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We develop some new properties of the relative rearrangement. Some of
these properties generalize well-known results known as the Hardy-Littlewood
inequality. € 1988 Academic Press, Inc.

INTRODUCTION

The notion of relative rearrangement was introduced first by J. Mossino
and R. Temam [7]. It has been developed in a recent paper [6], and
several applications in partial differential equations can be found in [6-9].
The usual rearrangement is also a relative rearrangement as it is proved in
[6]. Some properties of the relative rearrangement have been given in
[5,6,8]. In this paper, we prove some additional properties, which
generalize well-known results for the usual rearrangement.

1. DEFINITIONS AND PRELIMINARY RESULTS

In this paper, we use only Lebesgue measure. Let 2 be a bounded
measurable set of RY. For any measurable subset E of 22, we denote by | E|
its measure. Let u be a real measurable function defined in . We will say
that « has a flat region of value 7 if meas{xe Q, u(x)=1} =|u=1| is strictly
positive. There may exist a countable family of flat regions P,= {u=1t}.
We denote P=|),.p P; the union of all flat regions of u.

DEFINITION 1. The decreasing rearrangement of u is defined on Q* =
[0, |22|] by:
u,(s)=Inf{feR, lu> 0| <s}.

We will also consider the increasing rearrangement of u: u*(s) = u (|2 —s).
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RELATIVE REARRANGEMENT 489

Now, we recall the notion of relative rearrangement, as it appeared in
[7] Let ve L'(R), we define a function w in Q* by:

v(x) dx if Ju=u,(s)=0
u>u (s)
W(S)= s — |u>u (s)]
'[ v(x) dx+f ’ (V] psy) 4 (0) do otherwise.
u>u,(s) 1]

(Here the last integrand is the decreasing rearrangement of the restriction
of v to the set P(s)= {u=u,(s)} supposed to be of positive measure.) The
following theorem was proved in [6].

THEOREM 1. Let u be a measurable function defined in Q, v in L¥(Q2)
(1< p< +0) then:
(i) we W"r(Q2¥)
(i)  |ldw/ds|| Lo S (3 LP(82)>
where Q* =10, |Q|[.

DEFINITION 2 (Relative rearrangement). The function dw/ds is called
the rearrangment of v with respect to u and is denoted v,,,.

We will need the following properties proved in [6] (see also [5]).

PROPOSITION 1. If u is measurable function defined in Q, v in L'(Q)
then:

(i.1) for all constant ¢, v, . =v,, ¢,,=¢
(12) [grv4l0) do=[gv(x)dx

(1.3) If we consider the relative rearrangement v¥ (see [5,6])
associated to the increasing rearrangement, we have

U:= —(_v)*—u'

The following definitions concern the mean value operators introduced
i [7].

DerFINITION 3. Let g be a measurable real function, almost everywhere
defined in Q*, The the functions u and g, we can associate another function
M, (g): Q- R defined by:

g(B(u)(x)) if xeQ\P
forae x, M/(g)x)=¢( | .
mj g(o) do if xeP,

Si

where s; = |u<t], s/ =|u<t, p(u)(x) = |u <u(x)|.
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DEerFINITION 4. Now, let us consider two measurable real functions
defined in 2. We denote by v, the restriction of v to a flat region P, of u. To
the function g defined above, we can associate the function M, (g): 2 - R
by
M, (g)(x) if xeQ\P

M"’U(g)(x)z{M,,’(h,-)(X) if xeP,,

where h,(s) = g(s; +s) if se [0, |P]]; M,, is defined as M, (with £ replaced
by P)).

The proof of the following lemma is given in [5, 7].

LEMMA 1. Let u, v be two measurable functions from Q into R, ve LF(Q2)
(1<p<+0)and ge L4(2*), 1/p+1/g=1 then

M (9el4@)  ad [ gordo=] M(gvds (1)

Remark 1. If ve L'(Q), g €°(2*) the relation (1) holds. In fact, if we
consider first ge 2(2*), we can argue as in [7] to get relations (1).
As M,, belongs to ZL(L*(Q*), L*(2)) (see [5]) and the mapping
geL“’(Q*)—»jm gv¥ do is continuous, we can conclude by density of
D(Q*) in €(Q2*).

Remark 2. One can give an explicit expression of v,, when u is a
regular function.

(R.1) Assume that © is a bounded open set of R" and u is an element
of #*(Q) such that 1/|Vu| € L'(2); then for any ve L'(Q),

Jum o) (0(x) dI(x)/|Vu(x)))

.fll:u*(s) (dr(x)/’Vu(x)D a.c. 5 ( )

U*u(s) =

where dI” denote the (N — 1)-dimensional Lebesgue measure.

Proof of Remark 2. We recall (see [1]) that a real ¢ is called a regular
value of u if u~'(t) is a compact (N — 1)-dimensional manifold on which
Vu(x) #0.

A real ¢ is said to be a critical value of u if it is not a regular value. The
set of critical values is denoted by %. According to Sard’s theorem (see
[1]), if ue €=(£2) then the Lebesgue measure of ¥ is zero.

We denote by pu(#) = |u> t|. We observe that u has no flat region because
1/|Vu| is in L'(£2) and on flat regions Vu(x) =0 a.e. We then have

for all se Q*: u(u,(s))=s. (3)
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The function u is absolutely continuous. In fact, let us take (a, b)e R?
(a<b). The function u is Lipschitz and 1/|Vu| is integrable. We can use
Federer’s theorem [2] to get

'u(a)—p(b)=Ja<u<bdxzjabd[’£_p%;)~|

and

oo dr
g “’)‘L,, V()|

These last relations prove that u is absolutely continuous. As absolutely
continuous functions map null sets into null sets, we deduce

meas u(%) = |u(¥)| =0.

Using relation (3), we get {se Q*, u, (s)e ¥} is included in u(%). Thus, for
almost every s in 2%, u,(s) is a regular value of u. In the following, we
consider only such points s. The following computation is then true for
almost every s of Q*.

Let #>0; as u has no flat region, we get

w(s+h)—w(s)= v(x) dx.

J\u_(srfh)suSu‘(.y)
One can check that for small A, Vu(x)#0 for all x in the compact
Ky={u,(s+h)<u<u,(s)}, 1/|Vule L*(K,) and v/|Vu| is in L'(K,). We
use Federer’s theorem [2] to get

= d, .
h h u,(s) ? u=plvu(x)'

w(s+h)—w(s) lf".(Hh) J v(x)dl’

Let us write u,(s+h) =u,(s)+ R(s, h), where R(s, h)=h-(du, /ds)+ o(h)
(du,/ds exist a.e. as u, is decreasing and R(s, h) #0, since » has no flat
region). Then we get

w(s + h)—w(s)
h

R(s, h) 1 ‘[".<S)+R(&h) v(x)dI

P

h R(S, h) u (s)

And when & tends to zero,

a.e. in 2*.

v*u(s)=dw— _%J v(x)dl’

ds  ds w=uy(s) U(X)
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This last relation is true for all ve L'(2). In particular, if v=1 (v, =1, see
Proposition 1) and thus

du, dar .
x .e. in Q*.
ds / Lu,m 20

These last formulas lead to (2).

2. GENERAL PROPERTIES OF THE RELATIVE REARRANGEMENT
The following is a generalization of the property of contraction for v,,,.

THEOREM 2. Let p be a convex function defined in R, (v,, v,)e L™(Q) x
L*(8), u a measurable function defined in 2. Then

[ pi—va)do<| p(o,— o) ax.
Q- Q2

This last formula is also valid for (v,, v,)e L?(Q)x LP(Q) (1< p< +0) if
p satisfies

Ju>0, PR, VieR,  |p(t) <alt]”+B.

Remark 3. According to Kranoselskii [4], the last condition for p is
necessary and sufficient to ensure that the mapping v — p(v) is continuous
from LP(R2) (resp. L7(2*)) into L'(2) (resp. L'(2*)).

Remark 4. Under the assumptions of Remark 2, if, moreover, p
satisfies |p(7)| < alt] + B, we have the ponctual inequality,

a.e.in 2%, p(1,,(5) = V24u(5)) < [p(v1 — ;) ]4.l5) (5)
for any (v,, v,)e L'(2) x L'(£2). In fact, by relation (2),

ju:u‘(s) (v, — vy))dIN(x)/|Vu(x)])
J‘u:u.(:) (dr(x)/|vu(x)|)

_dI(x) _<1 / _a )
dv_qu(x)I Lu_m Vu(x)| )’

one can use Jensen inequality to get

Ul*u(s)—UZ*u(S)=

Setting

(vl—vz)(x)dv(x)><j o0y — v,) dv

u=u‘(3)

01 2ul5) ~ D = |

u=1u,(s)
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and
J _ Hp(vl ~vy)dv=_[p(v;— )]y, ls)  (by relation (2)).

This ponctuel relation leads to (4), since by integration,

J, PO 2) do< | Do =v)]aulo)do= | p(o;—vs) dx

(by Proposition 1(i.2)).

Remark 5. The ponctual relation (5( is not valid for any u. To see this,
let us take, u=constant=1, and v, =ve L*(2), v,=0. Then, if it is true,
we will get

p(v )< [p(0)]41-

By Proposition 1(1.1), vy1 =0, [p(v)1,1 = [p(v)],: thus p(v,) < [p(v)],.
By equimeasurability, we deduce p(v,)= [p(v)], for any ve L*(R2) and
any convex function p; it is not difficult to see that this is impossible (for
example, take p decreasing).

The proof of Theorem 2 needs the following lemma whose proof can be
easily deduced from G. Chiti’s result [3].

LemMMa 2. Let p be a convex function defined in B, u and v two
measurable functions defined in Q, ve L*(Q2); then we have

[ oo —u)do<| p(v)ax.
2+ Q

Proof of Theorem 2. Since p is a convex function, the mapping
veL®(Q2) - (o p(v)dx is LS.C. for the weak star topology. Hence, if
(v,, v;) are two elements of L=(R2), we know (see [5]) that for all 1>0
and » measurable defined in £,

(u+ Avy), — (u+ Avy),
A

<oy —v,ll e

o0

and

+Ap;), — (u+ A .
(u+ Avy), ; (u+Av,), s Uy U2y in L=(Q%),

weak star.

409/135/2-9
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We deduce from Lemma 2 and the remark above:

J‘ p(vl_uz)dXZI_i_mj pl:(u+,tul)*—(u+;‘02)*i|do_
2 1Yo A

ZJ‘ p(D]*u—UZ*u) dO'.
g*

Assume that p satisfies the growth condition in Theorem 2. Since the map-
ping ve L?() - v, L”(£2*) is continuous (see [6]), we deduce by
Remark 3 that the mapping ve L7(Q)— ([o p(v) dx, [g.p(v,,)do) is
continuous. We can conclude using the density of L*(£2) into L7(£2).

COROLLARY 1. Let p(t), t 20, be convex, non-negative, non-decreasing,
(vy, v,) in LY(Q)x L), and u a measurable function. Then,

J. pUvie=v2)do <[ pllo,—val) dx

Proof. We argue as in [3]. We consider the real Lipschitz functions 7,
defined by

n if z=n
T(z2)={z if |z|<n
—n if z< —n

Then the functions wv,=7,(v;) i=1,2 are in L*(2) and satisfy
|v1, — V2, < v, — 05| a.e. Since the function p is non-decreasing, we deduce
that

[ o —valydx< | p(lo, - v]) dx
Q Q
and that the function p(|¢|) is convex; we apply Theorem 2 to get

[ o101 = v2ngu ds < | ply —vo]) d.
o Q

Since the sequence v,, tends to v; in L'(2) i=1,2 and the mapping
ve LY(R) »v,,€L'(2%) is continuous, we can substract a sequence'
denoted also v,,,, which converges almost everywhere in Q2*. We apply
Fatou’s lemma to get that

[ 2101 24y do <Lm[  p(1010= 0203l)
0 n vQ*

<[ plio,—val)x. 1
Q

! That is, from the sequence (V1nyus U2ngu)-
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These last results illustrate the convergence of the relative rearrangement
in Orlicz spaces if the original functions belong to L'(22) and converge in
Orlicz spaces.

3. A GENERALIZATION OF
THE HARDY-LITTLEWOOD INEQUALITY

Before proving the result of generalization, we will need some lemmas:

LEMMA 3. Let veL?(Q2) (1< p< +o0) then there exists a sequence
v, € L¥(Q) such that v, has no flat region and v,, tends to v in LP(8).

Proof. Let P=\J,.p P;, where P,={v=0,}, |P,|#0, and 0,#0. We
denote by yx, the characteristic function of a measurable set 4. We put
A (x)=(1/n)-(1/(1 4+ |x])) for any x e Q. We observe that

{xeQ, ix)=a}|=|{xeQ, e "n=4}|=0 V(a B)eR:
We define
v,(x)=e B (p(x) + A,(X) ¥ p=0}(X)).

One can check that

S|

v, (x) —v(x)| <= (Jo(x)| +1).

So, v, tends to v in LP(Q) (1< p< + o).
Let us prove that for all te R, |v,=1|=0. We remark that

{v,=t}={xeQ\P,v(x)#0,v,(x)=1}

u< U {xeP,v{x)= t})
u{xe,v(x)=0,v,(x)=1}.
We deduce then:

lv,=tl=|{xeQ\P, v(x)#0, v(x) =1}

+ 2 {xeP,-, e“""":-gt—}l

+{xeQ, v(x)=0, A,(x)=1t}|

By the remark above, each term of the summation vanishes. ||
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LEMMA 4. Let ve L?(Q), 1< p< +o0, such that v has no flat region
then

(i) for all ae Q¥, there exists a measurable set E(a) such that

w(a)=f o(x)dx and  |E(a)l=a.

E{u)
In addition,
(ii) if a<b then E(a)c E(b).
Proof. (i) Let aeQ* If |u=u,(a)|=0, we set E(a)= {u>u,(a)}.
Then [u>u,(a)l =|uzu,(a) =a.

If lu=u,(a)| #0, we denote v, the restriction of v to the set {u=u,(a)};
then by equimeasurability,

a—|u> u*(a)l
J (V)4 (O’)dar—f v(x) dx.
0

v > (Vo) (e — > u (a}l)

The set {v,>(v,),(a—|lu>u,(a)|)} and {u>u,(a)} are disjoint. Hence,
we have

|E(a)l = [u>u,(a)l + [v,> (v,) (@ — [u>u,(a)])| = a,

if we set E(a)= {u>u,(a)} v {v,>(v,),(a—lu>u.la)l)}

(1) Leta<b. If u,(a)=u,(b), then v,=v,=k; we deduce
ky(a—lu>uy(a)l) 2k (b—|u>u,(b))

so E(a) < E(b).
Ifua)>u,(b): E(a)c {uzu,(a)} < {u>u,(b)} < E(b).

Remark 6. 1If Ja, b[ n ]c, d[ = & and if we set

E(a, b)= E(b)\E(a)
E(c, d)= E(d)\E(c),
then

E(a, bYn E{c, d}y= .

The following lemma is crucial to prove the resuit of generalization.



RELATIVE REARRANGEMENT 497

LEMMA 5. Let u be a real measurable function defined in € and
ve LY(Q) then for all measurable sets E in Q% ; we have

12|

L v*u(a)dazfom v*(a)do<=Jl v*(o)do'),

21— |E]
where v* denote the increasing rearrangement of v.

Proof Lemma 5. As the mappings ve L'(Q)— v} or v,,e L'(2*) are
continuous, thanks to Lemma 3, we can restrict to the case when v has no
flat region.

Let @ be an open set of 2* then @ is the union (at most countable) of
his disjoint connected components: ¢ ={),.p Ja,, b;[,

L é—vsvda = Z jblfi—;vdo.

—do= v(x) dx.
L f ds iEZD L;(a,.b,) ()
Since E(a;, b;) N E(a;, b))= & for i# j (see Remark 5), we deduce, via the
Hardy-Littlewood inequality,

—do = v(x)dx = v*(0) do,

dw f IUre p Elai, b))l
o ds Usep Elai,b) 0

U E(a;, b)) = Z (b;—a;)= 0],
ieD ieD
dw

do> [ v*o)d
T a/fo v*(c) do. (6)

If E is a measurable set of Q*, then there exists a sequence ¢, of open sets
such that Ec(,, =, and |G,| >, , , ,, |El. Then by (6)

When we pass to the limit,

dw 1£1
[, oudordo=| Zrdo>[" o%(0) do.

The following theorem is the generalization of the Hardy-Littlewood
inequality.



498 JEAN MICHEL RAKOTOSON

THEOREM 3. Let u be a real measurable function on Q, v, in L?(R2), and
v, LY2*), 1/p+1/g=1, then

J‘ v,*uvzdosj vl*v;‘do<=f v,*vz*da>. (N
Q* o* 2*

Remark 7. If we change v, into —v,, v, into —v,, and u into —u,
using Proposition 1(i.3), we get

f ok v, daq v¥v¥ do. (8)

P .
The proof of this theorem needs the following lemma whose proof is
in [5].

LemMA 6. Let fe L®(Q*), a<f<b, ge L'(Q*); then

f‘fgdazbfmgda—fhdt g do.

7 <1

Proof of Theorem 3. We begin with the case v,€L”(£2) and
v,€ L¥(Q*); then v,, € L'(2*) and, by Lemma 6,

J‘gtvl*uvzdc‘—‘bJ‘Q* Ul*udé_jbdlj' U) 4, do.

a vy <t

By Proposition 1{i.2) and equimeasurability,

J vl*uda=J‘ vido.
Qﬂ *
By Lemma 4,

j Ul seu do)ﬁv;«l vi(o) do=j v¥ (o) da.

v <t 0 v <t

Hence

Jm DiguV2do<b J‘Q‘ vy do — jb dt j v¥(o) do

»
a vy <!

=| vfv¥ do.
Q‘

The result for g < +oo easily follows by density.
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Remark 8. 1f v,>0 is only measurable, v, >0, and v, e L'(2), the

relation (7) (or (8)) remains valid. In fact, there exists an increasing
sequence v,, e L™(£2*) such that

lim v,,(0)=v,(0) and 0<v,,(0)<vy(0) ae.

Then
[ valo)vipulo)do<| otordo<| v2(o)ot(0)do.
Q* 0o Q*
As v, >0 implies v,,, >0 (see [6]), then by Fatou’s lemma,
j Vi 42 do <f viv¥ do.
Q* [2hd

Remark 9. As a corollary, we recover the well-known Hardy-
Littlewood theorem: For all ve L?(Q), he LY(Q), 1/p+ 1/g=1, we have

Lz hv dx <J h*v* do.

o*

Proof. We begin with the case he®%°(2) and veL'(R). Using
Remark 1 and Theorem 3,

j M,,,U(h*)udxsj h*v* do. 9)
Q 0%

By Definition 4,

n*(B(h)(x)) if xe\P

M= 0 it re P hmi)

g(s)=h*(si +5) for se[0,s—s!]

si=lh<t), si=|h<1)

Then, we have g(s)=h*(s;+s)=h*(s;))=h*(B(h)(x)). In any case
M, (h*)(x)=h*(B(h)(x)) = h(x) (since & is continuous). By (9), we get the
Hardy-Littlewood inequality.

By density, the inequality remains valid for he LY(£2) and ve L?(Q),
1/p+1/g=1, g>1, and then for g=1. |
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