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variational inequality problems under suitable assumptions. By using these gap functions
we derive global error bounds for the solution of the set-valued variational inequality
problems. Our results not only generalize the previously known results for classical
variational inequalities from single-valued case to set-valued, but also present a way to
construct gap functions and derive global error bounds for set-valued variational inequality
problems.
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1. Introduction

Throughout this paper, unless otherwise mentioned, let K be a closed convex set in Rn, G : Rn → 2R
n
be an upper

semicontinuous set-valued mapping with nonempty compact convex values.
We consider the following set-valued variational inequality problem.

Find x∗ ∈ K and u∗ ∈ G(x∗), such that 〈u∗, y− x∗〉 ≥ 0, ∀y ∈ K . (1.1)

If G is a single-valued mapping, problem (1.1) reduces to the classical variational inequality problem.

Find x∗ ∈ K , such that 〈G(x∗), y− x∗〉 ≥ 0, ∀y ∈ K . (1.2)

Variational inequality problems have many applications in different fields such as mathematical programming, game
theory and economics. In recent years, much attention has been given to reformulate the classical variational inequality
problem (1.2) as an equivalent optimization problem through a gap (merit) function. Gap function has turned out to be very
useful in designing new globally convergent algorithms, in analyzing the rate of convergence of some iterative methods and
in deriving the error bounds, which provide a measure of the distance between a solution set and an arbitrary point, for
more details, see [1–5]. Error bounds have played an important role not only in theoretical analysis but also in convergence
analysis of iterative algorithms for solving variational inequalities, see Pang [6] for an excellent survey of the theory and
application. A few error bounds have been presented for the classical variational inequality problem (1.2), for example,
see [1,3–5,7–12,22–25].
To the best of the authors’ knowledge, very few gap functions and no error bounds results have been established for

set-valued variational inequality problems. The set-valued variational inequality problems are useful in some practical
applications. These problems involve economic theory, set-valued variational inclusions, complementarity and fixed point
problems and nonsmooth optimization problems.
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In this paper, we establish gap functions which can be reformulated as unconstrained optimization problems equivalent
to the original set-valued variational inequality problems. We also derive error bounds based on these gap functions under
certain assumptions. Our results not only generalize the corresponding previously known results for variational inequality
problem in [10] from single-valued case to set-valued case, but also provide a way to construct gap functions and derive
error bounds for set-valued variational inequality problem.
This paper is organized as follows. We give some preliminaries which will be used in the rest of this paper in Section 2.

Some new gap functions for the set-valued variational inequality problems are constructed in Section 3. Finally, in Section 4,
we derive error bounds for set-valued variational inequality problem.

2. Preliminaries

A functionM : K → R is called a gap function for the set-valued variational inequality problem (1.1) if and only if
(i)M(x) ≥ 0,∀x ∈ K ;
(ii)M(x∗) = 0 if and only if x∗ ∈ K solves the set-valued variational inequality problem (1.1).
One of the many useful applications of gap functions is in deriving the so-called error bounds, i.e., upper estimation on

the distance to the solution set S of the set-valued variational inequality problem (1.1):

d(x, S) ≤ γM(x)λ, ∀x ∈ K ,

where γ , λ > 0 are independent of x.
Let us recall some gap functions proposed for the classical variational inequality problem (1.2) through optimization

methods. Auslender [13] and Marcotte [14] considered it by minimizing a gap function f defined by

f (x) = max{〈G(x), x− y〉|y ∈ K}. (2.1)

In order that the function f is well defined, the constrained set K has to be assumed to be compact in [14,15]. The regularized
gap function for the classical variational inequality problem (1.2), introduced independently in [16,1], was defined as:

fα,G,K (x) := max
y∈K
〈G(x), x− y〉 −

1
2α
‖x− y‖2

= 〈G(x), x− PK (x− αG(x))〉 −
1
2α
‖x− PK (x− αG(x))‖2.

The above-mentioned authors reformulated the classical variational inequality (1.2) as a constrained optimization problem.
Peng [3], Yamashita and Fukushima [10] reformulated it as an unconstrained optimization problem through different
approaches, respectively. The former adopted the regularized gap function [1] and the implicit Lagrangian [17], while the
latter utilized the Moreau–Yosida regularization. We are interested in the regularized gap functions used in [10], which are
f (·;α) : Rn × (0,∞)→ R ∪ {+∞} defined by

f (x;α) = sup
y∈K
{〈G(x), x− y〉 − α‖x− y‖2}, (2.2)

and h(·;β) : Rn × [0,∞)→ R ∪ {+∞} defined by

h(x;β) = sup
y∈K
{〈G(x), x− y〉 + β‖x− y‖2}, (2.3)

where α, β are nonnegative constants.
For the set-valued mapping G, we require the following concepts.

Definition 2.1. The set-valued mapping G : Rn → 2R
n
is said to be

(i) strongly monotone with modulus µ > 0, if for each pair of points x, y ∈ Rn and for all u ∈ G(x), v ∈ G(y), we have

〈u− v, x− y〉 ≥ µ‖x− y‖2;

(ii) monotone, if for each pair of points x, y ∈ Rn and for all u ∈ G(x), v ∈ G(y), we have

〈u− v, x− y〉 ≥ 0;

(iii) pseudomonotone, if for each pair of points x, y ∈ Rn and for all u ∈ G(x), v ∈ G(y), we have

〈v, x− y〉 ≥ 0⇒ 〈u, x− y〉 ≥ 0;

(iv) strongly monotone with respect to x̄with modulus γ > 0 if for any point x ∈ K and for all u ∈ G(x), we have

〈u, x− x̄〉 ≥ γ ‖x− x̄‖2,

where x̄ solves set-valued variational inequality problem (1.1).
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Remark 2.1. (i) It is well known that, if G is strongly monotone, then G is monotone; if G is monotone, then G is
pseudomonotone. However, the converse are not true in general.
(ii) If x̄ solves the set-valued variational inequality problem (1.1), G is strongly monotone with modulus µ > 0, then G

is strongly monotone with respect to x̄with modulus µ, the converse is not true in general. In fact, if there exists v̄ ∈ G(x̄),
such that

〈v̄, x− x̄〉 ≥ 0, ∀x ∈ K ,

this implies that

〈u, x− x̄〉 ≥ µ‖x− x̄‖2 + 〈v̄, x− x̄〉 ≥ µ‖x− x̄‖2, ∀x ∈ K , ∀u ∈ G(x).

(iii) If x̄ solves the set-valued variational inequality problem (1.1), G is stronglymonotonewith respect to x̄withmodulus
γ > 0, similar discussion as in [4], we can obtain that the solution of the set-valued variational inequality problem (1.1) is
unique.

Definition 2.2. The set-valued mapping G : Rn → 2R
n
is said to be upper semicontinuous, if for each x ∈ Rn and each open

set V ⊂ Rn with G(x) ⊂ V , there exists an open neighborhood U of x such that G(z) ⊂ V for each z ∈ U .

The following lemmas are important for the later use.

Lemma 2.1 ([18]). Let X, Y be metric spaces, a set-valued map F : X → 2Y and a function f : Graph(F)→ R be given. If f and
F are upper semicontinuous and if the values of F are compact, then the function g : X → R ∪ {+∞} defined by

g(x) = sup
y∈F(x)

f (x, y),

is upper semicontinuous.

From the proof of Theorem 4.3 in [10], we have the following lemma:

Lemma 2.2. For any x ∈ Rn, x∗ ∈ K , then

inf
z∈K
{‖z − x∗‖2 + ‖z − x‖2} ≥

1
2
‖x− x∗‖2.

3. Gap functions

Inspired by Yamashita and Fukushima [10], we define g : Rn × Rn × (0,+∞)→ R by

g(x; u;α) = sup
y∈K
{〈u, x− y〉 − α‖x− y‖2}.

It is evident that g(x; u;α) can be rewritten as

g(x; u;α) =
〈
u, x− PK

(
x−

u
2α

)〉
− α

∥∥∥x− PK (x− u
2α

)∥∥∥2 ,
thus g(x; u;α) is continuous in x and u.
Now we define the function f : Rn × (0,+∞)→ R by

f (x;α) = inf
u∈G(x)

g(x; u;α). (3.1)

Since G(x) is compact and g(x; u;α) is continuous at u, thus f (x;α) is well defined.

Lemma 3.1. The following conclusions hold:
(i) For any α > 0, f (·;α) is nonnegative on K .
(ii) For any x ∈ Rn, there exists some u ∈ G(x) such that f (x;α) = g(x; u;α).
(iii) For any α > 0, the function f (·;α) is lower semicontinuous.

Proof. (i), (ii) are obvious. For (iii), since g(x; u;α) is continuous in x and u, G is upper semicontinuous and the values of G
are compact, from Lemma 2.1, we obtain that the function f (·;α) defined by

f (x;α) = inf
u∈G(x)

g(x; u;α) = − sup
u∈G(x)

(−g(x; u;α))

is lower semicontinuous. This completes the proof. �
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We define another function h(·;β) : Rn × [0,+∞)→ R ∪ {∞} by

h(x;β) = sup
y∈K ,v∈G(y)

{〈v, x− y〉 + β‖x− y‖2}, (3.2)

where β ≥ 0 is a constant. For any β ≥ 0, h(·;β) is nonnegative.

Lemma 3.2. For any β ≥ 0, the function h(·;β) is a lower semicontinuous convex function.

Proof. The convexity of h(·;β) follows from the definition (3.2) directly, since 〈v, · − y〉 + β‖ · −y‖2 is convex for every y
and v ∈ G(y). The lower semicontinuity of h(·;β) follows from the fact that a pointwise supremum of continuous functions
yields a lower semicontinuous function. This completes the proof. �

It is noted that if G is a single-valued mapping, f (·;α) reduces to the regularized gap function considered in [16,1,10] for
α > 0; h(·;β) reduces to the gap function considered in [19] for β = 0 and in [10] for β > 0.
We now prove that f (·;α) and h(·;β) can serve as gap functions for the set-valued variational inequality problem (1.1).

Lemma 3.3. If α > 0, then f (x∗;α) = 0 if and only if x∗ solves the set-valued variational inequality problem (1.1).

Proof. If f (x∗;α) = 0. By Lemma 3.1(ii), there exists some u∗ ∈ G(x∗) such that

f (x∗;α) = g(x∗; u∗;α)
= sup

y∈K
{〈u∗, x∗ − y〉 − α‖x∗ − y‖2}

= 0.

We claim that 〈u∗, y− x∗〉 ≥ 0, for any y ∈ K .
Indeed, we assume that there exists some y0 ∈ K such that 〈u∗, y0 − x∗〉 < 0, or equivalently, 〈u∗, x∗ − y0〉 > 0.
Letting yt = (1− t)x∗ + ty0, where t ∈ (0, 1), then we have

〈u∗, x∗ − yt〉 = 〈u∗, t(x∗ − y0)〉 = t〈u∗, x∗ − y0〉.

Denote by gyt (x
∗
; u∗;α) = 〈u∗, x∗ − yt〉 − α‖x∗ − yt‖2, thus we have

gyt (x
∗
; u∗;α) = t〈u∗, x∗ − y0〉 − t2α‖x∗ − y0‖.

Choose some t0 ∈ (0, 1) such that

gyt0 (x
∗
; u∗;α) = t0〈u∗, x∗ − y0〉 − t02α‖x∗ − y0‖ > 0.

By the definition of g , we have g(x∗; u∗;α) ≥ gyt0 (x
∗
; u∗;α). Thus we obtain that

g(x∗; u∗;α) ≥ gyt0 (x
∗
; u∗;α) > 0,

which contradicts the fact that

f (x∗;α) = g(x∗; u∗;α) = 0.

Conversely, if x∗ solves the set-valued variational inequality problem (1.1), then there exists some u∗ ∈ G(x∗) such that

〈u∗, y− x∗〉 ≥ 0, ∀y ∈ K .

It is clear that

〈u∗, x∗ − y〉 − α‖x∗ − y‖2 ≤ 0, ∀y ∈ K ,

which yields that

f (x∗;α) = g(x∗; u∗;α) ≤ 0.

Combining with the nonnegativity of f (·;α), we have that f (x∗;α) = 0. We completes the proof. �

Lemma 3.4. (i) If G is pseudomonotone, then x∗ solves the set-valued variational inequality problem (1.1) if and only if
h(x∗; 0) = 0.
(ii) If G is pseudomonotone, if there exists β > 0 with h(x∗;β) = 0, then x∗ solves the set-valued variational inequality

problem (1.1).
(iii) If x∗ solves the set-valued variational inequality problem (1.1), G is strongly monotone with respect to x∗ with modulus

µ > 0, and β is chosen to satisfy 0 ≤ β ≤ µ, then h(x∗;β) = 0.
(iv) If G is strongly monotone with modulus µ > 0, and β is chosen to satisfy 0 ≤ β ≤ µ, then x∗ solves the set-valued

variational inequality problem (1.1) if and only if h(x∗;β) = 0.
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Proof. (i) If x∗ solves the set-valued variational inequality problem (1.1), then there exists some u∗ ∈ G(x∗) such that

〈u∗, y− x∗〉 ≥ 0, ∀y ∈ K .

Since G is pseudomonotone, then we have

〈v, y− x∗〉 ≥ 0, ∀y ∈ K , v ∈ G(y),

which yields that

h(x∗; 0) = sup
y∈K ,v∈G(y)

{〈v, x∗ − y〉} ≤ 0.

Combining with the nonnegativity of h(·;β), we have that h(x∗; 0) = 0.
Conversely, if h(x∗; 0) = 0, i.e.,

〈v, x∗ − y〉 ≤ 0, ∀y ∈ K , v ∈ G(y). (3.3)

Since G is pseudomonotone and upper semicontinuous with nonempty compact convex values, by Proposition 1 in [20],
variational inequality (3.3) implies that there exists some u∗ ∈ G(x∗) such that

〈u∗, y− x∗〉 ≥ 0, ∀y ∈ K ,

which means that x∗ solves the set-valued variational inequality problem (1.1).
(ii) If β > 0 and h(x∗;β) = 0, it is easy to see that

〈v, x∗ − y〉 ≤ 0, ∀y ∈ K , v ∈ G(y). (3.4)

From the proof of (i), we know that x∗ solves the set-valued variational inequality problem (1.1).
(iii) Since G is strongly monotone with respect to x∗ with modulus µ > 0, for any y ∈ K , v ∈ G(y), we have

〈v, y− x∗〉 ≥ µ‖y− x∗‖2.

This implies

〈v, x∗ − y〉 + β‖y− x∗‖2 ≤ (β − µ)‖y− x∗‖2,

which yields that

h(x∗, β) ≤ 0,

Combining with the nonnegativity of h(·;β), we have that h(x∗;β) = 0.
(iv) Since G is strongly monotone with modulusµ > 0, G is pseudomonotone. The conclusion follows immediately from

(ii) and (iii). �

The gap functions mentioned above can be reformulated as constrained minimization problems equivalent to the set-
valued variational inequality problem (1.1). Next, we consider the following functions defined by

φf (x;α, λ) = inf
z∈K
{f (z;α)+ λ‖x− z‖2} (3.5)

and

φh(x;β, λ) = inf
z∈K

{
h(z;β)+ λ‖x− z‖2

}
, (3.6)

where λ is a positive constant, f (·;α) and h(·;β) are defined by (3.1) and (3.2), respectively. In fact, combining with the
definitions of f (·;α) and h(·;β), φf (·;α, λ) and φh(·;β, λ) can be rewritten as

φf (x;α, λ) = inf
z∈K ,u∈G(z)

{
sup
y∈K
{〈u, z − y〉 − α‖z − y‖2} + λ‖x− z‖2

}
and

φh(x;β, λ) = inf
z∈K

{
sup

y∈K ,v∈G(y)
{〈v, z − y〉 + β‖z − y‖2} + λ‖x− z‖2

}
,

respectively.
Consequently, by using the lemmas above, we prove that the unconstrained minimization of φf andΦh are equivalent to

the set-valued variational inequality problem (1.1) under certain assumptions of G.
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Theorem 3.1. (i) For any α > 0, β ≥ 0, λ > 0, then φf (·;α, λ) and φh(·;β, λ) are nonnegative on Rn.
(ii) For any α > 0, λ > 0, then x∗ solves the set-valued variational inequality problem (1.1) if and only if φf (x∗;α, λ) = 0.
(iii) If G is pseudomonotone, then for any λ > 0, x∗ solves the set-valued variational inequality problem (1.1) if and only if

φh(x∗; 0, λ) = 0.
(iv) Let x∗ solves the set-valued variational inequality problem (1.1), if G is stronglymonotonewith respect to x∗ withmodulus

µ > 0, β is chosen to satisfy 0 ≤ β ≤ µ, then for any λ > 0, φh(x∗;β, λ) = 0.
(v) If G is stronglymonotonewithmodulusµ > 0, for anyβ, λ satisfying 0 ≤ β ≤ µ and λ > 0, then x∗ solves the set-valued

variational inequality problem (1.1) if and only if φh(x∗;β, λ) = 0.

Proof. (i) For any α > 0, β ≥ 0, f (·;α) and h(·;β) are nonnegative on Rn, thus we have φf (·;α, λ) and φh(·;β, λ) are
nonnegative on Rn.
(ii) If x∗ solves the set-valued variational inequality problem (1.1), from Lemma 3.3, it holds that f (x∗;α) = 0. Thus we

have

φf (x∗;α, λ) = inf
z∈K
{f (z;α)+ λ‖x∗ − z‖2}

≤ f (x∗;α)+ λ‖x∗ − x∗‖2

= 0.

Combining with the nonnegativity ofΦf (·;α, λ), we have thatΦf (x∗;α, λ) = 0.
Conversely, suppose thatΦf (x∗;α, λ) = 0. From the definition of φf (·;α, λ), there exists a minimizing sequence {zn} in

K such that, for any positive integer n,we have

f (zn;α)+ λ‖zn − x∗‖2 <
1
n
,

i.e., there exists a sequence {zn} in K such that f (zn;α) → 0 and ‖zn − x∗‖ → 0. Since the set K is closed, zn → x∗ and
zn ∈ K imply that x∗ ∈ K . Since f (·;α) is lower semicontinuous and nonnegative, we have

0 ≤ f (x∗;α) ≤ lim inf
n→∞

f (zn;α) = 0,

which yields that

f (x∗;α) = 0.

Therefore from Lemma 3.1, we obtain that x∗ is a solution of the set-valued variational inequality problem (1.1).
(iii) IfG is pseudomonotone and x∗ solves the set-valued variational inequality problem (1.1), it follows fromLemma3.4(i)

that h(x∗; 0) = 0. Thus we have

φh(x∗; 0, λ) = inf
z∈K
{h(z; 0)+ λ‖x∗ − z‖2}

≤ h(x∗; 0)+ λ‖x∗ − x∗‖2

= 0.

Combining with the nonnegativity of φh(·; 0, λ), we obtain that

φh(x∗; 0, λ) = 0.

Conversely, suppose φh(x∗; 0, λ) = 0, the proof is similar to that of (ii).
(iv) If G is strongly monotone with respect to x∗ with modulusµ > 0, β is chosen to satisfy 0 ≤ β ≤ µ and x∗ solves the

set-valued variational inequality problem (1.1), it follows from Lemma 3.4(iii) that h(x∗;β) = 0. Thus we have

φh(x∗;β, λ) = inf
z∈K
{h(z;β)+ λ‖x∗ − z‖2}

≤ h(x∗;β)+ λ‖x∗ − x∗‖2

= 0.

Combining with the nonnegativity of φh(·;β, λ), we obtain that

φh(x∗;β, λ) = 0.

Conversely, suppose φh(x∗;β, λ) = 0, the proof is similar to that of (ii). �

Theorem 3.1 shows us that the unconstrained minimization problems

min
x∈Rn

φf (x;α, λ) and min
x∈Rn

φh(x;β, λ)
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are equivalent to the set-valued variational inequality problem (1.1) under certain assumptions of G and the associated
parameters. Thus it is convenient to use unconstrainedminimization methods to solve the set-valued variational inequality
problem (1.1) which satisfies the conditions in Theorem 3.1.
From the application point of view, it is desirable that the gap functions φf (x;α, λ) and φh(x;β, λ) are differentiable

everywhere. Thus, we define the functions Φf (·, ·;α, λ) : Rn × Rn × (0,+∞) × (0,+∞) → R and Φh(·, ·;β, λ) :
Rn × Rn × (0,+∞)× (0,+∞)→ R ∪ (+∞) by

Φf (x, z;α, λ) = f (z;α)+ λ‖x− z‖2

and

Φh(x, z;β, λ) = h(z;β)+ λ‖x− z‖2,

respectively. By the definitions of φf (·;α, λ) in (3.5) and φh(·;β, λ) in (3.6), we know that

φf (x;α, λ) = inf
z∈K

Φf (x, z;α, λ)

and

φh(x;β, λ) = inf
z∈K

Φh(x, z;β, λ).

Proposition 3.1. Let α > 0 and λ > 0. Suppose the functionΦf (x, ·;α, λ) attains its unique minimum zf (x;α, λ) on K for each
x ∈ Rn, then φf (·;α, λ) is differentiable on Rn and

∇φf (x;α, λ) = 2λ(x− zf (x;α, λ)).

Proof. The conclusion follows from Theorem 1.7 in Chapter 4 in [13]. �

Proposition 3.2. If β ≥ 0 and λ > 0, then the function Φh(x, ·;β, λ) attains its unique minimum zh(x;β, λ) uniquely.
Moreover, φh(·;β, λ) is differentiable convex function on Rn and

∇φh(x;β, λ) = 2λ(x− zh(x;β, λ)).

Proof. From Lemma 3.2, h(·;β) is a closed convex function. By the strictly convexity of the function ‖ · −x‖2, we know
that Φh(x, ·;β, λ) is strictly convex, thus Φh(x, ·;β, λ) attains its minimum on K uniquely. Therefore, by Theorem 1.7 in
Chapter 4 in [13], φh(·;β, λ) is differentiable and its gradient is exhibited as stated in the proposition. The convexity of
φh(·;β, λ) follows from the convexity of h(·;β) (see the proof of Proposition 4.1 in [21]). This completes the proof. �

Theorem 3.2. (i) If G is pseudomonotone, then for any λ > 0, then any stationary point of φh(·; 0, λ) solves the set-valued
variational inequality problem (1.1).
(ii) If G is strongly monotone with modulus µ > 0, for any β, λ satisfying 0 ≤ β ≤ µ and λ > 0, then any stationary point

of φh(·;β, λ) solve set-valued variational inequality problem (1.1).

Proof. By Proposition 3.2, the function φh(·;β, λ) is a differentiable convex function on Rn, for any β ≥ 0 and λ > 0. The
desired result then follows from Theorem 3.1(iii) and (v). �

4. Global error bounds

In this section, we present error bounds based on the gap functions f (·;α), h(·;β), φf (·;α, λ) and φh(·;β, λ) for set-
valued variational inequality problem (1.1). We assume that x∗ is the unique solution of set-valued variational inequality
problem (1.1) and G is strongly monotone with respect to x∗ with modulus µ > 0. We do not need that G satisfies some
Lipschitz continuity as usual.
First, we discuss how the gap functions f (x;α) and h(x∗;β) provide error bounds for the set-valued variational inequality

problem (1.1) on K .

Lemma 4.1. Suppose that x∗ ∈ K is the unique solution of the set-valued variational inequality problem (1.1) and G is strongly
monotone with respect to x∗ with modulus µ > 0. If α is chosen to satisfy 0 < α < µ, then we have

f (x;α) ≥ (µ− α)‖x− x∗‖2, ∀x ∈ K .



J. Fan, X. Wang / Journal of Computational and Applied Mathematics 233 (2010) 2956–2965 2963

Proof. By Lemma 3.1(ii), for any x ∈ K , there exists some vx ∈ G(x) such that f (x;α) = g(x; vx;α). Since G is strongly
monotone with respect to x∗ with modulus µ > 0, it holds that 〈vx, x− x∗〉 ≥ µ‖x− x∗‖2. Thus we have

f (x;α) = g(x; vx;α)

= sup
y∈K
{〈vx, x− y〉 − α‖x− y‖2}

≥ 〈vx, x− x∗〉 − α‖x− x∗‖2

≥ µ‖x− x∗‖2 − α‖x− x∗‖2

≥ (µ− α)‖x− x∗‖2,

this completes the proof. �

Lemma 4.2. If x∗ ∈ K solves the set-valued variational inequality problem (1.1), G is strongly monotone with respect to x∗ with
modulus µ > 0, and β is chosen to satisfy 0 < β ≤ µ, then we have h(x∗;β) = 0 and

h(x;β) ≥ β‖x− x∗‖2, ∀x ∈ K .

Proof. From Lemma 3.4(iii), we have

h(x∗;β) = 0.

From the definition of h(·;β) and x∗ ∈ K solves the set-valued variational inequality problem (1.1), we have

h(z;β) = sup
y∈K ,v∈G(y)

{〈v, z − y〉 + β‖z − y‖2}

≥ 〈u∗, z − x∗〉 + β‖z − x∗‖2

≥ β‖z − x∗‖2.

This completes the proof. �

By using the results obtained above, we now construct global error bounds for the set-valued variational inequality
problem (1.1).

Theorem 4.1. Suppose that x∗ ∈ K is the unique solution of the set-valued variational inequality problem (1.1) and G is strongly
monotone with respect to x∗ with modulus µ > 0, if α is chosen to satisfy 0 < α < µ. Then for any λ > 0, we have

1
2
min{µ− α, λ}‖x− x∗‖2 ≤ φf (x;α, λ) ≤ λ‖x− x∗‖2, ∀x ∈ Rn. (4.1)

Proof. From Lemma 3.3, we have

f (x∗;α) = 0.

Thus we obtain

φf (x;α, λ) = inf
z∈K
{f (z;α)+ λ‖x− z‖2}

≤ f (x∗;α)+ λ‖x− x∗‖2

= λ‖x− x∗‖2,

which implies the right-most inequality in (4.1).
On the other hand, it is easy to see that the function f (·;α) + λ‖ · −x‖2 is coercive, then there exist some z0 ∈ K such

that

φf (x;α, λ) = inf
z∈K
{f (z;α)+ λ‖x− z‖2} = f (z0;α)+ λ‖x− z0‖2. (4.2)

By Lemma 4.1, we have

f (z0;α) ≥ (µ− α)‖z0 − x∗‖2. (4.3)
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Replacing f (z;α)with (4.3) in the definition of φf (x;α, λ) in (3.5) and combining with (4.2), we obtain

φf (x;α, λ) = inf
z∈K
{f (z;α)+ λ‖x− z‖2}

= f (z0;α)+ λ‖x− z0‖2

≥ (µ− α)‖z0 − x∗‖2 + λ‖x− z0‖2

≥ inf
z∈K
{(µ− α)‖z − x∗‖2 + λ‖x− z‖2}

≥ min{µ− α, λ} inf
z∈K
{‖z − x∗‖2 + ‖x− z‖2}

≥
1
2
min{µ− α, λ}‖x− x∗‖2,

where the last inequality follows from Lemma 2.2. �

Theorem 4.2. If x∗ ∈ K solves the set-valued variational inequality problem (1.1), G is strongly monotone with respect to x∗
with modulus µ > 0, and β is chosen to satisfy 0 < β ≤ µ. Then for any λ > 0, we have

1
2
min{β, λ}‖x− x∗‖2 ≤ φh(x;β, λ) ≤ λ‖x− x∗‖2, ∀x ∈ Rn. (4.4)

Proof. Since x∗ ∈ K solves the set-valued variational inequality problem (1.1), then there exists some u∗ ∈ G(x∗) such that

〈u∗, y− x∗〉 ≥ 0, ∀y ∈ K .

From Lemma 3.4(iii), we have that

h(x∗;β) = 0.

Thus we obtain

φh(x;β, λ) = inf
z∈K
{h(z;β)+ λ‖x− z‖2}

≤ h(x∗;β)+ λ‖x− x∗‖2

= λ‖x− x∗‖2,

which implies the right-most inequality in (4.4).
On the other hand, from Lemma 4.2, we have

h(z;β) ≥ β‖z − x∗‖2, ∀z ∈ K . (4.5)

Replacing h(z;β)with (4.5) in the definition of φh(x;β, λ) in (3.6), we obtain

φh(x;β, λ) = inf
z∈K
{h(z;β)+ λ‖x− z‖2}

≥ inf
z∈K
{β‖z − x∗‖2 + λ‖x− z‖2}

≥ min{β, λ} inf
z∈K
{‖z − x∗‖2 + ‖x− z‖2}

≥
1
2
min{β, λ}‖x− x∗‖2,

where the last inequality follows from Lemma 2.2. This completes the proof. �
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