A Further Generalization of Yannelis-Prabhakar's Continuous Selection Theorem and Its Applications

Xian Wu

Mathematics Department, Yunnan Normal Uni¨*ersity, Kunming Yunnan 650092, People's Republic of China*

by Elsevier - Publisher Connector

Shikai Shen

and

Mathematics Department, Zhaotong Teacher's College, Zhaotong Yunnan 657000, People's Republic of China

Submitted by E. S. Lee

Received August 12, 1994

In this article, we first prove one improved version of the Yannelis–Prabhakar continuous selection theorem and next, as its applications, a fixed point theorem in noncompact product spaces, a nonempty intersection theorem, some existence theorems of solutions for the generalized quasi-variational inequalities, and some equilibrium existence theorems for the abstract economies are given. \circ 1996 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARIES

In 1983, Yannelis and Prabhakar [18] proved a continuous selection theorem as follows:

THEOREM A. *Let X be a nonempty paracompact Hausdorff topological space and Y be a Hausdorff topological vector space. Let* $T: X \rightarrow 2^Y$ *be a correspondence such that each* $T(x)$ *is open convex and for each* $y \in Y$, $T^{-1}(y)$ *is open in X*. *Then T has a continuous selection f*: *X* \rightarrow *Y*, *such that* $f(x) \in T(x)$ for each $x \in X$.

In 1992, Ding *et al.* [6] improved Theorem A by establishing the following:

THEOREM B. *Let X be a nonempty paracompact Hausdorff topological space and Y be a nonempty convex subset of a topological vector space.*

Suppose S, T: $X \rightarrow 2^y$ *are correspondences such that*

(1) for each $x \in X$, co $S(x) \subset T(x)$ and $S(x) \neq \emptyset$,

(2) for each $y \in Y$, $S^{-1}(y)$ is open in X.

Then T has a continuous selection.

Using Theorem A, Yannelis and Prabhakar [18] obtained a fixed point theorem and an equilibrium existence theorem for an abstract economy. In [6], using Theorem B, Ding *et al.* obtained a fixed point theorem in product spaces, a nonempty intersection theorem, and two equilibrium existence theorems for an abstract economy.

In this paper, we first give one improved version of Theorem B and next by applying the result, we prove a fixed point theorem, a nonempty intersection theorem, some existence theorems of solutions for generalized quasi-variational inequalities, and some equilibrium existence theorems.

We need the following definitions.

Let *X* and *Y* be two topological spaces, $T: X \rightarrow 2^Y$ a multivalued mapping.

(1) *T* is said to be almost upper semicontinuous if for each $x \in X$ and each open set *V* in *Y* with $T(x) \subset V$, there exists an open neighborhood *U* of *x* in *X* such that $T(v) \subset \overline{V}$ for each $v \in U$.

(2) For each $y \in Y$, $T^{-1}(y) := \{x \in X : y \in T(x)\}$ is said to be the lower section of *T*.

(3) *T* is said to have local intersection property if for each $x \in X$ with $T(x) \neq \emptyset$, there exists an open neighborhood $N(x)$ of x such that $\bigcap_{z \in N(x)} T(z) \neq \emptyset$.

2. CONTINUOUS SELECTION THEOREM AND FIXED POINT THEOREM

In the paper, a subset of topological space is considered to have relative topology.

THEOREM 1. *Let X be a nonempty paracompact subset of a Hausdorff topological space E and Y be a nonempty subset of a Hausdorff topological vector space F. Suppose that S,* $T: X \rightarrow 2^Y$ *are two multivalued mappings with the following conditions*:

(i) *For each* $x \in X$, $S(x)$ *is nonempty and* co $S(x) \subset T(x)$.

Ž . ii *S has local intersection property*.

Then T has a continuous selection; *i*.*e*., *there is a continuous mapping* $f: X \to Y$ such that $f(x) \in T(x)$ for each $x \in X$.

Proof. For each $x \in X$, by condition (i) we know that $S(x) \neq \emptyset$; consequently, by condition (ii), there exists an open neighborhood $N(x)$ of *x* such that $M(x) = \bigcap_{z \in N(x)} S(z) \neq \emptyset$. Since *X* is paracompact, there is a locally finite open refinement $\mathcal{F} = \{U_a : \alpha \in D\}$ of the $\{N(x): x \in X\}$ and a partition of unity subordinated to $\mathcal{F}\{g_{\alpha}: \alpha \in D\}$ such that

- (1) for each $\alpha \in D$, $g_{\alpha}: X \to [0, 1]$ is continuous,
- $\overline{(2)}$ $\overline{\{x \in X : g_{\alpha}(x) > 0\}} \subset U_{\alpha}$ for each $\alpha \in D$,
- $(\textbf{3})$ $\Sigma_{\alpha \in D} g_{\alpha}(x) = 1$ for each $x \in X$.

Since $\mathcal F$ is a refinement of $\{N(x): x \in X\}$, for each $\alpha \in D$, there exists a $x_{\alpha} \in X$ such that $U_{\alpha} \subset N(x_{\alpha})$. But with $M(x_{\alpha}) \neq \emptyset$, we may take a $y_{\alpha} \in M(x_{\alpha}).$

Now, we define a mapping $f: X \to \text{co } Y$ by

$$
f(x) = \sum_{\alpha \in D} g_{\alpha}(x) y_{\alpha}, \quad \forall x \in X.
$$

Since $\mathcal F$ is locally finite, there are at most finitely many $g_{\alpha}(x) \neq 0$; hence *f* is continuous. For each $x \in X$ and each $\alpha \in D$, if $g_{\alpha}(x) \neq 0$, then $x \in U_a \subset N(x_a)$; consequently $y_a \in S(x)$ and so $f(x) \in \text{co } S(x) \subset$ $T(x)$ by the condition (i). Therefore, $f: X \rightarrow Y$ is a continuous selection of T .

Remark 1. Theorem 1 contains Theorems A and B. In fact, if for each $y \in Y$, $S^{-1}(y)$ is open, then for each $x \in X$ with $S(x) \neq \emptyset$, we take a fixed $y \in S(x)$ and let $N(x) = S^{-1}(y)$. Consequently $N(x)$ is an open neighborhood of *x* and $y \in \bigcap_{z \in N(x)} S(z)$. Hence *S* has local intersection property.

Remark 2. The following example shows that Theorem 1 is a true generalization of Theorems A and B.

EXAMPLE. Let $E = F = R$, $X = Y = [0, 2)$, and $T(x) = S(x) = [x, 2)$. for each $x \in X$; then *t* satisfies all the conditions of Theorem 1. But for each $y \in Y$, $T^{-1}(y) = [0, y]$ is not open in *X*; hence *T* does not satisfy all the conditions of Theorems A and B.

THEOREM 2. Let I be an index set. For each $i \in I$, let X_i be a convex *subset of a locally convex Hausdorff topological vector space and D_i be a nonempty compact subset of X_i. Suppose that* $X := \prod_{i \in I} X_i$ *and* $S_i, T_i: X \to$ 2^{D_i} *are multivalued mappings with the following conditions:*

- (i) For each $x \in X$, co $S_i(x) \subset T_i(x)$ and $S_i(x) \neq \emptyset$.
- \sum_{i} *S_i* has local intersection property.

Then there exists a point $\hat{x} = \prod_{i \in I} \bar{x}_i \in D = \prod_{i \in I} D_i$ such that $\bar{x}_i \in T_i(\bar{x})$ *for each* $i \in I$.

Proof. Since *D* is compact in *X*, co *D* is paracompact in *X* by the Lemma 1 in $[6]$. By virtue of Theorem 1, there exists a continuous selection f_i : co $D \to D_i$ of $T_i|_{\infty}$ for each $i \in I$. For each $x \in \infty$ *D*, let

$$
f(x) = \prod_{i \in I} \{f_i(x)\};
$$

then $f: \text{co } D \to 2^D$ is upper semicontinuous by the Lemma 3 in [8]. Therefore, by Himmelberg's fixed point theorem [9], there exists \bar{x} = $\prod_{i \in I} \bar{x}_i \in D$ such that $\bar{x} \in f(\bar{x})$, i.e., $\bar{x}_i = f_i(\bar{x})$ for all $i \in I$. Hence

$$
\bar{x}\in\prod_{i\in I}T_i(\bar{x}).
$$

This completes the proof. \blacksquare

Remark. Theorem 2 contains Theorem 3.2 of Yannelis and Prabhakar [18] and Theorem 2 of Ding et $al.$ [6].

COROLLARY 3. Let X be a convex subset of a locally convex Hausdorff *topological vector space and D be a nonempty compact subset of X. Suppose that* $T: X \rightarrow 2^D$ *is a multivalued mapping with the following conditions:*

- (i) *For each* $x \in X$, $T(x)$ *is nonempty convex.*
- (ii) *T* has local intersection property.

Then there exists a point $\bar{x} \in D$ *such that* $\bar{x} \in T(\bar{x})$.

Remark. Corollary 3 improves Browder's fixed point theorem [2].

3. GENERALIZED QUASI-VARIATIONAL INEQUALITIES

THEOREM 4. Let X be a nonempty paracompact convex subset of a locally *convex Hausdorff topological vector space E, let D be a nonempty compact subset of X, and let Y be a nonempty subset of a Hausdorff topological vector space F. Let* $S: X \to 2^D$ *be a continuous multivalued mapping with nonempty closed convex values and T:* $X \to 2^Y$ *be a multivalued mapping with nonempty convex values and local intersection property;* φ *:* $X \times Y \times X \rightarrow R$ *is a continuous functional*. *If the following conditions are fulfilled*:

- (i) $\varphi(x, y, z)$ *is quasi-convex in z.*
- (ii) *For each* $x \in X$ *and each* $y \in T(x)$, $\varphi(x, y, x) \ge 0$.

Then there exist $\bar{x} \in S(\bar{x})$ *and* $\bar{y} \in T(\bar{x})$ *such that*

 $\varphi(\bar{x}, \bar{y}, x) \geq 0$ *for all* $x \in S(\bar{x})$.

Proof. Since *X* is paracompact and $T: X \rightarrow 2^Y$ has nonempty convex values and local intersection property, there is a continuous selection $f: X \to Y$ of *T* by Theorem 1.

For each $x \in X$, let

$$
H(x) = \Big\{ z \in S(x) : \varphi(x, f(x), z) = \min_{u \in S(x)} \varphi(x, f(x), u) \Big\}.
$$

Since *S* has nonempty compact convex values, φ is continuous and $\varphi(x, y, z)$ is quasi-convex in *z*; hence *H*: $X \to 2^D$ has nonempty convex values.

For each $(x, u) \in X \times X$, let

$$
\psi(x,u) = -\varphi(x,f(x),u).
$$

By the continuity of φ and *f* we know that $\psi: X \times X \to R$ is continuous. Again, $S: X \to 2^D$ is continuous multivalued mapping with nonempty compact values and

$$
H(x) = \left\{ z \in S(x) : \psi(x, z) = \max_{u \in S(x)} \psi(x, u) \right\};
$$

hence *H*: $X \rightarrow 2^D$ is upper semicontinuous by Proposition 23 in [1, p. 120] and obviously, $H(x)$ is compact for each $x \in X$. Consequently, by virtue of Himmelberg's fixed point theorem [9] we know that there exists a point $\bar{x} \in D$ such that $\bar{x} \in H(\bar{x})$, i.e., $\bar{x} \in S(\bar{x})$ and $\varphi(\bar{x}, f(\bar{x}), \bar{x}) =$ $\min_{u \in S(\bar{x})} \varphi(\bar{x}, f(\bar{x}), u)$. Now taking $\bar{y} = f(\bar{x})$, then $\bar{y} \in T(\bar{x})$ and $\varphi(\bar{x}, \bar{y}, \bar{x}) = \min_{u \in S(\bar{x})} \varphi(\bar{x}, \bar{y}, u)$. Therefore under condition (ii), for each $x \in S(\bar{x})$ we have

$$
\varphi(\bar{x}, \bar{y}, x) \ge \min_{u \in S(\bar{x})} \varphi(\bar{x}, \bar{y}, u) = \varphi(\bar{x}, \bar{y}, \bar{x}) \ge 0.
$$

This completes the proof. \mathbf{r}

Remark. In [3, p. 209], under the conditions " F is quasi-complete, T is upper semicontinuous, $X = D$ and *Y* is closed convex,³ Chang proved the same conclusion; hence Theorem 4 improves Theorem 6.1.1 in [3].

COROLLARY 5. Let X be a nonempty paracompact convex subset of a *locally convex Hausdorff topological vector space E, D be a nonempty compact subset of X, and Y be a nonempty subset of E^{*} (E^{*} <i>is dual space of* E, with strong topology). Let S: $X \to 2^D$ be a continuous multivalued map*ping with nonempty closed convex values and* $T: X \rightarrow 2^Y$ *be a multivalued mapping with nonempty convex values and local intersection property. Then there exists* $\bar{x} \in S(\bar{x})$, $\bar{y} \in T(\bar{x})$ *such that* $\text{Re}\langle \bar{y}, \bar{x} - z \rangle \leq 0$ *for all* $z \in S(\bar{x})$ *.*

Proof. We take $\varphi(x, y, z) = \text{Re}\langle y, z - x \rangle$; then by virtue of Theorem 4 we know that there exist $\bar{x} \in S(\bar{x})$ and $\bar{y} \in T(\bar{x})$ such that

$$
\operatorname{Re}\langle\,\bar{y},z-\bar{x}\,\rangle\geq 0,\qquad \forall z\in S(\,\bar{x}\,).
$$

i.e.,

$$
\operatorname{Re}\langle\,\bar{y},\bar{x}-z\,\rangle\leq 0,\qquad \forall z\in S(\,\bar{x})\,.\quad \vert
$$

Remark. Corollary 5 improves the main result in [11].

THEOREM 6. Let X be a nonempty compact convex subset of a locally *convex Hausdorff topological vector space E and Y be a nonempty subset of a Hausdorff topological vector space F. Let S:* $X \rightarrow 2^X$ *be a continuous multivalued mapping with nonempty closed convex values,* $T: X \rightarrow 2^Y$ *be a multivalued mapping with nonempty convex values and local intersection property, and* $\varphi: X \times Y \times X \rightarrow R \cup \{\pm \infty\}$ *be upper semicontinuous. If the following conditions are fulfilled*:

- (i) $\varphi(x, y, u)$ is convex in u,
- (ii) for each $x \in X$ and each $y \in T(x)$, $\varphi(x, y, x) \geq 0$,

then there exist $\bar{x} \in S(\bar{x})$ *and* $\bar{y} \in T(\bar{x})$ *such that*

 $\varphi(\bar{x}, \bar{y}, x) \geq 0, \quad \forall x \in S(\bar{x}).$

Proof. By virtue of Theorem 1, there exists a continuous selection *f*: $X \rightarrow Y$ of *T*. For each $(x, u) \in X \times X$, let $\psi(x, u) = -\varphi(x, f(x), u)$; then by the upper semicontinuity of φ and continuity of f we know that $\psi: X \times X \to R \cup \{\pm \infty\}$ is lower semicontinuous and the condition (i) implies that $\psi(x, u)$ is concave in *u*. Consequently for each finite subset $\{u_1, u_2, \ldots, u_n\} \subset X$ and each $u_0 \in \text{co}\{u_1, \ldots, u_n\}$,

$$
u_0 = \sum_{i=1}^n \lambda_i u_i \qquad \left(\lambda \ge 0, \sum_{i=1}^n \lambda_i = 1\right),
$$

we have

$$
\sum_{i=1}^{n} \lambda_i \psi(u_0, u_i) \leq \psi\left(u_0, \sum_{i=1}^{n} \lambda_i u_i\right)
$$

= $\psi(u_0, u_0)$
= $-\varphi(u_0, f(u_0), u_0)$
 $\leq 0.$

by condition (ii). Hence $\psi(x, u)$ is *o*-diagonally concave in *u*. Again,

S: $X \rightarrow 2^X$ is a continuous multivalued mapping with nonempty closed convex values; hence by virtue of Theorem 1 in [16], there exists $\bar{x} \in S(\bar{x})$ such that

$$
\sup_{u \in S(\bar{x})} \psi(\bar{x}, u) \le 0
$$

i.e.,

$$
\sup_{u \in S(\bar{x})} - \varphi(\bar{x}, f(\bar{x}), u) \leq 0.
$$

Therefore taking $\bar{y} = f(\bar{x})$ we have $\bar{y} \in T(\bar{x})$ and

$$
\varphi(\bar{x}, \bar{y}, u) \ge 0
$$

for all $u \in S(\bar{x})$. This completes the proof.

THEOREM 7. Let X be a nonempty convex, perfectly normal, paracom*pact subset of a locally convex Hausdorff topological vector space E, Y be a nonempty subset of a Hausdorff topological vector space F, and D be a nonempty compact subset of X. Let* $S: X \to 2^D$ *be an almost upper semicontinuous multivalued mapping with nonempty convex values and open lower sections*, $T: X \rightarrow 2^Y$ *be a multivalued mapping with nonempty convex values and local intersection property,* φ *:* $X \times Y \times X \rightarrow R \cup \{\pm \infty\}$ *. If the following conditions are fulfilled*:

(i) $\varphi(x, y, u)$ *is upper semicontinuous in* (x, y) *and is quasi-convex in u*,

(ii) for each
$$
x \in X
$$
 and each $y \in T(x)$, $\varphi(x, y, x) \ge 0$,

then there exist $\bar{x} \in \overline{S(\bar{x})}$ *and* $\bar{y} \in T(\bar{x})$ *such that*

$$
\varphi(\bar{x}, \bar{y}, x) \ge 0, \quad \forall x \in S(\bar{x}).
$$

Proof. By virtue of Theorem 1, there exists a continuous selection *f*: $X \rightarrow Y$ of *T*. For each $x \in X$, let

$$
G(x) = \{u \in S(x) : \varphi(x, f(x), u) < 0\};
$$

then by the second part of condition (i) and S having convex values we know that *G*: $X \rightarrow 2^D$ has convex values.

By the first part of condition (i) and the continuity of f, $\varphi(x, f(x), u)$ is upper semicontinuous in *x*; hence the set $\{x \in X : \varphi(x, f(x), u) < 0\}$ is open in *X*. Again, *S* has open lower sections; thus for each $u \in X$,

$$
G^{-1}(u) = \{x \in X : u \in G(x)\}
$$

= S^{-1}(u) \cap \{x \in X : \varphi(x, f(x), u) < 0\}

is an open subset of *X*. It implies that *G* has local intersection property and set

$$
W = \{x \in X : G(x) \neq \emptyset\},\
$$

=
$$
\bigcup_{u \in X} G^{-1}(u)
$$

is an open subset of *X*.

1. If $W = \emptyset$, then $G(x) = \emptyset$ for all $x \in X$; consequently for each $x \in X$ and each $u \in S(x)$, $\varphi(x, f(x), u) \geq 0$. But *S* has open lower sections and nonempty convex values; by virtue of Theorem 2, there is a point $\bar{x} \in X$ such that $\bar{x} \in S(\bar{x})$. Now taking $\bar{y} = f(\bar{x})$, $\bar{y} \in T(\bar{x})$ and

$$
\varphi(\bar{x}, \bar{y}, u) \ge 0, \quad \forall u \in S(\bar{x}).
$$

2. If $W \neq \emptyset$, since *X* is perfectly normal and paracompact, *W* is an F_{α} -set and hence *W* is paracompact by the Theorem 5.1.28 in [7, p. 383]. Consequently by Theorem 1, $G|_W: W \to 2^D$ has a continuous selection $g: W \rightarrow D$.

We define a multivalued mapping $H: X \to 2^D$ by

$$
H(x) = \begin{cases} \{g(x)\}, & \text{if } x \in W, \\ \overline{S(x)}, & \text{if } x \in X \setminus W. \end{cases}
$$

Then obviously, *H* has nonempty closed convex values. Otherwise, it follows from the almost upper semicontinuity of *S* that the mapping $\overline{S}: X \to 2^D$, defined by $\overline{s(x)} = \overline{S(x)}$ for each $x \in X$, is almost upper semicontinuous and hence \overline{S} is upper semicontinuous by Lemma 1 in 13. Again, since $g: W \to D$ is continuous and *W* is open, $H: X \to 2^D$ is upper semicontinuous. Consequently by virtue of Himmelberg's fixed point theorem there exists a point $\bar{x} \in D$ such that $\bar{x} \in H(\bar{x})$.

If $\bar{x} \in W$, then $\bar{x} = g(\bar{x}) \in G(\bar{x})$. Hence $\varphi(\bar{x}, f(\bar{x}), \bar{x}) < 0$ contradicts condition (ii). Hence $\bar{x} \in X \setminus W$ implies that $\bar{x} \in \overline{S(\bar{x})}$ and $G(\bar{x}) = \emptyset$; i.e., $\bar{x} \in \overline{S(\bar{x})}$ and $\varphi(\bar{x}, f(\bar{x}), x) \ge 0$ for all $x \in S(\bar{x})$. Now, taking $\bar{y} = f(\bar{x})$, $\bar{y} \in T(\bar{x})$ and

$$
\varphi(\bar{x}, \bar{y}, x) \ge 0, \quad \forall x \in S(\bar{x}).
$$

This completes the proof. \blacksquare

COROLLARY 8. Let *X* be a nonempty convex, perfectly normal, paracom*pact subset of a locally convex Hausdorff topological vector space E, E* be dual space of E with strong topology*, *and D be a nonempty compact subset of* $X \times B \neq Y \subseteq E^*$. Let $S \times X \to 2^D$ *be an almost upper semicontinuous multi*valued mapping with nonempty convex values and open lower sections and *T*: $X \rightarrow 2^{\overline{Y}}$ *be a multivalued mapping with nonempty convex values and local intersection property. Then there exist* $\bar{x} \in \overline{S(\bar{x})}$ *and* $\bar{y} \in T(\bar{x})$ *such that*

$$
\operatorname{Re}\langle\,\bar{y},\bar{x}-z\,\rangle\leq 0,\qquad \forall z\in S(\,\bar{x}\,).
$$

Proof. Using Theorem 7, the proof is similar to that of Corollary 5 and thus omitted here. п

Remark. Corollary 8 improves Theorem 3 in [14].

4. INTERSECTION THEOREM AND EQUILIBRIUM EXISTENCE THEOREMS

We need the following definitions and notations.

Let *Y* be a topological space. The family of subsets in $Y\{A_{\alpha}: \alpha \in J\}$ is said to be open transfer complete; if $y \in A_\alpha$, then there exists $\alpha' \in J$ such that $y \in \text{int } A_{\alpha'}$. Let $\{X_i : i \in I\}$ be a family of topological spaces,

$$
X = \prod_{i \in I} X_i, \qquad \hat{X}_i = \prod_{\substack{j \in I \\ j \neq i}} X_j.
$$

Let $\pi_i : X \to X_i$ and $\pi_i : X \to \hat{X}_i$ be the projections. If $x \in X$, we can write $\pi_i(x) = x_i$ and $\hat{\pi}_i(x) = \hat{x}_i$. Let $A \subset X$, $x_i \in X_i$, and $\hat{x}_i \in \hat{X}_i$; then (x_i, \hat{x}_i) denotes the point $x \in X$ such that $\pi_i(x) = x_i$ and $\hat{\pi}_i(x) = \hat{x}_i$ and we define $A[x_i] = \{\hat{y}_i \in \hat{X}_i : (x_i, \hat{y}_i) \in A\}$ and $A[\hat{x}_i] = \{y_i \in X_i : (y_i, \hat{x}_i) \in A\}$. If $A_i \subset X_i$ and $\hat{A_i} \subset \hat{X_i}$, then $A_i \otimes \hat{A_i}$ denotes the set

$$
\{(y_i, \hat{y}_i) \in X : y_i \in A_i \text{ and } \hat{y}_i \in \hat{A}_i\}.
$$

THEOREM 9. *Let* $\{X_i : i \in I\}$ *be a family of nonempty convex sets, each in a locally convex Hausdorff topological vector space. For each* $i \in I$ *, let* D_i *be a* nonempty compact subset of X_i . Suppose that $\{A_i\}_{i \in I}$, $\{B_i\}_{i \in I}$ are two *families of subsets of* $X = \prod_{i \in I} X_i$ *with the following conditions:*

(i) *For each i* \in *I*, *the family* ${B_i[x_i]: x_i \in D_i}$ *is open transfer com*plete in $\hat{X_i}$.

(ii) *For each i* \in *I and each* $\hat{y}_i \in \hat{X}_i$, the set $B_i[\hat{y}_i] \cap D_i \neq \emptyset$ and $co (B_i[\hat{y}_i] \cap D_i) \subset A_i[\hat{y}_i] \cap D_i$.

Then the set $\bigcap_{i \in I} A_i \neq \emptyset$.

Proof. For each $i \in I$ and each $x \in X$, let

$$
S_i(x) = B_i[\hat{x}_i] \cap D_i,
$$

$$
T_i(x) = A_i[\hat{x}_i] \cap D_i;
$$

then S_i , T_i : $X \to 2^{D_i}$ are two multivalued mappings with co $S_i(x) \subset T_i(x)$ and $S_i(x) \neq \emptyset$ for all $x \in X$.

Now we prove that S_i has local intersection property. For each $y \in X$, since $S_i(y) = B_i[\hat{y}_i] \cap D_i \neq \emptyset$, there exists a point $x_i \in B_i[\hat{y}_i] \cap D_i$ and hence $\hat{y}_i \in B_i[x_i]$ and $x_i \in D_i$, consequently, there exists $z_i \in D_i$ such that $\hat{y}_i \in \text{int } B_i[z_i]$ by condition (i). Thus there is an open neighborhood $N(\hat{y}_i)$ of \hat{y}_i such that $N(\hat{y}_i) \subset B_i[z_i]$. Let

$$
U(y) = X_i \otimes N(\hat{y}_i);
$$

then $U(y)$ is an open neighborhood of *y* in *X*. For each $b \in U(y)$, we have $\hat{b}_i \in N(\hat{y}_i) \subset B_i[z_i]$; hence $z_i \in B_i[\hat{b}_i] \cap D_i = S_i(b)$. Thus

$$
z_i \in \bigcap_{b \in U(y)} S_i(b).
$$

Therefore S_i has local intersection property.

Summing up the above arguments we know that S_i , T_i satisfy all conditions of Theorem 2. Consequently, by virtue of Theorem 2, there exists a point $\bar{x} \in D := \prod_{i \in I} D_i$ such that

$$
\bar{x}_i \in T_i(\bar{x})
$$

for each $i \in I$, and hence

$$
\bar{x} \in \bigcap_{i \in I} A_i.
$$

This completes the proof. \blacksquare

Remark. If for each $x_i \in D_i$, the set $B_i[x_i]$ is open in X_i , then the family ${B_i[x_i]: x_i \in D_i}$ is open transfer complete. Hence Theorem 9 contains Theorem 3 of Ding *et al.* [6].

Next we give some equilibrium existence theorems for an abstract economy. We first give some definitions in equilibrium theory. Let *I* be a set of agents. An abstract economy $\Gamma = (X_i, A_i, B_i, P_i)_{i \in I}$ is defined as a family of ordered quadruples (X_i, A_i, B_i, P_i) , where $A_i, B_i: X =$ $\prod_{i \in I} X_i \to 2^{X_i}$ are constraint correspondences and $P_i: X \to 2^{X_i}$ is a preference correspondence. An equilibrium for Γ is a point $\bar{x} \in X$ such that for each $i \in I$, $\bar{x}_i \in \overline{B_i(\bar{x})}$ and $A_i(\bar{x}) \cap P_i(\bar{x}) = \emptyset$.

THEOREM 10. *Let* $\Gamma = (X_i, A_i, B_i, P_i)_{i \in I}$ *be an abstract economy, where I* is a set of agents such that for each $i \in I$,

(i) X_i is a nonempty convex subset of a locally convex Hausdorff *topological vector space and* D_i *is a nonempty compact subset of* X_i *,*

(ii) for each $x \in X = \prod_{i \in I} X_i$, $B_i(x)$ is nonempty convex and $A_i(x) \subset B_i(x) \subset D_i$,

(iii) the mapping \overline{B} : $X \to 2^{X_i}$, defined by $\overline{B}_i(x) = \overline{B_i(x)}$ for each $x \in X$, *is upper semicontinuous*,

(iv) the mapping $T_i: X \to 2^{D_i}$ defined by

$$
T_i(x) = A_i(x) \cap P_i(x)
$$

has local intersection property,

(v) for each $x \in X$, $x_i \notin \text{co}[A_i(x) \cap P_i(x)]$, and

(vi) the set $W_i := \{x \in X: A_i(x) \cap P_i(x) \neq \emptyset\}$ is a paracompact *subset of X*.

Then Γ *has an equilibrium choice* $\bar{x} \in X$; *i.e.*, *for each* $i \in I$, \bar{x} , $\in \overline{B_i(\bar{x})}$ *and* $A_i(\bar{x}) \cap P_i(\bar{x}) = \emptyset.$

Proof. For each $i \in I$, first, we prove that the mapping $S_i: X \to 2^{D_i}$ defined by

$$
S_i(x) = \text{co } T_i(x)
$$

has local intersection property.

For each $x \in X$, if $S_i(x) \neq \emptyset$, then $T_i(x) \neq \emptyset$. Consequently, by condition (iv), there exists an open neighborhood U of x such that $\bigcap_{z \in U} T_i(z) \neq \emptyset$; hence $\bigcap_{z \in U} S_i(z) \supset \bigcap_{z \in U} T_i(z) \neq \emptyset$. Thus S_i has local intersection property.

By virtue of Theorem 1, $S_i|_{W_i}$ has a continuous selection $f_i: W_i \to D_i$. Define a mapping $G_i: X \to 2^{D_i}$ by

$$
G_i(x) = \begin{cases} \{f_i(x)\}, & \text{if } x \in W_i, \\ \overline{B_i(x)}, & \text{if } x \in X \setminus W_i. \end{cases}
$$

Then $G_i(x)$ is nonempty convex for each $x \in X$.

For each $x \in W_i$, $T_i(x) \neq \emptyset$. Since T_i has local intersection property, there exists an open neighborhood *N*(*x*) of *x* such that $\bigcap_{z \in N(x)} T_i(z) \neq \emptyset$ and hence $N(x) \subset W_i$. Thus W_i is open. Therefore, $G_i: X \to 2^{D_i}$ is upper semicontinuous by the continuity of f_i and condition (iii).

By virtue of Theorem 2, there exists $\bar{x} = \prod_{i \in I} \bar{x}_i \in D = \prod_{i \in I} D_i$ such

that

$$
\bar{x}_i \in G_i(\bar{x}), \qquad \forall i \in I.
$$

Consequently, by condition (v) we know that

$$
\bar{x}_i \in \overline{B_i(\bar{x})}
$$
 and $A_i(\bar{x}) \cap P_i(\bar{x}) = \emptyset$

for all $i \in I$; i.e., \bar{x} is an equilibrium choice of Γ .

Remark. Theorem 10 contains Theorem 1 in [10], Theorem 6.1 in [18], Theorem 3.1 in $[5]$, and correspondence result in $[17]$.

THEOREM 11. Let $\Gamma = (X_i, A_i, B_i, P_i)_{i \in I}$ be an abstract economy, where *I* is a set of agents such that for each $i \in I$,

(i) X_i *is a nonempty convex subset of a locally convex Hausdorff topological vector space and* D_i *is a nonempty compact subset of* X_i *,*

(ii) for each $x \in X$, $\emptyset \neq A_i(x) \subset B_i(x) \subset D_i$, and $B_i(x)$ is convex,

(iii) the mapping \overline{B}_i : $X \to 2^{X_i}$ defined by $\overline{B}_i(x) = \overline{B_i(x)}$ for each $x \in X$, *is upper semicontinuous*,

(iv) the mapping $T_i: X \to 2^{D_i}$ defined by $T_i(x) = coA_i(x) \cap coP_i(x)$ *for each* $x \in X$ *, has local intersection property,*

(v) for each $x \in X$ $x_i \notin co$ $P_i(x)$, and

(vi) the set $M_i := \{x \in X : coA_i(x) \cap coP_i(x) \neq \emptyset\}$ is paracompact.

Then Γ *has an equilibrium* $\bar{x} \in D := \prod_{i \in I} D_i$; *i.e.*, *for each i* $\in I$,

 $\bar{x}_i \in \overline{B_i(\bar{x})}$ and $A_i(\bar{x}) \cap P_i(\bar{x}) = \emptyset$.

Proof. Since M_i is paracompact and $T_i|_{M_i}: M_i \to 2^{D_i}$ has local intersection property, $T_i|_{M_i}$ has a continuous selection $f_i: M_i \to D_i$. Define a mapping $G_i: X \to 2^{D_i}$ by

$$
G_i(x) = \begin{cases} \{f_i(x)\}, & \text{if } x \in M_i, \\ \overline{B_i(x)}, & \text{if } x \in X \setminus M_i. \end{cases}
$$

The following proofs are the same as the corresponding parts of Theorem 10 and hence omitted. \blacksquare

Remark. Theorem 11 contains Theorem 4 in [6].

THEOREM 12. *Let* $\Gamma = (X_i, A_i, B_i, P_i)_{i \in I}$ *be an abstract economy, where I* is a set of agents such that for each $i \in I$,

(i) X_i is a nonempty convex subset of a locally convex Hausdorff *topological vector space and* D_i *is a nonempty compact subset of* X_i *,*

(ii) for each $x \in X = \prod_{i \in I} X_i$, $A_i(x) \subset B_i(x) \subset D_i$ and $B_i(x)$ is *nonempty convex,*

(iii) B_i has local intersection property,

(iv) the mapping T_i : $X \to 2^{D_i}$, defined by $T_i(x) = co P_i(x) \cap A_i(x)$ for *each* $x \in X$, *has local intersection property*,

- (v) for each $x \in X$, $x_i \notin co P_i(x)$, and
- (vi) the set $W_i = \{x \in X : A_i(x) \cap P_i(x) \neq \emptyset\}$ is closed in X.

Then there exists a point $\bar{x} \in D = \prod_{i \in I} D_i$ such that $\bar{x}_i \in B_i(\bar{x})$ and $A_i(\bar{x}) \cap P_i(\bar{x}) = \phi$ for all $i \in I$.

Proof. For each $i \in I$ define a mapping $G_i: X \to 2^{D_i}$ by

$$
G_i(x) = \begin{cases} co(co P_i(x) \cap A_i(x)), & \text{if } x \in W_i, \\ B_i(x), & \text{if } x \in X \setminus W_i. \end{cases}
$$

Then $G_i(x)$ is nonempty convex for each $x \in X$. For each $x \in X$, if $x \in W_i$, then $A_i(x) \cap P_i(x) \neq \emptyset$ and hence co $P_i(x) \cap A_i(x) \neq \emptyset$. By condition (iv), there exists an open neighborhood $N(x)$ of x such that

$$
\bigcap_{z \in N(x)} \text{co } P_i(z) \cap A_i(z) \neq \emptyset.
$$

Consequently $\bigcap_{z \in N(x)} G_i(z) \supset \bigcap_{z \in N(x)}$ co $P_i(z) \cap A_i(z) \neq \emptyset$. If $x \in X \setminus W$, then by condition (iii), there is an open neighborhood $N_1(x)$ of *x* such that $\bigcap_{z \in N_1(x)} B_i(z) \neq \emptyset$. But by condition (vi), there exists an open neighborhood $N_2(x)$ of *x* such that $N_2(x) \subset X \setminus W_i$. Let $N(x) =$ $N_1(x) \cap N_2(x)$; then $N(x)$ is an open neighborhood of *x* and

$$
\bigcap_{z \in N(x)} G_i(z) = \bigcap_{z \in N(x)} B_i(z) \supset \bigcap_{z \in N_1(x)} B_i(z) \neq \emptyset.
$$

This proves that G_i has local intersection property. \blacksquare

By virtue of Theorem 2, there exists $\bar{x} \in D = \prod_{i \in I} D_i$ such that $\bar{x}_i \in G_i(\bar{x})$ for all $i \in I$. Again by condition (v) we know that

$$
\bar{x}_i \in B_i(\bar{x})
$$
 and $A_i(\bar{x}) \cap P_i(\bar{x}) = \varnothing$

for all $i \in I$.

REFERENCES

- 1. J. P. Aubin and I. Ekeland, ''Applied Nonlinear Analysis,'' Wiley, New York, 1984.
- 2. F. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, *Math. Ann.* **177** (1968), 283-301.
- 3. S. Chang, ''Variational Inequality and Complement Problem Theory with Applications,'' Shanghai Sci. Technol., Shanghai, 1991.
- 4. D. Chan and J. S. Pang, The generalized quasi-variational inequality problem, *Math*. *Oper. Res.* **7** (1982), 211-222.
- 5. S.-Y. Chang, On the Nash equilibrium, *Soochow J. Math.* **16** (1990), 241-248.
- 6. X. P. Ding, W. K. Kim, and K. K. Tan, A selection theorem and its applications, *Bull*. *Austral. Math. Soc.* 46 (1992), 205-212.
- 7. R. Eengelking, ''General Topology,'' Polish Sci., Warszawa.
- 8. Ky Fan, Fixed point and minimax theorems in locally convex topological linear spaces, *Proc. Nat. Acad. Sci.* 38 (1952), 121-26.
- 9. C. J. Himmelberg, Fixed points of compact multifunctions, *J*. *Math*. *Anal*. *Appl*. **38** (1972) , $205-207$.
- 10. S. M. Im, W. K. Kim, and D. I. Rim, Existence of equilibrium in non-compact sets and its application, *J. Korean Math. Soc.* 29 (1992), 361-373.
- 11. W. K. Kim, Remark on a generalized quasi-variational inequality, *Proc*. *Amer*. *Math*. *Soc*. **103**, No. 2 (1989), 667-668.
- 12. J. Parida and A. Sen, A variational-like inequality for multifunctions with applications, *J. Math. Anal. Appl.* **124** (1987), 73-81.
- 13. D. I. Rim and W. K. Kim, A fixed point theorem and existence of equilibrium for abstract economies, *Bull. Austral. Math. Soc.* 45 (1992), 385-394.
- 14. M. H. Shih and K. K. Tan, Generalized quasi-variational inequalities in locally convex topological vector spaces, *J. Math. Anal. Appl.* **108** (1985), 333-343.
- 15. W. Shafer and H. Sonnenschein, Equilibrium in abstract economies without ordered preferences, *J. Math. Econom.* 2 (1975), 345-348.
- 16. G.-Q. Tian and J. X. Zhou, Quasi-variational inequalities without the concavity assumption, *J. Math. Anal. Appl.* 172 (1993), 289-299.
- 17. G. Tian, Equilibrium in abstract economies with a non-compact infinite dimensional strategy space, an infinite number of agents and without ordered preferences, *Econom*. Lett. 33 (1990), 203-206.
- 18. N. C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, *J. Math. Econom.* **12** (1983), 233-245.