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We develop some new properties of the relative rearrangement. Some of 
these properties generalize well-known results known as the Hardy-Littlewood 
inequality. 3-i 1988 Academc Press, Inc. 

The notion of relative rearrangement was introduced first by J. Mossino 
and R. Temam [7]. It has been developed in a recent paper [6], and 
several applications in partial differential equations can be found in C&9]. 
The usual rearrangement is also a relative rearrangement as it is proved in 
[6]. Some properties of the relative rearrangement have been given in 
[S, 6, 81. In this paper, we prove some additional properties, which 
generalize well-known results for the usual rearrangement. 

1. DEFINITIONS AND PRELIMINARY RESULTS 

In this paper, we use only Lebesgue measure. Let 52 be a bounded 
measurable set of [WN. For any measurable subset E of 52, we denote by I El 
its measure. Let u be a real measurable function defined in Q. We will say 
that u has a flat region of value t if meas(x E 52, U(X) = f> = IU = fj is strictly 
positive. There may exist a countable family of flat regions Pi = {U = ti}. 
We denote P= lJlcD P, the union of all flat regions of u. 

DEFINITION 1. The decreasing rearrangement of u is defined on a* = 
CO> WI1 by: 

u,(s)=Inf{BE[W, lu>81<s}. 

We will also consider the increasing rearrangement of U: u*(s) = u.+( jQ\ - s). 
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Now, we recall the notion of relative rearrangement, as it appeared in 
[7]. Let v E L’(R), we define a function w  in D* by: 

s v(x) dx if IU = u*(s)1 = 0 

w(s) = 
u > u*(s) 

c v(x) dx + 
u > u*(s) s 

s- lU>U*(J)I 
(u I dJa) da otherwise. 

0 

(Here the last integrand is the decreasing rearrangement of the restriction 
of u to the set P(s) = {U = u*(s)} supposed to be of positive measure.) The 
following theorem was proved in [6]. 

THEOREM 1. Let u he a measurable function defined in Q, v in Lp(Q) 
(1 <p< +co) then: 

(i) w  E W’~“(Q*) 

(ii) IId~ld~llLp~Rj~ G Ilull LP(Q)> 

where Q* = 10, IQl[. 

DEFINITION 2 (Relative rearrangement). The function dw/ds is called 
the rearrangment of v with respect to u and is denoted v.+,. 

We will need the following properties proved in [6] (see also [ 51). 

PROPOSITION 1. If u is measurable function defined in R, v in L’(Q) 
then : 

(i.1) for all constant c, v.+,.=v*, c.+~=c 

(i.2) in* v *u(a) da = jn 4x1 dx 
(i.3) Zf we consider the relative rearrangement u,* (see [S, 61) 

associated to the increasing rearrangement, we have 

v,* = -(-v)* MU. 

The following definitions concern the mean value operators introduced 
in [7]. 

DEFINITION 3. Let g be a measurable real function, almost everywhere 
defined in Q*. The the functions u and g, we can associate another function 
M,(g) : Q --+ IR defined by: dB(u)(x)) if XEQ\P 

for a.e. x, M,(g)(x) = f S; 
- 

s lP,l s; g(a) da if XE Pi, 

where .$ = IU < t,I, s:’ = IU d t,l, ~(U)(X) = [UC u(x)l. 
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DEFINITION 4. Now, let us consider two measurable real functions 
defined in 52. We denote by vi the restriction of v to a flat region Pi of U. To 
the function g defined above, we can associate the function M,,(g) : Q -+ [w 
by 

Mu.“(g)(x) = 1 
Mu(g)(x) if xEQ\P 
M”,(h,)(x) if xEP,, 

where hi(s) = g(s,! + s) ifs E [0, lPil]; M,, is defined as M, (with Q replaced 
bY Pi). 

The proof of the following lemma is given in [S, 71. 

LEMMA 1. Let u, v be two measurable functions from Q into Iw, v E Lp(Q) 
(1 <p< +oo) andgELq(SZ*), l/p+ l/q= 1 then 

Mu,,(g) E LY(Q) and s 
go,* da = 

R’ I 
M,,( g) u dx (1) 

D 

Remark 1. If v E L’(Q), g E %?‘(a*) the relation (1) holds. In fact, if we 
consider first gEG@(Q*), we can argue as in [7] to get relations (1). 
As Mu,. belongs to Y(L”(Q*), L”(Q)) (see [S]) and the mapping 
ge L”(sZ*) + Jn* gv,* da is continuous, we can conclude by density of 
9(8*) in %‘(a*). 

Remark 2. One can give an explicit expression of v*, when u is a 
regular function. 

(R.l) Assume that Q is a bounded open set of [W”’ and u is an element 
of Um(sZ) such that l/]Vul EL’(Q); then for any OEL’(SZ), 

v 
*u 

(s) = ju=u,cs, (v(x) dW)llWx)l) 
ju = u*(s) (dUxYlWx)l 1 a.e. in Q*, (2) 

where dT denote the (N - 1 )-dimensional Lebesgue measure. 

Proof of Remark 2. We recall (see [ 11) that a real t is called a regular 
value of u if u-‘(t) is a compact (N - 1 )-dimensional manifold on which 
Vu(x) # 0. 

A real t is said to be a critical value of u if it is not a regular value. The 
set of critical values is denoted by %?. According to Sard’s theorem (see 
[ 1 ] ), if u E G+?“(Q) then the Lebesgue measure of %Z is zero. 

We denote by p(t) = IU > tJ. We observe that u has no flat region because 
l/IVu] is in L’(Q) and on flat regions Vu(x) = 0 a.e. We then have 

for all s E 0* : p(u.+(s)) = s. (3) 
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The function p is absolutely continuous. In fact, let us take (a, b) E R2 
(a< 6). The function u is Lipschitz and l/IVuJ is integrable. We can use 
Federer’s theorem [2] to get 

and 

These last relations prove that p is absolutely continuous. As absolutely 
continuous functions map null sets into null sets, we deduce 

meas p(g) = Ip( = 0. 

Using relation (3) we get {s E Q*, u.+(s) E U} is included in p(v). Thus, for 
almost every s in sZ*, u*(s) is a regular value of u. In the following, we 
consider only such points S. The following computation is then true for 
almost every s of Q*. 

Let h > 0; as u has no flat region, we get 

w(s+h)-w(s)=j u(x) dx. 
u*(s + h) < u c u*(s) 

One can check that for small h, Vu(x)#O for all x in the compact 
Kh = {u,(s + h) d u d u*(s)}, l/Vu1 E L”(K,) and u/lVul is in L’(K,). We 
use Federer’s theorem [2] to get 

w(s + h) - w(s) 1 u*(s+h) 
h --s h U*(S) dp L p ;:‘(g. 

Let us write u.+(s + h) = u*(s) + R(s, h), where R(s, h) = h . (du,/ds) + o(h) 
(du,/ds exist a.e. as u* is decreasing and R(s, h) # 0, since u has no flat 
region). Then we get 

w(s + h) - w(s) 
h 

R(s, h) 1 
R(sv h) s u(x) dT = --.- 

h U*(S)+R(s’h) 4 ju=, Ivu(x), 
u,(s) 

And when h tends to zero, 

a.e. in 52*. 
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This last relation is true for all v E L’(Q). In particular, if v = 1 (u*, = 1, see 
Proposition 1) and thus 

a.e. in O*. 

These last formulas lead to (2). 

2. GENERAL PROPERTIES OF THE RELATIVE REARRANGEMENT 

The following is a generalization of the property of contraction for v*,. 

THEOREM 2. Let p be a convex function defined in K!, (u,, v2) E L”(Q) x 
L”(Q), u a measurable,function defined in Sz. Then 

s P(",*.-"2*. 
R' 

W++-ddx. 

This lastformula is also validfor (ul, v2)c Lp(Q)x Lp(Q) (1 <p< +co) if 
p satisfies 

3ct20, g?EjW, VtER, IP(t)16~ItlP+a. 

Remark 3. According to Kranoselskii [4], the last condition for p is 
necessary and sufficient to ensure that the mapping v -+ p(v) is continuous 
from Lp(sZ) (resp. Lp(Q*)) into L’(Q) (resp. L’(Q*)). 

Remark 4. Under the assumptions of Remark 2, if, moreover, p 
satisfies Ip( d ~11 tl + j?, we have the ponctual inequality, 

a.e.inQ*, P("~,,(~)-"~,,(s))~ CP("~ - 02)lds) (5) 

for any (v,, V~)E L’(O) x L’(Q). In fact, by relation (2) 

“I*&) - “**uiS) = 
ju=lr,(s) iv, - ~~)(x)(d~(x)llVu(x)l) 

Ju=u.cs, (dW)/lWx)l) ’ 

Setting 

-. 

one can use Jensen inequality to get 

P("l*u(s)-"2*u is))=p ?*,=, (s) * 
("1 -udb-)dv(x) Gjusu cs,~(", -02) dv 

> l 
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i P(U, - ~2) dv = CP(U~ - dlds) (by relation (2)). 
u = u*(s) 

This ponctuel relation leads to (4), since by integration, 

s 
P(ul*u--2*” R’ )d6s,, Cu(u~-u~)l*~(~)d~=~~~(“~-u~)dx 

(by Proposition l(i.2)). 

Remark 5. The ponctual relation (5( is not valid for any U. To see this, 
let us take, u = constant = 1, and u1 = u E L”(Q), u2 = 0. Then, if it is true, 
we will get 

By Proposition l(i.1 ), II*, = u*, Mu)l,l= lMu)l,; thus P(U,)G Cdu)I,. 
By equimeasurability, we deduce p(u,) = [p(u)], for any UEL~(Q) and 
any convex function p; it is not difficult to see that this is impossible (for 
example, take p decreasing). 

The proof of Theorem 2 needs the following lemma whose proof can be 
easily deduced from G. Chiti’s result [3]. 

LEMMA 2. Let p be a conuex function defined in [w, u and u two 
measurable functions defined in Q, u E L”(Q); then we have 

s p((u + u)* - u*) do < s P(U) dx. 
R’ $2 

Proof of Theorem 2. Since p is a convex function, the mapping 
UEL~(S~) -+ Jn p(u) dx is L.S.C. for the weak star topology. Hence, if 
(u,, uq) are two elements of L”(Q), we know (see [5]) that for all A>0 
and u measurable defined in Q, 

II (u + AUl)* - (u + Au,)* 

2 II 
G IlUl -u*llcc 

cc 

and 

(u+hl)*-(~+~uz)* 

/I 
= Ul* - uz*u in L”(Q*), 

weak star. 

409!135.:2-9 
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We deduce from Lemma 2 and the remark above: 

I p(u,-UT)dX>,lim (u + Au,), - (u + h*)* 
I 1 da 

R 1 

Assume that p satisfies the growth condition in Theorem 2. Since the map- 
ping vELP(Q) --) u*, eLP(B*) is continuous (see [6]), we deduce by 
Remark 3 that the mapping DE Lp(sZ) -+ (In p(u) dx, Jn. p(u,,) do) is 
continuous. We can conclude using the density of L”(Q) into LP(B). 

COROLLARY 1. Let p(t), t 3 0, be convex, non-negative, non-decreasing, 
(u,, u2) in L’(B) x L’(Q), and u a measurable function. Then, 

I Q~~(l~,w-~zwlW~~ j ~(Iu1-uzl)dx. R 

ProoJ We argue as in [3]. We consider the real Lipschitz functions T,, 
defined by 

if z3n 
if IzI <n 
if 2 < -n. 

Then the functions uin = T,(ui) i= 1, 2 are in L”(Q) and satisfy 
bln - aZnl < 10~ - ~1 a.e. Since the function p is non-decreasing, we deduce 
that 

I Au,.-uz,l)dx< p(lu,-uzl)dx 
a I R 

and that the function p( I tl ) is convex; we apply Theorem 2 to get 

I a*P(Iul,,.-uz,,.l)d~~ j Alu,-A)dx. R 
Since the sequence v,, tends to u, in L’(Q) i= 1,2 and the mapping 
uEL’(Q)+u*, E L’(sZ*) is continuous, we can substract a sequence’ 
denoted also u[,,.+.~ which converges almost everywhere in Q*. We apply 
Fatou’s lemma to get that 

I n’ ~(lu,,, - uz*ul) da G !h.nJ^,* dIu~n*u - ~nwl) n 

G Q~(l~, -u,l)dx. I s 

1 That is, from the sequence (II,~*~, D~~*~). 
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These last results illustrate the convergence of the relative rearrangement 
in Orlicz spaces if the original functions belong to L’(Q) and converge in 
Orlicz spaces. 

3. A GENERALIZATION OF 
THE HARDY-LITTLEWOOD INEQUALITY 

Before proving the result of generalization, we will need some lemmas: 

LEMMA 3. Let u E Lp(Q) (1 < p d +co) then there exists a sequence 
V,E Lp(Q) such that v, has no flat region and v, tends to v in Lp(Q). 

Proof Let P=UicD Pi, where Pi= (v= 0,}, JPJ #O, and 8,#0. We 
denote by xa the characteristic function of a measurable set A. We put 
2,(x) = (l/n). (l/( 1 + [xl)) for any x E Q. We observe that 

I{xeQ, A,(x)=ol}( = l{xeQ, e--%zCX)=fl}I =0 V(cI, 8) E R2. 

We define 

v,(x) = e -A~(-x)x+)(v(x) + A,(x) XfDEO)(X)). 

One can check that 

1 
IfAl(x)-4x)l G--(lv(x)l + 1). n 

So, II, tends to v in Lp(Q) (1 < p 6 +co). 
Let us prove that for all t E: IR, Iv, = cl = 0. We remark that 

(v,= t} = {x&\P, v(x)#O, v,(x)=t} 

u i!L ’ ( 

x E Pi, v,(x) = t} 
> 

u{xEi2,v(X)=O,v,(X)=t}. 

We deduce then: 

+c Ii 
t XEpi,e-“n(“)=- itLl Oi II 

+ I{XER, v(x)=O, A,(x)= t}l. 

By the remark above, each term of the summation vanishes. 1 
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LEMMA 4. Let v E Lp(0), 1 Q p d +oo, such that v has no flat region 
then 

(i) for all aEG*, there exists a measurable set E(a) such that 

w(a) = 
s 

u(x) dx and [E(a)1 = a. 
E(a) 

In addition, 

(ii) ifa<b then E(a)cE(b). 

ProoJ (i) Let aE8*. If Iu= u*(a)1 =O, we set E(a) = {u> u,(a)}. 
Then /u > u,(a)\ = ju > u,(a)1 = a. 

If IU = u,(a)/ # 0, we denote u, the restriction of v to the set {U = u,(a)} ; 
then by equimeasurability, 

s u- ‘u’u*(a)’ (u,), (a) da = j v(x) dx. 
0 ~o=-(u,),fu- lu>u,(rr)i) 

The set {vu > (v,),(a- Iu > u*(a)1 )I and (u > u,(a)} are disjoint. Hence, 
we have 

IE(a)l = lu>u,(a)l+ Iv,> (u,h+ia- lu>u,(aN)l =a, 

if we set E(a) = {u > u,(a)} u (v, > (v,),(a - Iu > u,(a)I)}. 

(ii) Let a < 6. If u*(a) = u,(b), then v, = vb = k; we deduce 

&(a- lu>u,(a)l)2k,(b- lu>u,(b)l) 

so E(a) c E(b). 
If u,(a)>u,(b): E(a)c {u>u,(a))c{u>u,(b))cE(b). 

Remark 6. If ]a, b[ A ]c, d[ = $3 and if we set 

E(a, b) = E(b)\E(a) 

E(c, 4 = E(d)\E(c), 

then 

E(a, 6) n Efc, d) = 0. 

The following lemma is crucial to prove the result of generalization. 
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LEMMA 5. Let u be a real measurable function defined in 52 and 
v E L1(Q) then for all measurable sets E in Q* ; we have 

s v*,(a) da 2 idE’ v*(cr) do (= s’“’ v*(a) dg , 
E IQ1 ~ IEI > 

where v* denote the increasing rearrangement of v. 

Proof Lemma 5. As the mappings v E L’(O) + v: or O,,E L’(sZ*) are 
continuous, thanks to Lemma 3, we can restrict to the case when v has no 
flat region. 

Let 0 be an open set of Q* then 0 is the union (at most countable) of 
his disjoint connected components : 0 = U ie D ]a;, bj[, 

According to Lemma 4, 

C j”‘g da = iFD I,, 
itD uI 

b, v(x) dx. 
a,. , 

Since E(a,, bj) n E(a,, hi) = @ for i#j (see Remark 5), we deduce, via the 
Hardy-Littlewood inequality, 

I e&j IU,eo .To,.h)l 

c ds 
v(x) dx > s u*(a) do, 

UZED E(u,>h) 0 

,yD Eta,, b,)l = c (bj- 4 = ISI, 
IED 

If E is a measurable set of Q*, then there exists a sequence Ca of open sets 
such that EcOp+,cOp and IOPl jP+ +n3 IEj. Then by (6) 

v*(a) do. 

When we pass to the limit, 

The following theorem is the generalization of the Hardy-Littlewood 
inequality. 
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THEOREM 3. Let u be a real measurable function on Q, v, in Lp(B), and 
v2 E Ly(Q*), l/p + l/q = 1, then 

Remark 7. If we change v, into -v, , v2 into - v2, and u into -u, 
using Proposition l(i.3), we get 

(8) 

The proof of this theorem needs the following lemma whose proof is 
in [S]. 

LEMMA 6. LetfE L”(Q*), a<f< b, gE L’(Q*); then 

Proof of Theorem 3. We begin with the case v1 E Lp(Q) and 
v2 E L”(Q*); then v1 *u E L’(Q*) and, by Lemma 6, 

By Proposition l(i.2) and equimeasurability, 

s v,,,du= I 
v:do. 

R’ R’ 

By Lemma 4, 

1 v,*,da> s 10; < (1 
v:(a) do = 

02 < r 0 c 
v:(a) da. 

u; < t 

Hence 

s v,,,,vzd~<b 5 v:da- ‘dt 
.i .I” 

v:(a) da 
a* R* a 0; -c * 

=I v:v: do. 
a* 

The result for q < +CC easily follows by density. 
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Remark 8. If u2 20 is only measurable, vi 2 0, and vi E L’(Q), the 
relation (7) (or (8)) remains valid. In fact, there exists an increasing 
sequence u2,, E L”(Q*) such that 

lim u2,J0) = v2(c) and 0 < v2Ju) < u2(u) a.e. 
n 

Then 

As u, 2 0 implies v I *u 2 0 (see [6]), then by Fatou’s lemma, 

Remark 9. As a corollary, we recover the well-known Hardy- 
Littlewood theorem: For all UEL~(Q), hi LY(sZ), l/p+ l/q= 1, we have 

I hvdx< 
s 

h*v* da. 
R R’ 

Proof We begin with the case hE%“(SZ) and VC:L’(R). Using 
Remark 1 and Theorem 3, 

i 
M,,Jh*) v dx d I 

h*v* da. 
R R’ 

By Definition 4, 

M,,Jh*)(x) = ;(;;);;)) 
if xEL?\P 

VI if XEP,= {h=t;) 

g(s) = h*(sj + s) for s E [0, si’ - si] 

s( = Ih < t,l, s;’ = Ih < t,I. 

(9) 

Then, we have g(s) = h*(s; + s) = h*(si) = h*(fi(h)(x)). In any case 
M,,,(h*)(x) = h*(fi(h)(x)) = h(x) (since h is continuous). By (9), we get the 
Hardy-Littlewood inequality. 

By density, the inequality remains valid for h E L”(Q) and UE LP(Q), 
l/p + l/q= 1, q> 1, and then for q= 1. 1 
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