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In this article, we first prove one improved version of the Yannelis]Prabhakar
continuous selection theorem and next, as its applications, a fixed point theorem in
noncompact product spaces, a nonempty intersection theorem, some existence
theorems of solutions for the generalized quasi-variational inequalities, and some
equilibrium existence theorems for the abstract economies are given. Q 1996

Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARIES

w xIn 1983, Yannelis and Prabhakar 18 proved a continuous selection
theorem as follows:

THEOREM A. Let X be a nonempty paracompact Hausdorff topological
space and Y be a Hausdorff topological ¨ector space. Let T : X ª 2Y be a

Ž .correspondence such that each T x is open con¨ex and for each y g Y,
y1Ž .T y is open in X. Then T has a continuous selection f : X ª Y, such that
Ž . Ž .f x g T x for each x g X.

w xIn 1992, Ding et al. 6 improved Theorem A by establishing the
following:

THEOREM B. Let X be a nonempty paracompact Hausdorff topological
space and Y be a nonempty con¨ex subset of a topological ¨ector space.
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Suppose S, T : X ª 2 y are correspondences such that

Ž . Ž . Ž . Ž .1 for each x g X, co S x ; T x and S x / B,
Ž . y1Ž .2 for each y g Y, S y is open in X.

Then T has a continuous selection.

w xUsing Theorem A, Yannelis and Prabhakar 18 obtained a fixed point
theorem and an equilibrium existence theorem for an abstract economy. In
w x6 , using Theorem B, Ding et al. obtained a fixed point theorem in
product spaces, a nonempty intersection theorem, and two equilibrium
existence theorems for an abstract economy.

In this paper, we first give one improved version of Theorem B and next
by applying the result, we prove a fixed point theorem, a nonempty
intersection theorem, some existence theorems of solutions for generalized
quasi-variational inequalities, and some equilibrium existence theorems.

We need the following definitions.
Let X and Y be two topological spaces, T : X ª 2Y a multivalued

mapping.

Ž .1 T is said to be almost upper semicontinuous if for each x g X
Ž .and each open set V in Y with T x ; V, there exists an open neighbor-

Ž .hood U of x in X such that T y ; V for each y g U.
Ž . y1Ž . � Ž .42 For each y g Y, T y [ x g X : y g T x is said to be the

lower section of T.
Ž .3 T is said to have local intersection property if for each x g X

Ž . Ž .with T x / B, there exists an open neighborhood N x of x such that
Ž .F T z / B.z g NŽ x .

2. CONTINUOUS SELECTION THEOREM AND FIXED
POINT THEOREM

In the paper, a subset of topological space is considered to have relative
topology.

THEOREM 1. Let X be a nonempty paracompact subset of a Hausdorff
topological space E and Y be a nonempty subset of a Hausdorff topological
¨ector space F. Suppose that S, T : X ª 2Y are two multï alued mappings
with the following conditions:

Ž . Ž . Ž . Ž .i For each x g X, S x is nonempty and co S x ; T x .
Ž .ii S has local intersection property.

Then T has a continuous selection; i.e., there is a continuous mapping
Ž . Ž .f : X ª Y such that f x g T x for each x g X.
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Ž . Ž .Proof. For each x g X, by condition i we know that S x / B;
Ž . Ž .consequently, by condition ii , there exists an open neighborhood N x of

Ž . Ž .x such that M x [ F S z / B. Since X is paracompact, there isz g NŽ x .
� 4 � Ž . 4a locally finite open refinement FF [ U : a g D of the N x : x g Xa

� 4and a partition of unity subordinated to FF g : a g D such thata

Ž . w x1 for each a g D, g : X ª 0, 1 is continuous,a

Ž .2 x g X : g x ) 0 ; U for each a g D,� 4Ž .a a

Ž . Ž .3 Ý g x s 1 for each x g X.a g D a

� Ž . 4Since FF is a refinement of N x : x g X , for each a g D, there exists a
Ž . Ž .x g X such that U ; N x . But with M x / B, we may take aa a a a

Ž .y g M x .a a

Now, we define a mapping f : X ª co Y by

f x s g x y , ; x g X .Ž . Ž .Ý a a
agD

Ž .Since FF is locally finite, there are at most finitely many g x / 0;a

Ž .hence f is continuous. For each x g X and each a g D, if g x / 0,a

Ž . Ž . Ž . Ž .then x g U ; N x ; consequently y g S x and so f x g co S x ;a a a

Ž . Ž .T x by the condition i . Therefore, f : X ª Y is a continuous selection
of T.

Remark 1. Theorem 1 contains Theorems A and B. In fact, if for each
y1Ž . Ž .y g Y, S y is open, then for each x g X with S x / B, we take a

Ž . Ž . y1Ž . Ž .fixed y g S x and let N x s S y . Consequently N x is an open
Ž .neighborhood of x and y g F S z . Hence S has local intersectionz g NŽ x .

property.

Remark 2. The following example shows that Theorem 1 is a true
generalization of Theorems A and B.

w . Ž . Ž . w .EXAMPLE. Let E s F s R, X s Y s 0, 2 , and T x s S x s x, 2
for each x g X ; then t satisfies all the conditions of Theorem 1. But for

y1Ž . w xeach y g Y, T y s 0, y is not open in X ; hence T does not satisfy all
the conditions of Theorems A and B.

THEOREM 2. Let I be an index set. For each i g I, let X be a con¨exi
subset of a locally con¨ex Hausdorff topological ¨ector space and D be ai
nonempty compact subset of X . Suppose that X [ Ł X and S , T : X ªi ig I i i i
2 D i are multï alued mappings with the following conditions:

Ž . Ž . Ž . Ž .i For each x g X, co S x ; T x and S x / B.i i i

Ž .ii S has local intersection property.i
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Ž .Then there exists a point x s Ł x g D [ Ł D such that x g T xˆ ig I i ig I i i i
for each i g I.

Proof. Since D is compact in X, co D is paracompact in X by the
w xLemma 1 in 6 . By virtue of Theorem 1, there exists a continuous selection

<f : co D ª D of T for each i g I. For each x g co D, letco Di i i

f x s f x ;� 4Ž . Ž .Ł i
igI

D w xthen f : co D ª 2 is upper semicontinuous by the Lemma 3 in 8 .
w xTherefore, by Himmelberg’s fixed point theorem 9 , there exists x s

Ž . Ž .Ł x g D such that x g f x , i.e., x s f x for all i g I. Henceig I i i i

x g T x .Ž .Ł i
igI

This completes the proof.

Remark. Theorem 2 contains Theorem 3.2 of Yannelis and Prabhakar
w x w x18 and Theorem 2 of Ding et al. 6 .

COROLLARY 3. Let X be a con¨ex subset of a locally con¨ex Hausdorff
topological ¨ector space and D be a nonempty compact subset of X. Suppose
that T : X ª 2 D is a multï alued mapping with the following conditions:

Ž . Ž .i For each x g X, T x is nonempty con¨ex.
Ž .ii T has local intersection property.

Ž .Then there exists a point x g D such that x g T x .

w xRemark. Corollary 3 improves Browder’s fixed point theorem 2 .

3. GENERALIZED QUASI-VARIATIONAL INEQUALITIES

THEOREM 4. Let X be a nonempty paracompact con¨ex subset of a locally
con¨ex Hausdorff topological ¨ector space E, let D be a nonempty compact
subset of X, and let Y be a nonempty subset of a Hausdorff topological ¨ector
space F. Let S: X ª 2 D be a continuous multï alued mapping with nonempty
closed con¨ex ¨alues and T : X ª 2Y be a multï alued mapping with nonempty
con¨ex ¨alues and local intersection property; w : X = Y = X ª R is a contin-
uous functional. If the following conditions are fulfilled:

Ž . Ž .i w x, y, z is quasi-con̈ ex in z.
Ž . Ž . Ž .ii For each x g X and each y g T x , w x, y, x G 0.
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Ž . Ž .Then there exist x g S x and y g T x such that

w x , y , x G 0 for all x g S x .Ž .Ž .

Proof. Since X is paracompact and T : X ª 2Y has nonempty convex
values and local intersection property, there is a continuous selection
f : X ª Y of T by Theorem 1.

For each x g X, let

H x s z g S x : w x , f x , z s min w x , f x , u .Ž . Ž . Ž . Ž .Ž . Ž .½ 5
Ž .ugS x

Since S has nonempty compact convex values, w is continuous and
Ž . Dw x, y, z is quasi-convex in z; hence H: X ª 2 has nonempty convex

values.
Ž .For each x, u g X = X, let

c x , u s yw x , f x , u .Ž . Ž .Ž .

By the continuity of w and f we know that c : X = X ª R is continuous.
Again, S: X ª 2 D is continuous multivalued mapping with nonempty
compact values and

H x s z g S x : c x , z s max c x , u ;Ž . Ž . Ž . Ž .½ 5
Ž .ugS x

D w xhence H: X ª 2 is upper semicontinuous by Proposition 23 in 1, p. 120
Ž .and obviously, H x is compact for each x g X. Consequently, by virtue of

w xHimmelberg’s fixed point theorem 9 we know that there exists a point
Ž . Ž . Ž Ž . .x g D such that x g H x , i.e., x g S x and w x, f x , x s

Ž Ž . . Ž . Ž .min w x, f x , u . Now taking y s f x , then y g T x andug SŽ x .
Ž . Ž . Ž .w x, y, x s min w x, y, u . Therefore under condition ii , for eachug SŽ x .

Ž .x g S x we have

w x , y , x G min w x , y , u s w x , y , x G 0.Ž . Ž . Ž .
Ž .ugS x

This completes the proof.

w xRemark. In 3, p. 209 , under the conditions ‘‘F is quasi-complete, T is
upper semicontinuous, X s D and Y is closed convex,’’ Chang proved the

w xsame conclusion; hence Theorem 4 improves Theorem 6.1.1 in 3 .

COROLLARY 5. Let X be a nonempty paracompact con¨ex subset of a
locally con¨ex Hausdorff topological ¨ector space E, D be a nonempty

Žcompact subset of X, and Y be a nonempty subset of E* E* is dual space of
. DE, with strong topology . Let S: X ª 2 be a continuous multï alued map-
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ping with nonempty closed con¨ex ¨alues and T : X ª 2Y be a multï alued
mapping with nonempty con¨ex ¨alues and local intersection property. Then

Ž . Ž . ² : Ž .there exists x g S x , y g T x such that Re y, x y z F 0 for all z g S x .

Ž . ² :Proof. We take w x, y, z s Re y, z y x ; then by virtue of Theorem
Ž . Ž .4 we know that there exist x g S x and y g T x such that

² :Re y , z y x G 0, ;z g S x .Ž .
i.e.,

² :Re y , x y z F 0, ;z g S x .Ž .
w xRemark. Corollary 5 improves the main result in 11 .

THEOREM 6. Let X be a nonempty compact con¨ex subset of a locally
con¨ex Hausdorff topological ¨ector space E and Y be a nonempty subset of a
Hausdorff topological ¨ector space F. Let S: X ª 2 X be a continuous multi-
¨alued mapping with nonempty closed con¨ex ¨alues, T : X ª 2Y be a multi-
¨alued mapping with nonempty con¨ex ¨alues and local intersection property,

� 4and w : X = Y = X ª RD "` be upper semicontinuous. If the following
conditions are fulfilled:

Ž . Ž .i w x, y, u is con¨ex in u,
Ž . Ž . Ž .ii for each x g X and each y g T x , w x, y, x G 0,

Ž . Ž .then there exist x g S x and y g T x such that

w x , y , x G 0, ; x g S x .Ž .Ž .
Proof. By virtue of Theorem 1, there exists a continuous selection

Ž . Ž . Ž Ž . .f : X ª Y of T. For each x, u g X = X, let c x, u s yw x, f x , u ;
then by the upper semicontinuity of w and continuity of f we know that

� 4 Ž .c : X = X ª RD "` is lower semicontinuous and the condition i im-
Ž .plies that c x, u is concave in u. Consequently for each finite subset

� 4 � 4u , u , . . . , u ; X and each u g co u , . . . , u ,1 2 n 0 1 n

n n

u s l u l G 0, l s 1 ,Ý Ý0 i i iž /
is1 is1

we have
n n

l c u , u F c u , l uŽ .Ý Ýi 0 i 0 i iž /
is1 is1

s c u , uŽ .0 0

s yw u , f u , uŽ .Ž .0 o 0

F 0.
Ž . Ž .by condition ii . Hence c x, u is o-diagonally concave in u. Again,
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S: X ª 2 X is a continuous multivalued mapping with nonempty closed
w x Ž .convex values; hence by virtue of Theorem 1 in 16 , there exists x g S x

such that

sup c x , u F 0Ž .
Ž .ugS x

i.e.,

sup y w x , f x , u F 0.Ž .Ž .
Ž .ugS x

Ž . Ž .Therefore taking y s f x we have y g T x and

w x , y , u G 0Ž .

Ž .for all u g S x . This completes the proof.

THEOREM 7. Let X be a nonempty con¨ex, perfectly normal, paracom-
pact subset of a locally con¨ex Hausdorff topological ¨ector space E, Y be a
nonempty subset of a Hausdorff topological ¨ector space F, and D be a
nonempty compact subset of X. Let S: X ª 2 D be an almost upper semicon-
tinuous multï alued mapping with nonempty con¨ex ¨alues and open lower
sections, T : X ª 2Y be a multï alued mapping with nonempty con¨ex ¨alues

� 4and local intersection property, w : X = Y = X ª RD "` . If the following
conditions are fulfilled:

Ž . Ž . Ž .i w x, y, u is upper semicontinuous in x, y and is quasi-con̈ ex
in u,

Ž . Ž . Ž .ii for each x g X and each y g T x , w x, y, x G 0,

Ž .then there exist x g S x and y g T x such thatŽ .

w x , y , x G 0, ; x g S x .Ž .Ž .

Proof. By virtue of Theorem 1, there exists a continuous selection
f : X ª Y of T. For each x g X, let

G x s u g S x : w x , f x , u - 0 ;� 4Ž . Ž . Ž .Ž .

Ž .then by the second part of condition i and S having convex values we
know that G: X ª 2 D has convex values.

Ž . Ž Ž . .By the first part of condition i and the continuity of f , w x, f x , u is
� Ž Ž . . 4upper semicontinuous in x; hence the set x g X : w x, f x , u - 0 is
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open in X. Again, S has open lower sections; thus for each u g X,

Gy1 u s x g X : u g G x� 4Ž . Ž .

s Sy1 u F x g X : w x , f x , u - 0� 4Ž . Ž .Ž .

is an open subset of X. It implies that G has local intersection property
and set

W s x g X : G x / B ,� 4Ž .

s D Gy1 uŽ .ug X

is an open subset of X.

Ž .1. If W s B, then G x s B for all x g X ; consequently for each
Ž . Ž Ž . .x g X and each u g S x , w x, f x , u G 0. But S has open lower sec-

tions and nonempty convex values; by virtue of Theorem 2, there is a point
Ž . Ž . Ž .x g X such that x g S x . Now taking y s f x , y g T x and

w x , y , u G 0, ;u g S x .Ž .Ž .

2. If W / B, since X is perfectly normal and paracompact, W is an
w xF -set and hence W is paracompact by the Theorem 5.1.28 in 7, p. 383 .s

< DConsequently by Theorem 1, G : W ª 2 has a continuous selectionW

g : W ª D.

We define a multivalued mapping H: X ª 2 D by

g x , if x g W .� 4Ž .
H x sŽ . ½ S x , if x g X _ W .Ž .

Then obviously, H has nonempty closed convex values. Otherwise, it
follows from the almost upper semicontinuity of S that the mapping

D Ž .S: X ª 2 , defined by s x s S x for each x g X, is almost upperŽ .
w xsemicontinuous and hence S is upper semicontinuous by Lemma 1 in 13 .

Again, since g : W ª D is continuous and W is open, H: X ª 2 D is upper
semicontinuous. Consequently by virtue of Himmelberg’s fixed point theo-

Ž .rem there exists a point x g D such that x g H x .
Ž . Ž . Ž Ž . .If x g W, then x s g x g G x . Hence w x, f x , x - 0 contradicts

Ž . Ž .condition ii . Hence x g X _ W implies that x g S x and G x s B;Ž .
Ž Ž . . Ž . Ž .i.e., x g S x and w x, f x , x G 0 for all x g S x . Now, taking y s f x ,Ž .

Ž .y g T x and

w x , y , x G 0, ; x g S x .Ž .Ž .

This completes the proof.
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COROLLARY 8. Let X be a nonempty con¨ex, perfectly normal, paracom-
pact subset of a locally con¨ex Hausdorff topological ¨ector space E, E* be
dual space of E with strong topology, and D be a nonempty compact subset of
X. B / Y ; E*. Let S: X ª 2 D be an almost upper semicontinuous multi-
¨alued mapping with nonempty con¨ex ¨alues and open lower sections and
T : X ª 2Y be a multï alued mapping with nonempty con¨ex ¨alues and local

Ž .intersection property. Then there exist x g S x and y g T x such thatŽ .

² :Re y , x y z F 0, ;z g S x .Ž .
Proof. Using Theorem 7, the proof is similar to that of Corollary 5 and

thus omitted here.

w xRemark. Corollary 8 improves Theorem 3 in 14 .

4. INTERSECTION THEOREM AND EQUILIBRIUM
EXISTENCE THEOREMS

We need the following definitions and notations.
� 4Let Y be a topological space. The family of subsets in Y A : a g J isa

said to be open transfer complete; if y g A , then there exists a 9 g Ja

� 4such that y g int A . Let X : i g I be a family of topological spaces,a 9 i

ˆX s X , X s X .Ł Łi i j
igI jgI

j/i

ˆLet p : X ª X and p : X ª X be the projections. If x g X, we can writei i i i
ˆŽ . Ž . Ž .p x s x and p x s x . Let A ; X, x g X , and x g X ; then x , xˆ ˆ ˆ ˆi i i i i i i i i i

Ž . Ž .denotes the point x g X such that p x s x and p x s x and weˆ ˆi i i i
ˆw x � Ž . 4 w x � Ž . 4define A x s y g X : x , y g A and A x s y g X : y , x g A .ˆ ˆ ˆ ˆi i i i i i i i i i

ˆ ˆ ˆIf A ; X and A ; X , then A m A denotes the seti i i i i i

ˆy , y g X : y g A and y g A .Ž .� 4ˆ ˆi i i i i i

� 4THEOREM 9. Let X : i g I be a family of nonempty con¨ex sets, each ini
a locally con¨ex Hausdorff topological ¨ector space. For each i g I, let D bei

� 4 � 4a nonempty compact subset of X . Suppose that A , B are twoi i ig I i ig I
families of subsets of X s Ł X with the following conditions:ig I i

Ž . � w x 4i For each i g I, the family B x : x g D is open transfer com-i i i i
ˆplete in X .i

ˆŽ . w xii For each i g I and each y g X , the set B y l D / B andˆ ˆi i i i i
Ž w x . w xco B y l D ; A y l D .ˆ ˆi i i i i i

Then the set F A / B.ig I i
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Proof. For each i g I and each x g X, let

S x s B x l D ,Ž . ˆi i i i

T x s A x l D ;Ž . ˆi i i i

D i Ž . Ž .then S , T : X ª 2 are two multivalued mappings with co S x ; T xi i i i
Ž .and S x / B for all x g X.i

Now we prove that S has local intersection property. For each y g X,i
Ž . w x w xsince S y s B y l D / B, there exists a point x g B y l D andˆ ˆi i i i i i i i

w xhence y g B x and x g D , consequently, there exists z g D such thatî i i i i i i
w x Ž . Ž .y g int B z by condition i . Thus there is an open neighborhood N yˆ ˆi i i i

Ž . w xof y such that N y ; B z . Letˆ ˆi i i i

U y s X m N y ;Ž . Ž .ˆi i

Ž . Ž .then U y is an open neighborhood of y in X. For each b g U y , we
ˆ ˆŽ . w x w x Ž .have b g N y ; B z ; hence z g B b l D s S b . Thusˆi i i i i i i i i

z g F S b .Ž .i bgUŽ y . i

Therefore S has local intersection property.i
Summing up the above arguments we know that S , T satisfy alli i

conditions of Theorem 2. Consequently, by virtue of Theorem 2, there
exists a point x g D [ Ł D such thatig I i

x g T xŽ .i i

for each i g I, and hence

x g F A .ig I i

This completes the proof.

w xRemark. If for each x g D , the set B x is open in X , then thei i i i i
� w x 4family B x : x g D is open transfer complete. Hence Theorem 9 con-i i i i

w xtains Theorem 3 of Ding et al. 6 .

Next we give some equilibrium existence theorems for an abstract
economy. We first give some definitions in equilibrium theory. Let I be a

Ž .set of agents. An abstract economy G s X , A , B , P is definedi i i i ig I
Ž .as a family of ordered quadruples X , A , B , P , where A , B : X [i i i i i i

Ł X ª 2 X i are constraint correspondences and P : X ª 2 X i is a pref-jg I j i
erence correspondence. An equilibrium for G is a point x g X such that

Ž . Ž .for each i g I, x g B x and A x l P x s B.Ž .i i i i
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Ž .THEOREM 10. Let G s X , A , B , P be an abstract economy, wherei i i i ig I
I is a set of agents such that for each i g I,

Ž .i X is a nonempty con¨ex subset of a locally con¨ex Hausdorffi
topological ¨ector space and D is a nonempty compact subset of X ,i i

Ž . Ž .ii for each x g X [ Ł X , B x is nonempty con¨ex andig I i i
Ž . Ž .A x ; B x ; D ,i i i

X iŽ . Ž .iii the mapping B : X ª 2 , defined by B x s B x for eachŽ .i i i
x g X, is upper semicontinuous,

Ž . D iiv the mapping T : X ª 2 defined byi

T x s A x l P xŽ . Ž . Ž .i i i

has local intersection property,
Ž . w Ž . Ž .xv for each x g X, x f co A x l P x , andi i i

Ž . � Ž . Ž . 4vi the set W [ x g X : A x l P x / B is a paracompacti i i
subset of X.

Then G has an equilibrium choice x g X ; i.e., for each i g I, x g B x andŽ .i i
Ž . Ž .A x l P x s B.i i

Proof. For each i g I, first, we prove that the mapping S : X ª 2 D i
i

defined by

S x s co T xŽ . Ž .i i

has local intersection property.
Ž . Ž .For each x g X, if S x / B, then T x / B. Consequently, byi i

Ž .condition iv , there exists an open neighborhood U of x such that
Ž . Ž . Ž .F T z / B; hence F S z > F T z / B. Thus S hasz gU i z gU i z gU i i

local intersection property.
<By virtue of Theorem 1, S has a continuous selection f : W ª D .Wi i i ii

Define a mapping G : X ª 2 D i byi

f x , if x g W ,� 4Ž .i i
G x sŽ .i ½ B x , if, x g X _ W .Ž .i i

Ž .Then G x is nonempty convex for each x g X.i
Ž .For each x g W , T x / B. Since T has local intersection property,i i i

Ž . Ž .there exists an open neighborhood N x of x such that F T z / Bz g NŽ x . i
Ž . D iand hence N x ; W . Thus W is open. Therefore, G : X ª 2 is upperi i i

Ž .semicontinuous by the continuity of f and condition iii .i
By virtue of Theorem 2, there exists x s Ł x g D [ Ł D suchig I i ig I i
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that

x g G x , ; i g I.Ž .i i

Ž .Consequently, by condition v we know that

x g B x and A x l P x s BŽ . Ž . Ž .i i i i

for all i g I; i.e., x is an equilibrium choice of G.

w x w xRemark. Theorem 10 contains Theorem 1 in 10 , Theorem 6.1 in 18 ,
w x w xTheorem 3.1 in 5 , and correspondence result in 17 .

Ž .THEOREM 11. Let G s X , A , B , P be an abstract economy, wherei i i i ig I
I is a set of agents such that for each i g I,

Ž .i X is a nonempty con¨ex subset of a locally con¨ex Hausdorffi
topological ¨ector space and D is a nonempty compact subset of X ,i i

Ž . Ž . Ž . Ž .ii for each x g X, B / A x ; B x ; D , and B x is con¨ex,i i i i
X iŽ . Ž .iii the mapping B : X ª 2 defined by B x s B x for eachŽ .i i i

x g X, is upper semicontinuous,
Ž . D i Ž . Ž . Ž .iv the mapping T : X ª 2 defined by T x s co A x l co P xi i i i

for each x g X, has local intersection property,
Ž . Ž .v for each x g X x f co P x , andi i

Ž . � Ž . Ž . 4vi the set M [ x g X : co A x l co P x / B is paracompact.i i i

Then G has an equilibrium x g D [ Ł D ; i.e., for each i g I,ig I i

x g B x and A x l P x s B.Ž . Ž . Ž .i i i i

< D iProof. Since M is paracompact and T : M ª 2 has local intersec-Mi i ii

<tion property, T has a continuous selection f : M ª D . Define aMi i i ii

mapping G : X ª 2 D i byi

f x , if x g M ,� 4Ž .i i
G x sŽ .i ½ B x , if x g X _ M .Ž .i i

The following proofs are the same as the corresponding parts of Theorem
10 and hence omitted.

w xRemark. Theorem 11 contains Theorem 4 in 6 .

Ž .THEOREM 12. Let G s X , A , B , P be an abstract economy, wherei i i i ig I
I is a set of agents such that for each i g I,

Ž .i X is a nonempty con¨ex subset of a locally con¨ex Hausdorffi
topological ¨ector space and D is a nonempty compact subset of X ,i i
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Ž . Ž . Ž . Ž .ii for each x g X [ Ł X , A x ; B x ; D and B x isig I i i i i i
nonempty con¨ex,

Ž .iii B has local intersection property,i

Ž . D i Ž . Ž . Ž .iv the mapping T : X ª 2 , defined by T x s co P x l A x fori i i i
each x g X, has local intersection property,

Ž . Ž .v for each x g X, x f co P x , andi i

Ž . � Ž . Ž . 4vi the set W s x g X : A x l P x / B is closed in X.i i i

Ž .Then there exists a point x g D s Ł D such that x g B x andig I i i i
Ž . Ž .A x l P x s f for all i g I.i i

Proof. For each i g I define a mapping G : X ª 2 D i byi

co co P x l A x , if x g W ,Ž . Ž .Ž .i i iG x sŽ .i ½ B x , if x g X _ W .Ž .i i

Ž .Then G x is nonempty convex for each x g X. For each x g X, ifi
Ž . Ž . Ž . Ž .x g W , then A x l P x / B and hence co P x l A x / B. Byi i i i i

Ž . Ž .condition iv , there exists an open neighborhood N x of x such that

F co P z l A z / B.Ž . Ž .z g NŽ x . i i

Ž . Ž . Ž .Consequently F G z > F co P z l A z / B. Ifz g N Ž x . i z g N Ž x . i i
Ž . Ž .x g X _ W , then by condition iii , there is an open neighborhood N x ofi 1

Ž . Ž .x such that F B z / B. But by condition vi , there exists anz g N Ž x . i1
Ž . Ž . Ž .open neighborhood N x of x such that N x ; X _ W . Let N x s2 2 i

Ž . Ž . Ž .N x l N x ; then N x is an open neighborhood of x and1 2

F G z s F B z > F B z / B.Ž . Ž . Ž .z g NŽ x . i z g NŽ x . i z g N Ž x . i1

This proves that G has local intersection property.i

By virtue of Theorem 2, there exists x g D s Ł D such thatig I i
Ž . Ž .x g G x for all i g I. Again by condition v we know thati i

x g B x and A x l P x s BŽ . Ž . Ž .i i i i

for all i g I.
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