conder and Dobc-
sányi [6], there is only one connected cubic symmetric graphs of order 24 or 54 respectively,
both of which are 2-regular. Thus, one may assume p � 5. Note that K = Z2

p is normal in B

and so characteristic in B because K is a Sylow p-subgroup of B , which implies that K � A.
Clearly, the quotient graph of X corresponding to the orbits of K is K3,3. By Proposition 2.2,
A/N is a 3-regular subgroup of K3,3 and so A/N = Aut(K3,3). This means that Aut(K3,3) lifts,
contrary to the fact that δ cannot lift. Thus, X̃ is 2-regular. By Proposition 2.4, one may assume
that z1 = e1, z3 = e2, z2 = −e1 and z4 = −e2, where e1 and e2 are the standard basis of the
vector space Z2

p . By Example 3.4, X̃ ∼= EBp2 .
For k = 0 and � = 1, one has z2 = z3 and z4 = z3 − z1. By Proposition 2.4 and Example 3.4,

X̃ ∼= EBp2 and by Lemma 3.7, X̃ ∼= EBp2 .
Case III. K = Z3

p .
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The proof in the first paragraph of Case II means that z1 and z3 are linearly independent.
Suppose that z2 is a linear combination of z1 and z3. Considering the image of this combination
under α∗

2 , one has that z4 is also a combination of z1 and z3. Thus, K can be generated by z1

and z3, which is impossible because K = Z3
p . Thus, z1, z2 and z3 are linearly independent.

Let z4 = iz1 + jz2 +kz3 for some i, j, k ∈ Zp . By z
α∗

2
4 = iz

α∗
2

1 + jz
α∗

2
2 +kz

α∗
2

3 , z2 = (i +k)z1 +
jz2 − iz3 − jz4 = (i + k − ij)z1 + (j − j2)z2 − (i + jk)z3. The linear independence of z1, z2
and z3 implies the following equations

i + k − ij = 0, (4)

j2 − j + 1 = 0, (5)

i + jk = 0. (6)

Suppose that β cannot lift. Then, δ lifts because β or δ lifts. Substitute z4 = iz1 + jz2 + kz3
to its image under δ∗ and consider the coefficients of z1 and z2. The linear independence of z1,
z2 and z3 implies the following equations

i2 + ik + j − 1 = 0, (7)

ij + jk − i − k − 1 = 0. (8)

Since α2 lifts, Eqs. (4)–(6) hold. By (4)–(6) + (8), i = −1 and by (7), j = k. By (8), j2 − 2j = 0
and by (5), j = k = −1. Since j2 − 2j = 0, one has 3 = 0 and so p = 3. However, in this case β

can be extended to an automorphism of Z3
3 and so β lifts, a contradiction. Thus, β must lift.

Substitute z4 = iz1 + jz2 + kz3 to its image under β∗ and consider the coefficients of z1
and z2. The linear independence of z1, z2 and z3 implies the following equations

i2 = 1, (9)

i − j − ij + 1 = 0. (10)

If p = 2, then (5) has no solution. If p = 3 then (5) implies that j = 2. By (10), i = 2 and
by (4), k = 2. Thus, z4 = 2(z1 + z2 + z3). It is easy to prove that α1, α2, β and δ can be extended
to automorphisms of Z3

p . By Proposition 2.1, Aut(K3,3) lifts and so Aut(X̃) contains a 3-regular
subgroup. By Djoković and Miller [11, Theorem 3], X̃ is 3-regular, and by Proposition 2.4 and
Example 3.5, X̃ ∼= EB33 .

We now let p > 3. By (9), one has i = 1 or −1. Suppose i = 1. Then by (10), j = 1 and
by (5), 1 = 0, a contradiction. Thus, i = −1. By (6), jk = 1 and by multiplying k to Eq. (5), one
has k = 1 − j . It follows that z4 = −z1 + jz2 + (1 − j)z3, where j2 − j + 1 = 0 by (5). Clearly,
j �= −1. Thus, j3 + 1 = (j + 1)(j2 − j + 1) = 0 implies that −j is an element of order 3 in the
multiplicative group Z∗

p . Thus, p − 1 is divisible by 3. Set λ = −j . By Proposition 2.4, Exam-
ple 3.5 and Lemma 3.7, X̃ ∼= EBp3 . We claim that EBp3 is actually 1-regular. By Table 1 and
Proposition 2.1, it is easy to prove that α1, α2 and β lift, but γ cannot. Thus, Aut(X̃) contains a
1-regular subgroup, say B , lifted by 〈α1, α2, β〉. Clearly, K = Z3

p is a normal Sylow p-subgroup

of B and |B| = 18p3.
Suppose that an s-regular subgroup of Aut(K3,3) lifts for some s � 2. Then, the subgroup

contains an involution, say α, which fixes the arc (u,x) in K3,3. Clearly, α = (vw)(yz), (vw)

or (yz). Since α lifts and γ = (vw)(yz) cannot lift, α = (vw) or (yz). But in this case it is easy
to show that αβ−1αβ = (vw)(yz) = γ , where β = (ux)(vy)(wz). Since α and β lift, γ lifts,
a contradiction. This implies that no s-regular subgroup of Aut(K3,3) lifts for any s � 2.
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Let A = Aut(X̃) and suppose to the contrary that X̃ is s-regular for some s � 2. By Tutte [49,
50], s � 5 and so |A| | 6p3 · 48. Thus, K is a Sylow p-subgroup of A and since p − 1 is di-
visible by 3, we have p � 7. The normality of K in B implies that B � NA(K), where NA(K)

is the normalizer of K in A. Since X̃ is at most 5-regular, |A : NA(K)| | 16. By Sylow’s the-
orem, the number of Sylow p-subgroups of A is np + 1 and np + 1 = |A : NA(K)|. Thus,
np + 1 | 16. Since p � 7, we have np + 1 = 1, or p = 7 and n = 1. If np + 1 = 1 then K � A.
By Proposition 2.2, A/K is an s-regular subgroup of K3,3. This is impossible because otherwise
the s-regular subgroup A/K (s � 2) of Aut(K3,3) lifts. Thus, p = 7 and n = 1. Let H = NA(K).
Then, |A : H | = 8. By considering the right multiplication action of A on the set of right cosets
of H in A, |A/HA| | 8!, where HA is the largest normal subgroup of A in H . Let L be a Sy-
low 7-subgroup of HA. Then the normality of L in HA implies that L is characteristic in HA.
Thus, L � A because HA � A. Since |A : H | = 8, the Sylow 7-subgroups of A are not normal
in A, forcing that |L| �= 73. Thus, |A/HA| | 8! implies that 72 | |HA| and so L ∼= Z2

7. However,
the quotient graph corresponding to the orbits of L on V (X̃) is a cubic s-regular graph of order
6 × 7 = 42 for some s � 2, which is impossible according to Conder and Dobcsányi [6]. Thus,
EBp3 is 1-regular. �
5. The cubic symmetric graphs of order 6p or 6p2

In this section, we shall classify the s-regular cubic graphs of order 6p or 6p2 for each
prime p. First, we introduce a part of the classification of the s-regular cyclic coverings of
K3,3 in [18] for our classification. By Conder and Dobcsányi [6], there is a unique cubic sym-
metric graph of order 18 which is 3-regular. This graph is called the Pappus graph, denoted
by 93 (see [9]). By the proof of [18, Theorem 1.1], the graph 93 is a Z3-covering of K3,3 admit-
ting a lift of a 2-regular automorphism subgroup of K3,3 isomorphic to (Z3 × Z3) � Z4. Thus,
Aut(93) ∼= (Z3 · ((Z3 × Z3) � Z4)) · Z2, where · means group extension. Let p be a prime such
that p − 1 is divisible by 3 and let n = p or p2. By [17, Lemma 3.4], λ is an element of order 3
in Z∗

n if and only if λ2 + λ + 1 = 0 in Zn. Clearly, Z∗
n has exactly two elements of order 3, that

is, λ and λ2. In view of [18, Theorem 1.1], Example 3.3 and Lemma 3.7 imply the following.

Lemma 5.1. Let X̃ be a connected regular covering of the complete bipartite graph K3,3 whose
covering transformation group is Zp or Zp2 for a prime p and whose fibre-preserving group is

arc-transitive. Then, X̃ is 1- or 3-regular. Furthermore,

(1) X̃ is 1-regular if and only if X̃ is isomorphic to one of CBn (defined in Example 3.3), where
n = p or p2 such that p − 1 is divisible by 3.

(2) X̃ is 3-regular if and only if X̃ is isomorphic the Pappus graph 93.

There is a connected cubic symmetric graph of order 30 denoted by L30, which is called the
Levi graph. For its construction, see [24, Fig. 14.13] and by Tutte [49], L30 is 5-regular and
Aut(L30) ∼= S6 � Z2. There is a connected cubic symmetric graph of order 102 discovered by
Smith and Biggs and investigated by Biggs [4]. We denote by SB102 this graph. For its construc-
tion, see [4, Fig. 3] and by Biggs [4], SB102 is 4-regular and Aut(SB102) ∼= PSL(2,17).

Theorem 5.2. Let X be a connected cubic symmetric graph of order 6p for a prime p. Then,
X is 1-, 3-, 4- or 5-regular. Furthermore,
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(1) X is 1-regular if and only if X is isomorphic to one of CBp (defined in Example 3.3), where
p − 1 is divisible by 3.

(2) X is 3-regular if and only if X is isomorphic to the Pappus graph 93.
(3) X is 4-regular if and only if X is isomorphic to the Smith and Biggs graph SB102.
(4) X is 5-regular if and only if X is isomorphic to the Levi graph L30.

Proof. Let A = Aut(X). Since X is symmetric, by Tutte [50], X is at most 5-regular. Thus,
|A| is a divisor of 6p · 48. For p = 3, 5 or 17, by Conder and Dobcsányi [6], there is only
one connected cubic symmetric graph of order 6p, that is, the 3-regular Pappus graph 93, the
5-regular Levi graph L30 and the 4-regular Smith and Biggs graph SB102, and for each prime
p = 2, 11, 23, 29, 41, 47, 53, 59 or 71, there is no connected cubic symmetric graph of order 6p.
Similarly, for each prime p = 7, 13, 19, 31, 37, 43, 61 or 67, there is only one connected cubic
symmetric graph of order 6p which is the 1-regular graph CBp by Lemma 5.1. Thus, one may
assume that p � 73.

Let P be a Sylow p-subgroup of A and NA(P ) the normalizer of P in A. By Sylow’s theorem,
the number of Sylow p-subgroups of A is np + 1 and |A : NA(P )| = np + 1. If np + 1 > 1
then np + 1 = 96, 144 or 288 because |np + 1| | 6 · 48 and np + 1 � 74. Since 95 = 5 × 19,
143 = 11 × 13 and 287 = 7 × 41, one has p = 5,7,11,13,19 or 41, contrary to the hypothesis
that p � 73. Thus, np + 1 = 1 and so P � A. Clearly, the quotient graph X corresponding to the
orbits of P is a cubic symmetric graph with 6 vertices and so it is the bipartite graph K3,3. By
Propositions 2.2, X is a regular covering of K3,3 with the covering transformation group P ∼= Zp

and since P � A, the symmetry of X means that the fibre-preserving group is arc-transitive. By
Lemma 5.1, X ∼= CBp . �
Theorem 5.3. Let X be a connected cubic symmetric graph of order 6p2 for a prime p. Then, X

is 1- or 2-regular. Furthermore,

(1) X is 1-regular if and only if X is isomorphic to one of CBp2 (defined in Example 3.3), where
p − 1 is divisible by 3.

(2) X is 2-regular if and only if X is isomorphic to one of EBp2 (defined in Example 3.4).

Proof. Let A = Aut(X). Since X is at most 5-regular, one has |A| | 6p2 · 48. For each prime
p = 2,3,5 or 11, by Conder and Dobcsányi [6] and Theorem 4.1, there exists only one connected
cubic symmetric graph of order 6p2 which is the cubic 2-regular graph EBp2 , and for p = 7
there are two connected cubic symmetric graphs of order 6 × 72 which are the 1-regular graph
CB72 (Lemma 5.1) and the 2-regular graph EB72 . Thus, one may assume p � 13. Let P be
a Sylow p-subgroup of A and NA(P ) the normalizer of P in A. Then, P ∼= Zp2 or Z2

p and
|A : NA(P )| = np + 1 for some integer n. We claim that P � A.

Suppose to the contrary that P is not normal in A. Then, np + 1 � 14 because p � 13. If
NA(P ) = P then CA(P ) = NA(P ) = P because P is abelian, where CA(P ) is the centralizer
of P in A. By Proposition 2.5, A has a normal subgroup N such that A/N ∼= P , and by Propo-
sition 2.2, the quotient graph corresponding to the orbits of N has odd order and valency 3, a
contradiction. Thus, let NA(P ) �= P and so np + 1 | 3 · 25 or 32 · 24. It follows that np is one of
the following: 143 = 11 × 13, 95 = 5 × 19, 71, 47, 35 = 5 × 7, 31, 23, 17 or 15 = 3 × 5. Since
p � 13, there are three possible cases:
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I. p = 17, 23, 31, 47 or 71 and n = 1,
II. p = 19 and n = 5, or
III p = 13 and n = 11.

Case I. p = 17, 23, 31, 47 or 71 and n = 1.
Let H = NA(P ). By considering the right multiplication action of A on the set of right cosets

of H in A, we have |A/HA| | (p + 1)!, where HA is the largest normal subgroup of A in H . This
forces p | |HA| because |A| is divisible by p2. Let L be a Sylow p-subgroup of HA. Clearly,
L is characteristic in HA and so L � A. By the normality of L, we have L � P . Since the Sylow
p-subgroups of A are not normal, one has p2 � |HA| and so L ∼= Zp . By Proposition 2.2, the
quotient graph X of X corresponding to the orbits of L is a connected cubic symmetric graph of
order 6p, and A/L is a subgroup of Aut(X ). If p = 23,31,47 or 71, Theorem 5.2 implies that X

is 1-regular. Thus, |Aut(X )| = 18p. By Sylow theorem, |Aut(X )| = 18p has normal Sylow p-
subgroups. Since P/L is a Sylow p-subgroup of A/L and A/L � Aut(X ), one has P/L�A/L,
implying that P � A, a contradiction. Thus, p = 17. It follows that |L| = 17 and |V (X )| = 102.
By Theorem 5.2, X ∼= SB102 is 4-regular and Aut(X ) ∼= PSL(2,17). Let X be s-regular. Then,
|A| = 18p2 ·2s−1 for some s � 1 and so |A : NA(P )| = 18 implies that |NA(P ) : P | is a 2-power.
Since NA(P ) �= P , |NA(P ) : P | is divisible by 2. It follows that |A| has a divisor 4, implying
that X is at least 2-regular. By Proposition 2.2, A/L is an s-regular subgroup of Aut(SB102) for
some s � 2. Since Aut(SB102) ∼= PSL(2,17) and PSL(2,17) has no subgroup with index less
than 5, it must be A/L = Aut(SB102), that is, X is 4-regular. Let CA(L) be the centralizer of
L in A. Since Sylow 17-subgroups of A are abelian, L �= CA(L). Then, CA(L)/L �= 1 and so
CA(L)/L is a non-trivial normal subgroup of A/L. Since A/L is simple, one has CA(L) = A.
By Proposition 2.2, X is a 4-regular cyclic covering of SB102 with the covering transformation
group L ∼= Z17.

Using the notation in Biggs [4], we know that the graph SB102 has vertices pi , qi , ri , si , xi ,
yi (i = 1,2, . . . ,17) such that for each suffix i, the vertex xi is jointed to pi , qi , yi , the vertex yi

is jointed to ri , si , the vertex pi is jointed to pi−1, pi+1, the vertex qi is jointed to qi−4, qi+4, the
vertex ri is jointed to ri−2, ri+2, and the vertex si is jointed to si−8 and si+8, all suffixes being
taken modulo 17. Let Ni denote the set of vertices having distance i from x1. For convenience,
we depict SB102 as in Fig. 2 (also, see [4, Fig. 3]), where we omit the edges which join N3 to
N4, N4 to N5, N5 to N6, and N6 to N7. Note that for each u ∈ Ni (1 � i � 6) there is a unique
neighbor of u in Ni+1 and Ni−1, respectively. Furthermore, for any given 4-arc there is a unique
9-cycle passing through the given 4-arc.

For each vertex v in N7 we choose one edge which is incident to the vertex v, so that we obtain
altogether |N7| = 8 edges, say ei (1 � i � 8). One may assume that X = SB102 ×φ L, where
φ = 0 on the spanning tree T such that an edge of T either joins Ni to Ni+1 for some 0 � i � 5,
or is one of ei (i = 1,2, . . . ,8). Consider the 9-arc C = (x1,p1,p17, x17, q17, q13, q9, q5, q1, x1)

which is actually a cycle of length 9. Since SB102 is 4-regular, there is an α ∈ Aut(X) such
that (x1,p1,p17, x17)

α = (x17,p17,p1, x1). Since C is the unique 9-cycle passing through the
4-arc (x1,p1,p17, x17) or the 4-arc (x17,p17,p1, x1), α fixes the cycle C and so reverses C.
Assume φ((q17, q13)) = k. Then, φ(C) = k and φ(C−1) = −k, where C−1 is the inverse cycle
of C. Since CA(L) = A, the liftings of α commutes with each element in L. By Proposition 2.3,
k = −k and since p is odd, k = 0. Similarly, one can show that φ = 0 on every arc of X. Thus,
X is p copies of SB102, contrary to the connectivity of X.
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Fig. 2. The Smith and Biggs graph SB102.

Case II. p = 19 and n = 5.
In this case, |A : NA(P )| = 96 = 3 · 25. Thus, 25 is a divisor of |A| and since X is at most

5-regular, |A| = 6p2 · 3 · 24, that is, X is 5-regular. Let q be a prime. By Gorenstein [22, pp. 12–
14], if there exists a simple {2,3, q}-group then q = 5,7,13 or 17. Thus, A is solvable. Let N

be a minimal normal subgroup of A and X the quotient graph of X corresponding to the orbits
of N . Then, N is an elementary abelian r-group, where r = 2,3 or 19. If r = 2, Proposition 2.2
implies that X has odd order and valency 3, a contradiction. If r = 3 then X is a connected cubic
5-regular graph of order 2 × 192 = 722, and if r = 19 then X is a connected cubic 5-regular
graph of order 6 × 19 = 114. By Conder and Dobcsányi [6], both are impossible.

Case III. p = 13 and n = 11.
In this case, |A : NA(P )| = 144 = 9 · 24. Since |A| = 6p · 2s−1 for some 1 � s � 5,

|NA(P ) : P | must be a 2-power. Since P �= NA(P ), |NA(P ) : P | is divisible by 2. It follows
that |A| = 6p2 · 3 · 24 and so X is 5-regular. By Gorenstein [22, pp. 12–14], the only simple
{2,3,13}-group is PSL(3,3) which has order 24 · 33 · 13. Since 33 � |A|, A is solvable and we
have a contradiction by a similar argument to the Case II.

So far, we have proved that P � A. By Proposition 2.2, X is a Zp2 - or Z2
p-covering of the

bipartite graph K3,3 and the normality of P implies that the fibre-preserving group is the au-
tomorphism group Aut(X) of X, so that it is arc-transitive. By Lemma 5.1 and Theorem 4.1,
X ∼= CBp2 or EBp2 , as required. �
6. Regular coverings of K4 and related classifications

In this section, we first classify the cyclic or elementary abelian coverings of the complete
graph K4. The proof is similar but easier to that in Section 4. As an application of this clas-
sification, a list of s-regular cubic graphs of order 4p or 4p2 for each s and each prime p is
given.
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Fig. 3. The complete graph K4 with voltage assignment φ.

Table 2
Fundamental cycles and their images with voltages on K4

C φ(C) Cα φ(Cα) Cβ φ(Cβ) Cγ φ(Cγ )

abc z1 bad z3 acd z2 acb −z1
acd z2 bdc −z1 − z2 − z3 adb z3 abd −z3
adb z3 bca z1 abc z1 adc −z2

Theorem 6.1. Let K be a cyclic or an elementary abelian group and let X̃ be a connected
K-covering of the complete graph K4 whose fibre-preserving group is arc-transitive. Then, X is
2-regular. Moreover,

(1) if K is cyclic then X̃ is isomorphic to the complete graph K4, the 3-dimensional hyper-
cube Q3, or the generalized Petersen graph P(8,3);

(2) If K is elementary abelian but not cyclic, then X̃ is isomorphic to one of ECp3 for a prime
p (defined in Example 3.2).

Proof. Let X̃ = K4 ×φ K be a connected K-covering of the graph K4 satisfying the hypotheses,
where φ = 0 on the spanning tree T as illustrated by dark lines in Fig. 3. Identify the vertex set
of K4 with {a,b, c,d} and we assign voltages z1, z2 and z3 in K to the cotree arcs (b, c), (c,d)

and (d,b), respectively. The connectivity of X̃ means that 〈z1, z2, z3〉 = K .
Clearly, if K = 1 then X̃ = K4. Assume K �= 1 and set α = (ab)(cd), β = (bcd) and γ =

(bc). Then the arc-transitivity of the fibre-preserving group implies that α and β lift. Let C be a
fundamental cycle in K4. Then, C is abc, acd or adb, and one may easily obtain Table 2.

The mapping α from the set of voltages on the three fundamental cycles of K4 to the voltage
group K is defined by φ(C)α = φ(Cα), where C ranges over these three fundamental cycles.
Similarly, one can define β and γ . Since α and β lift, by Proposition 2.1, α and β can be extended
to automorphisms of K , say α∗ and β∗, respectively. Then, z

β∗
1 = z2 and z

β∗
2 = z3 imply that z1,

z2 and z3 have the same order. We now consider two cases according to K being cyclic or
elementary abelian.

Case I. K = Zn (n > 1).
In this case, K can be generated by each of z1, z2 and z3 because they have the same order.

Thus, one may assume z1 = 1. Let 1β∗ = k. By considering the images of z1, z2 and z3 under β∗,
one has z2 = k, z3 = k2 and k3 = 1 in the ring Zn. Let 1α∗ = �. By considering the images
of z1 and z3 under α∗, one has � = k2 and �k2 = 1. Thus, k = � and so k = 1. It follows that
z1 = z2 = z3 = 1. By zα∗ = −z1 − z2 − z3, one has 4 = 0 and so n = 2 or 4. In both cases,
2
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it is easy to check that α, β , γ can be extended to automorphisms of Zn, and so X̃ is at least
2-regular. Note that X̃ has order 8 or 16. By Miller [43, Table 3.1], there is only one connected
cubic symmetric graph of order 8 or 16 respectively, which are the 3-dimensional hypercube Q3
and the generalized Petersen graph P(8,3) by Nedela and Škoviera [44]. These two graphs are
2-regular.

Case II. K = Zm
p (m � 2).

Since 〈z1, z2, z3〉 = Zm
p , let K = Z2

p or Z3
p . If K = Z2

p then z
β∗
1 = z2, z

β∗
2 = z3 and z

β∗
3 = z1

imply that z1 and z2 are linearly independent. Write z3 = kz1 + �z2 for some k, � ∈ Zp . Sub-
stituting z3 = kz1 + �z2 to its image under β∗, the linear independence of z1 and z2 implies
that �k = 1 and k + �2 = 0 in the field Zp . It follows that k = �−1 �= 0 and �3 = −1. Substitute
z3 = kz1 + �z2 to its image under α∗ and consider the coefficient of z2. The linear independence
of z1 and z2 implies that �(k − �−1) = 0. Since � �= 0, one has k − �−1 = 0 and k = �−1 means
that �2 + � − 1 = 0. Multiplying � to this equation, one has �2 − � − 1 = 0 because �3 = −1.
Thus, 2� = 0 and so 2 = 0, implying that p = 2. But, in this case the equation �2 − �− 1 = 0 has
no solution. Thus, K = Z3

p . Since 〈z1, z2, z3〉 = Zm
p , z1, z2 and z3 are linearly independent. It is

easy to prove that α, β , γ can be extended to automorphisms of Z3
p and so Aut(X̃) contains a

2-regular subgroup, say B , lifted by 〈α,β, γ 〉. We claim that X̃ is actually 2-regular. Otherwise
X̃ is at least 3-regular. By Djoković and Miller [11, Theorem 3], X̃ is 3-regular. Let A = Aut(X̃).
Then, |A : B| = 2 and B � A. If p = 2 or 3, by Conder and Dobcsányi [6], there is only one
connected cubic symmetric graph of order 4p3, which is 2-regular. Thus, one may assume p � 5
and so K is a Sylow p-subgroup of A and B . Since K � B , K is characteristic in B and so
normal in A. By Proposition 2.2, Aut(K4) contains the s-regular subgroup A/K and so K4 is
at least 3-regular, a contradiction. Thus, X̃ is 2-regular. By Proposition 2.4 and Example 3.2,
X̃ ∼= ECp3 . �

To classify the cubic symmetric graphs of order 4p or 4p2, we introduce a graph of order
28 which was discovered by Coxeter and investigated by Tutte [51]. Denote by C28 this graph.
For its construction, see Biggs [4, Fig. 2(ii)] and by Biggs [4], C28 is 3-regular and Aut(C28) ∼=
PGL(2,7).

Theorem 6.2. Let X be a connected cubic symmetric graph of order 4p or 4p2 for a prime p.
Then X is isomorphic to the 2-regular hypercube Q3 of order 8, the 2-regular generalized Pe-
tersen graphs P(8,3) or P(10,7) of order 16 or 20 respectively, the 3-regular Dodecahedron of
order 20 or the 3-regular Coxeter graph C28 of order 28.

Proof. Let X be a connected cubic symmetric graph of order 4m where m = p or p2. Set A =
Aut(X). Since X is at most 5-regular, |A| | 192m.

Let p � 13. By Conder and Dobcsányi [6], if there exists a connected cubic symmetric graph
of order 4p or 4p2 then the order must be 8,20,28 or 16. Moreover, there is only one connected
cubic symmetric graph for each order 8, 16 and 28, and there are two for the order 20. Clearly,
the cubic symmetric graph of order 8 is the 3-dimensional hypercube Q3 which is 2-regular.
By Miller [43, Table 3.1] and Nedela and Škoviera [44], the cubic graph of order 16 is the
generalized Petersen graph P(8,3) which is 2-regular, and the cubic graphs of order 20 are the
Dodecahedron and the generalized Petersen graph P(10,7), of which the first one is 2-regular
and the second one is 3-regular. By Biggs [4], the connected cubic graph of order 28 is the
Coxeter graph C28 which is 3-regular. To prove the theorem, we only need to show that no
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connected cubic symmetric graph of order 4p or 4p2 exists for p � 17. Suppose to the contrary
that X is such a graph.

Let P be a Sylow p-subgroup of A and NA(P ) the normalizer of P in A. By Sylow’s theorem,
the number of Sylow p-subgroups of A is np+1 and np+1 = |A : NA(P )|, where n is an integer.
If np + 1 = 1 then P � A. By Proposition 2.2, X is a cyclic or an elementary abelian covering
of K4 with the covering transformation groups of order p or p2 for p � 17. By Theorem 6.1, no
such a covering exists. Thus, we assume np + 1 > 1 and so P is not normal in A. Since p � 17,
one has np + 1 � 18 and so |A| | 192m implies that np + 1 | 192. It follows that np + 1 = 192,
96, 48, 24, 64 or 32, and so np = 191, 95, 47, 23, 63 or 31. Since p � 17, one has that either
p = 191,47,31 or 23 and n = 1, or p = 19 and n = 5. By Conder and Dobcsányi [6], for each
of such primes there is no connected cubic symmetric graph of order 4p. This implies that X has
order 4p2.

Assume that n = 1 and p = 191,47,31 or 23. Let H = NA(P ). By considering the right
multiplication action of A on the set of right cosets of H in A, we have |A/HA| | (p + 1)!, where
HA is the largest normal subgroup of A in H . This implies that p | |HA|. Let L be a Sylow
p-subgroup of HA. Clearly, L is characteristic in HA and so L � A. Since Sylow p-subgroups
of A are not normal, p2 � |HA|. Thus, L ∼= Zp and the quotient graph of X corresponding to the
orbits of L is a connected cubic symmetric graph of order 4p where p = 191,47,31 or 23, but
we have shown that no such a graph exists, a contradiction.

Now, assume that p = 19 and n = 5. Then, |A : NA(P )| = 96 and so |A| is divisible by 4 ·192 ·
3 ·23, which implies that X is at least 4-regular. Let q be a prime. By Gorenstein [22, pp. 12–14],
a simple {2,3, q}-group exists if and only if q = 5,7,13 or 17. Thus, A is solvable. Let N be a
minimal normal subgroup of A and let X be the quotient graph of X corresponding to the orbits
of N . Then, N is an elementary abelian r-group, where r = 2, 3 or 19. Clearly, r �= 3 because
any subgroup of order 3 is a stabilizer of some vertex in A. If r = 2 or 19, by Proposition 2.2, X

is a connected cubic s-regular graph of order 722, 76 or 4 for some s � 4. However, by Conder
and Dobcsányi [6], there is no such cubic s-regular graph, a contradiction. �
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[34] A. Malnič, R. Nedela, M. Škoviera, Lifting graph automorphisms by voltage assignments, European J. Combin. 21
(2000) 927–947.
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