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In this paper, we investigate the angular momentum independence of the entropy sum and product for 
AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related 
to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime 
metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula 
on the horizons are necessary for static black holes, while our calculations require the expressions of 
metric and angular velocity formula. We find that the entropy sum is always independent of angular 
momentum for all dimensions and the angular momentum-independence of entropy product only holds 
for the dimensions d > 4 with at least one rotation parameter ai = 0, while the mass-free of entropy 
sum and entropy product for rotating black holes only stand for higher dimensions (d > 4) and for all 
dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological 
constant does not affect the angular momentum-free of entropy sum and product but the criterion for 
angular momentum-independence of entropy product will be affected.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Understanding the origin of the black hole entropy at micro-
scopic level has been a major challenge in quantum theories of 
gravity (though we have not achieved the final theory over years’ 
efforts) after the establishment of black hole thermodynamics by 
Hawking’s radiation with black body spectrum and in analogy be-
tween the black hole mechanics with the classical thermodynam-
ics. The mass-independence of entropy sum and entropy product 
for a stationary black hole with multi-horizons have been studied 
widely in recent years, and finding the product of all horizon en-
tropies is mass-independence in many cases, but violated in some 
cases, while the more “universal” property of mass free for gen-
eral sum of all horizon entropies proposed by Meng et al. [1]
is preserved and only depends on the coupling constants of the 
theory and topology of black holes in asymptotical Kerr–Newman–
(anti)-dS spacetime background, in most cases, which means that 
it is more general than entropy product in some cases. For Myers–
Perry black holes, the entropy sum is mass dependent only in four 
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dimensions, i.e., for the Kerr solution case, which has been demon-
strated in [2].

For an axisymmetric and stationary Einstein–Maxwell black 
hole in four dimensions with angular momentum J and charge Q , 
Marcus Ansorg and Jorg Hennig [3,4] have proved the universal re-
lation

A+ A− = (8π J )2 + (4π Q 2)2 (1.1)

where A+ and A− represent the area of event horizon and Cauchy 
horizon respectively. Cvetic et al. [5] have generalized the inves-
tigations by explicit calculations of the above to rotating black 
holes with multi-horizons in higher dimensions. They have demon-
strated that the entropy product of all horizons for rotating multi-
charge black holes in four and higher dimensions is mass free in 
either asymptotically flat or asymptotically AdS spacetime. Entropy 
sum of all black horizons in similar cases is also investigated in 
[1,6], which has shown that it is also independent of mass.

So far, most of the research works are focused on the mass in-
dependent properties of entropy sum and product of all horizons 
for kinds of black holes in variety of theories of gravity, includ-
ing modified gravity theories [7], as we have briefly introduced 
above. Below we will present the key motivation why we keep 
on studying the mathematical physics related to mass and angular 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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momentum-free relations for black holes. Considering a massive 
star with mass M large enough, angular momentum J and charge 
Q will collapse or two massive black holes merge into a black 
hole, i.e., a Kerr–Newman black hole after burning out all its nu-
clear fuel and all the parameters needed to describe it then are just 
the mass, angular momentum and charge mathematically, though 
numerous parameters and physical quantities with complicated 
physical processes are required to describe it before or during its 
collapsing. This is the so-called “no hair or three hairs theorem for 
black hole”. If there exist some relations which are independent of 
angular momentum (and/or mass-free for more complete case) of a 
rotating star/black hole, we say these relations own universal prop-
erty, which means no matter what initial conditions it starts the fi-
nal state is universal (mass or/and angular momentum free). In as-
trophysics, physical black holes only possess mass and angular mo-
mentum as its final state characters. Motivated by this thought, be-
sides the previously finished works on the new mass-free relations 
we continue studying angular momentum-independence relations 
by focusing on investigating the angular momentum-independence 
of entropy sum and entropy product of all horizons for rotating 
AdS black holes in the spacetime with a negative cosmological 
constant � in the general dimensions d ≥ 4, when � → 0, it just 
goes back to Myers–Perry solutions. Based on the method devel-
oped by Gao, et al. [2], we find that the entropy sum is always 
independent of angular momentum for all dimensions and the an-
gular momentum-free of product only holds for the dimensions 
d > 4 with at least one rotation parameter ai = 0, while the mass-
independence of entropy sum and product for rotating black holes 
only hold for higher dimensions (d > 4) and for all dimensions, 
respectively. On the other hand, we find that the introduction 
of a negative cosmological constant does not affect the angular-
momentum independence of entropy sum but the criterion for 
angular momentum-free of entropy product will be affected math-
ematically. From this point, the entropy sum may be more general 
than entropy product, just as in the case of mass-independence 
discussion. The clear expressions of entropy, Hawking temperature 
and angular velocity are required in our calculations, but the ex-
plicit forms of the mass and charge are not needed.

The present work is organized as follows. In next section we 
employ the first law of black hole thermodynamics and a math-
ematical lemma to the new black hole relations. In section three 
we focus the new entropy sum relations of Myers–Perry–AdS black 
holes, and following naturally their new entropy product relations 
are given in section four. The last section devotes conclusions and 
discussions.

2. Application of the first law of thermodynamics and 
mathematical lemma

2.1. The first law

In this section, by employing the first law of thermodynamics 
for black hole horizons, we propose two theorems related to the 
criterion about the angular momentum-independence of entropy 
sum and product on all horizons. We index which horizon by sub-
script i and index which angular momentum by subscript j all 
through this paper for convenience.

Theorem 1. For an axisymmetric and stationary rotating black hole with 
n ≥ 2 horizons and possesses m ≥ 1 rotation parameters a j , the entropy 
sum of all horizons is independent of angular momentum if and only if

∂(S1 + S2 + S3 + . . . + Sn)

∂ J j

= ∂ S̃

∂ J j
= −

i=n∑ �i j

T i
= 0, ( j = 1,2, . . . ,m) (2.1)
i=1
We can prove this theorem briefly as follows. For a stationary 
rotating multi-horizons black hole with mass M , electric charge 
Q and angular momentum J j in the spacetime background with 
a cosmological constant �, each horizon possesses corresponding 
Hawking temperature Ti , entropy Si , angular velocity �i j related 
to angular momentum J j , electric potential �i and thermodynam-
ics volume V i related to cosmological constant and we treat it as a 
dynamical variable [8–13]. We have the first law of thermodynam-
ics for each horizon, which reads

dM = TidSi + �idQ +
m∑

j=1

�i jd J j + V id� (2.2)

After transformation, we can get

dSi = 1

Ti
(dM − �idQ −

m∑
j=1

�i jd J j − V id�) (2.3)

which yields

∂ Si

∂ J j
= −�i j

T i
(2.4)

so

∂ S̃

∂ J j
= −

i=n∑
i=1

�i j

T i
, ( j = 1,2, . . . ,m) (2.5)

If entropy sum S̃ is angular momentum J independent, it must 
satisfy the condition that ∂ S̃

∂ J j
= 0 for every J j related to rotation 

parameters a j . We have proven Theorem 1 now.

Theorem 2. For an axisymmetric and stationary rotating black hole with 
n ≥ 2 horizons and possesses m ≥ 1 rotation parameters a j , the entropy 
product of all horizons is independent of angular momentum if and only 
if

n∑
i=1

�i j

T i Si
= 0, ( j = 1,2,3, . . . ,m) (2.6)

We can easily prove it by using (2.4), and we have

∂ Ŝ

∂ J j
= ∂(S1 S2 . . . Sn)

∂ J j
= − Ŝ(

�1 j

T1 S1
+ �2 j

T2 S2
+ . . .

�nj

Tn Sn
) (2.7)

= − Ŝ
n∑

i=1

�i j

T i Si
, ( j = 1,2,3, . . . ,m) (2.8)

where Ŝ �= 0. The proof is finished.

2.2. The mathematical lemma

The Lemma [2] we are going to introduce is critical to our cal-
culations as we show in the following sections and the general 
proof is given in [2].

Lemma 1. Let {ri} be n different numbers, then

n∑
i=1

rk
i

n∏
j �=i

(ri − r j)

= 0 (2.9)

where 0 ≤ k ≤ n − 2.
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For example, when n = 3, it gives

1

(r1 − r2)(r1 − r3)
+ 1

(r2 − r1)(r2 − r3)
+ 1

(r3 − r1)(r3 − r2)

= 0 (2.10)
r1

(r1 − r2)(r1 − r3)
+ r2

(r2 − r1)(r2 − r3)
+ r3

(r3 − r1)(r3 − r2)

= 0 (2.11)

while

r2
1

(r1 − r2)(r1 − r3)
+ r2

2

(r2 − r1)(r2 − r3)
+ r2

3

(r3 − r1)(r3 − r2)

= 1 (2.12)

3. Entropy sum of Myers–Perry–AdS black holes

In this section, we investigate the entropy sum of Myers–Perry–
AdS black holes by employing Theorem 1 and Lemma 1. We find 
that entropy sum of all horizons of Myers–Perry–AdS black holes 
is independent of angular momentum of the black holes in all 
dimensions, including Kerr–Newman–Ads black holes in four di-
mensions and BTZ black hole in three dimensions. The angular 
momentum-independence of entropy sum also holds for Myers–
Perry black holes and Kerr–Newman black holes. It is necessary to 
discuss Myers–Perry–AdS black holes in even dimensions and odd 
dimensions separately.

3.1. Even dimensions

We suppose that the spacetime dimension d = 2n + 2 with 
n ≥ 1. The metric form of Myers–Perry–AdS black holes in Boyer–
Linquist coordinates can be expressed as [14,15]

ds2 = −W (1 + λr2)dt2 + 2μ

U

(
W dt −

n∑
i=1

aiρ
2
i dφ

1 − λa2
i

)2

+
(

U

Z − 2μ

)
dr2 + r2dy2 +

n∑
i=1

(
r2 + a2

i

1 − λa2
i

)
(dρ2

i + ρ2
i dφ2

i )

− λ

W (1 + λr2)

(
n∑

i=1

(
r2 + a2

i

1 − λa2
i

)
ρidρi + r2 ydy

)2

(3.1)

where the functions W , Z and U are

W = y2 +
n∑

i=1

ρ2
i

1 − λa2
i

(3.2)

Z = (1 + λr2)

r

n∏
i=1

(r2 + a2
i ) (3.3)

U = Z

1 + λr2

(
1 −

n∑
i=1

a2
i ρ

2
i

r2 + a2
i

)
(3.4)

The ai are rotation parameters restricted to λa2
i < 1 and μ is the 

mass parameter. The parameter λ is defined as

λ = − 2�

(d − 1)(d − 2)
≥ 0 (3.5)

and the rotation parameters ai are related to angular momentum 
J i , which appear in the first law, via [14]

J i = μ�d−2ai

4π(1 − λa2)
∏

(1 − λa2)
(3.6)
i j j
where �d−2 is the volume of the unit (d − 2)-sphere

�d−2 = 2π
d−1

2


(d−1
2 )

(3.7)

We have horizon function Z −μ = 0, which can be rewritten as

n∏
j=1

(r2 + a2
j ) − 2μ

r

1 + λr2
= 0 (3.8)

and we denote 
n∏

j=1
(r2 +a2

j ) as 
∏

(r). The horizon function (3.8) has 

2n + ε (n ≥ 1) roots and the parameter ε is defined as{
ε =2 λ �= 0 (a)
0 λ = 0 (b)

(3.9)

The Hawking temperature on the i-th horizon is

Ti = ri

2π
(1 + λr2

i )

n∑
j=1

1

r2
i + a2

j

+ λr2
i − 1

4πri
= ki

2π
(3.10)

where ri and ki denote the corresponding horizon radius and sur-
face gravity, respectively. After calculating, we find that the surface 
gravity ki has the following simple and compact expression

ki =
(1 + λr2)2∂r

(∏
(r) − 2μ r

1+λr2

)
4μr

∣∣∣
r=ri

(3.11)

Angular velocity entering thermodynamical laws corresponding to 
the j-th rotation parameter on the i-th horizon is

�i j = (1 + λr2
i )a j

r2
i + a2

j

(3.12)

We introduce the function

f (r) =
(1 + λr2)2

(∏
(r) − 2μ r

1+λr2

)
4μr

= (1 + λr2)2

4μr

2n+ε∏
j=1

(r − r j)

(3.13)

The last term of Eq. (3.13) holds since there exist 2n + ε roots of 
Eq. (3.8). Then we take derivative of function f (r) with respect to r

f ′(ri) = (1 + λr2
i )2

4μri
∂r

(∏
(r) − 2μ

r

1 + λr2

)∣∣∣
r=ri

= 2π Ti

= (1 + λr2
i )2

4μri

2n+ε∏
g �=i

(ri − rg)

(3.14)

which yields

1

Ti
= 8πμri

(1 + λr2
i )

2n+ε∏
g �=i

(ri − rg)

(3.15)

Under the consideration of (3.12), we can get

2n+ε∑
i=1

�i j

T i
= 8πμ

2n+ε∑
i=1

ri
a j

r2
i +a2

j

(1 + λr2
i )

2n+ε∏
g �=i

(ri − rg)

(3.16)

Note the horizon function (3.8), we have
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ria j

(1 + λr2
i )(r2

i + a2
j )

= a j

2μ

n∏
k �= j

(r2
i + a2

k ) (3.17)

Substituting (3.17) into (3.16), then we obtain

2n+ε∑
i=1

�i j

T i
= 4πa j

2n+ε∑
i=1

n∏
k �= j

(r2
i + a2

k)

2n+ε∏
g �=i

(ri − rg)

= 0, ( j = 1,2, . . . ,n) (3.18)

By using the mathematical Lemma 1, one can easily check that 
(3.18) holds since the maximal power term of 

∏n
k �= j(r

2
i + a2

k ) is 
r2n−2

i (2n − 2 ≤ 2n + ε − 2) while the minimal term is r0
i . We could 

see that the parameter λ related to cosmological constant � has 
vanished in (3.18), which means that the cosmological constant 
may have no effects for the angular-momentum independence of 
entropy sum. Considering the Theorem 1, we conclude that the 
entropy sum of Myers–Perry or Myers–Perry–AdS black holes is 
angular independent in even dimensions d ≥ 4.

3.2. Odd dimensions

Suppose the spacetime dimension d = 2n + 1 (n ≥ 2). The met-
ric of Myers–Perry–AdS black holes expressed by Boyer–Linquist 
coordinates in the odd dimension is given by

ds2 = −W (1 + λr2)dt2 + 2μ

U

(
W dt −

n∑
i=1

aiρ
2
i dφ

1 − λa2
i

)2

+
(

U

Z − 2μ

)
dr2 +

n∑
i=1

(
r2 + a2

i

1 − λa2
i

)
(dρ2

i + ρ2
i dφ2

i )

− λ

W (1 + λr2)

(
n∑

i=1

(
r2 + a2

i

1 − λa2
i

)
ρidρi

)2

(3.19)

where the functions W , Z and U are

W =
n∑

i=1

ρ2
i

1 − λa2
i

(3.20)

Z = (1 + λr2)

r2

n∏
i=1

(r2 + a2
i ) (3.21)

U = Z

1 + λr2

(
1 −

n∑
i=1

a2
i ρ

2
i

r2 + a2
i

)
(3.22)

The ai are rotation parameters restricted to λa2
i < 1 and μ is the 

mass parameter. The horizon function is

n∏
j=1

(r2 + a2
j ) − 2μ

r2

1 + λr2
= 0 (3.23)

The Hawking temperature on the i-th horizon is

Ti = ri

2π
(1 + λr2

i )

n∑
j=1

1

r2
i + a2

j

− 1

2πri
= ki

2π
(3.24)

The surface gravity ki is

ki =
(1 + λr2)2∂r

(∏
(r) − 2μ r2

1+λr2

)
2

∣∣∣ (3.25)

4μr r=ri
We introduce the function

f (r) =
(1 + λr2)2

(∏
(r) − 2μ r2

1+λr2

)
4μr2

= (1 + λr2)2

4μr2

2n+ε∏
j=1

(r − r j)

(3.26)

After taking derivative of f (r) with respect to r, we obtain

f ′(ri) = (1 + λr2
i )2

4μr2
i

∂r

(∏
(r) − 2μ

r2

1 + λr2

)∣∣∣
r=ri

= 2π Ti

= (1 + λr2
i )2

4μr2
i

2n+ε∏
g �=i

(ri − rg)

(3.27)

which yields

2n+ε∑
i=1

�i j

T i
= 8πμ

2n+ε∑
i=1

r2
i

a j

r2
i +a2

j

(1 + λr2
i )

2n+ε∏
g �=i

(ri − rg)

(3.28)

Note the horizon function (3.23)

r2
i a j

(1 + λr2
i )(r2

i + a2
j )

= a j

2μ

n∏
k �= j

(r2
i + a2

k) (3.29)

Finally we obtain

2n+ε∑
i=1

�i j

T i
= 4πa j

2n+ε∑
i=1

n∏
k �= j

(r2
i + a2

k)

2n+ε∏
g �=i

(ri − rg)

= 0, ( j = 1,2, . . . ,n) (3.30)

The final result is just the same as the case in even dimensions. 
The entropy sum of BTZ black hole [16] in three dimension is also 
angular independent. From this point we conclude that the entropy 
sum of all horizons of rotating black holes is angular momentum 
independent in all dimensions d ≥ 3.

4. Entropy product of Myers–Perry–AdS black holes

In this section, we discuss the entropy product of all horizons 
and we find that the parameter λ related to cosmological constant 
has contribution to the final criterion for the universal property of 
entropy product while the angular momentum-independence (or 
dependence) of entropy sum will not be affected by cosmological 
constant.

4.1. Even dimensions

The area of the i-th horizon is denoted as Ai in even dimension 
(d = 2n + 2, n ≥ 1)

Ai = �d−2

n∏
j=1

r2
i + a2

j

1 − λa2
j

(4.1)

In Einstein gravity, the Hawking–Bekenstein entropy on the i-th 
horizon is

Si = Ai

4
= �d−2

4

n∏
j=1

r2
i + a2

j

1 − λa2
j

(4.2)
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We introduce function f (r)

f (r) =
(1 + λr2)2

(∏
(r) − 2μ r

1+λr2

)
4μr

n∏
j=1

r2
i + a2

j

1 − λa2
j

= (1 + λr2)2

4μr

2n+ε∏
j=1

(r − r j)

n∏
j=1

r2
i + a2

j

1 − λa2
j

(4.3)

After taking derivative of f (r) with respect to r, together with 
Eq. (3.11), (4.2) and (3.8), we obtain

f ′(ri) = (1 + λr2
i )2

4μri
∂r

(∏
(r) − 2μ

r

1 + λr2

)∣∣∣
r=ri

n∏
j=1

r2
i + a2

j

1 − λa2
j

= 8π

�d−2
Si Ti

= (1 + λr2
i )2

4μri

2n+ε∏
g �=i

(ri − rg)

n∏
j=1

r2
i + a2

j

1 − λa2
j

= 1

2

2n+ε∏
g �=i

(ri − rg)
1 + λr2

i
n∏

j=1
(1 − λa2

j )

(4.4)

Employing angular velocity formula (3.12), together with (4.4) we 
can get

2n+ε∑
i=1

�i j

T i Si
= 16π

�d−2

n∏
f =1

(1 − λa2
f )

2n+ε∑
i=1

a j

r2
i +a2

j

2n+ε∏
g �=i

(ri − rg)
(4.5)

From horizon function (3.8), we have

a j

r2
i + a2

j

= (1 + λr2
i )a j

2μri

n∏
k �= j

(r2
i + a2

k ) (4.6)

Substituting (4.6) into (4.5), then

2n+ε∑
i=1

�i j

T i Si
= 8πa j

μ�d−2

n∏
f =1

(1 − λa2
f )

2n+ε∑
i=1

n∏
k �= j

(r2
i + a2

k)

2n+ε∏
g �=i

(ri − rg)

1 + λr2
i

ri

(4.7)

where 
n∏

f =1
(1 − λa2

f ) �= 0.

We could see that the parameter λ does not vanish which 
means that we have to discuss (4.7) in two different cases.

• Case I: λ = 0.
In this case, there are 2n horizons located at ri which are the 
roots of horizon function (3.8) and Eq. (4.7) becomes

2n∑
i=1

�i j

T i Si
= 8πa j

μ�d−2

2n∑
i=1

n∏
k �= j

(r2
i + a2

k)

2n∏
g �=i

(ri − rg)

1

ri
(4.8)

It’s obviously to see that the maximal power term of
r−1

i

∏n
k �= j(r

2
i + a2

k ) is r2n−3
i and the minimal is r−1

i

∏n
k �= j a2

k . 
By employing Lemma 1 and Theorem 2, the entropy product 
of rotating black hole is independent of angular momentum 
if and only if 2n − 3 ≥ 0 and 

∏n
k �= j a2

k = 0 in even dimensions 
which means that n ≥ 2, dimension d ≥ 6 and at least one 
and up to n − 1 rotation parameter ak = 0 since the object we 
study is a rotating black hole we can’t let all rotation parame-
ter be zero.

• Case II: λ > 0.
In this case, there are 2n + 2 horizons and Eq. (4.7) becomes

2n+2∑
i=1

�i j

T i Si
= 8πa j

μ�d−2

n∏
f =1

(1 − λa2
f )

2n+2∑
i=1

n∏
k �= j

(r2
i + a2

k )

2n+2∏
g �=i

(ri − rg)

1 + λr2
i

ri

(4.9)

It’s obviously to see that the maximal power term of r−1
i (1 +

λr2
i ) 

∏n
k �= j(r

2
i + a2

k ) is λr2n−1
i and the minimal is r−1

i

∏n
k �= j a2

k . 
By employing Lemma 1 and Theorem 2, the entropy product 
of rotating black hole is independent of angular momentum if 
and only if 2n − 1 ≥ 0 and 

∏n
k �= j a2

k = 0 in even dimensions 
which means that n ≥ 1, dimension d ≥ 4 and at least one 
and up to n − 1 rotation parameter ak = 0. While when n = 1, 
d = 4, there is only one rotation parameter which can’t be zero 
for rotating black hole we study so the entropy product must 
be angular momentum dependent in four dimensions. We can 
conclude that, for even dimensions, the entropy product of ro-
tating black holes is angular momentum independent if and 
only if they exist in dimensions d ≥ 6 and possess at least one 
zero rotation parameter.

4.2. Odd dimensions

The i-th horizon area Ai in odd dimension (d = 2n + 1, n ≥ 2) 
has the form

Ai = �d−2

ri

n∏
j=1

r2
i + a2

j

1 − λa2
j

(4.10)

Hawking–Bekenstein entropy on the i-th horizon is

Si = Ai

4
= �d−2

4ri

n∏
j=1

r2
i + a2

j

1 − λa2
j

(4.11)

We introduce function f (r)

f (r) =
(1 + λr2)2

(∏
(r) − 2μ r2

1+λr2

)
4μr3

n∏
j=1

r2
i + a2

j

1 − λa2
j

= (1 + λr2)2

4μr3

2n+ε∏
j=1

(r − r j)

n∏
j=1

r2
i + a2

j

1 − λa2
j

(4.12)

Taking derivative of f (r) with respect to r, together with Eq. (3.23), 
(3.25) and (4.11), it’s not hard to get

f ′(ri) = (1 + λr2
i )2

4μr2
i

∂r

(∏
(r) − 2μ

r

1 + λr2

)∣∣∣
r=ri

1

ri

n∏
j=1

r2
i + a2

j

1 − λa2
j

= 8π

�d−2
Si Ti (4.13)
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= (1 + λr2
i )2

4μr3
i

2n+ε∏
g �=i

(ri − rg)

n∏
j=1

r2
i + a2

j

1 − λa2
j

= 1

2ri

2n+ε∏
g �=i

(ri − rg)
1 + λr2

i
n∏

j=1
(1 − λa2

j )

By using angular velocity formula (3.12), horizon function (3.23)
and (4.14), then

2n+ε∑
i=1

�i j

T i Si
= 16π

�d−2

n∏
f =1

(1 − λa2
f )

2n+ε∑
i=1

ri
a j

r2
i +a2

j

2n+ε∏
g �=i

(ri − rg)

= 8πa j

μ�d−2

n∏
f =1

(1 − λa2
f )

2n+ε∑
i=1

n∏
k �= j

(r2
i + a2

k )

2n+ε∏
g �=i

(ri − rg)

1 + λr2
i

ri

(4.14)

The final result we get is just the same as the case in even 
dimension and we must discuss in two cases, too.

• Case I: λ = 0.
In this case, there are 2n horizons located at ri which are the 
roots of horizon function (3.23) and Eq. (4.14) becomes

2n∑
i=1

�i j

T i Si
= 8πa j

μ�d−2

2n∑
i=1

n∏
k �= j

(r2
i + a2

k )

2n∏
g �=i

(ri − rg)

1

ri
(4.15)

It’s obviously to see that the maximal power term of
r−1

i

∏n
k �= j(r

2
i + a2

k ) is r2n−3
i and the minimal is r−1

i

∏n
k �= j a2

k . 
By employing Lemma 1 and Theorem 2, the entropy product 
of rotating black hole is independent of angular momentum 
if and only if 2n − 3 ≥ 0 and 

∏n
k �= j a2

k = 0 in odd dimensions 
which means that n ≥ 2, dimension d ≥ 5 and at least one and 
up to n − 1 rotation parameter ak = 0.

• Case II: λ > 0.
In this case, there are 2n + 2 horizons and Eq. (4.14) becomes

2n+2∑
i=1

�i j

T i Si
= 8πa j

μ�d−2

n∏
f =1

(1 − λa2
f )

2n+2∑
i=1

n∏
k �= j

(r2
i + a2

k )

2n+2∏
g �=i

(ri − rg)

1 + λr2
i

ri

(4.16)

It’s obviously to see that the maximal power term of r−1
i (1 +

λr2
i ) 

∏n
k �= j(r

2
i + a2

k ) is λr2n−1
i and the minimal is r−1

i

∏n
k �= j a2

k . 
By employing Lemma 1 and Theorem 2, the entropy product 
of rotating black hole is independent of angular momentum 
if and only if 2n − 1 ≥ 0 and 

∏n
k �= j a2

k = 0 in odd dimensions 
which means that n ≥ 2, dimension d ≥ 5 and at least one and 
up to n − 1 rotation parameter ak = 0. What’s more, for three 
dimension BTZ black hole, the entropy product can be found 
in [16] which is angular momentum dependent. We can con-
clude that, for odd dimension, the entropy product of rotating 
black holes is angular momentum independent if and only if 
they exist in dimensions d ≥ 5 and possess at least one zero 
rotation parameter.
Together with the discussions for even dimensions and odd di-
mensions, we obtain a simple conclusion which can be stated as 
the entropy product of rotating black holes is angular momen-
tum independent if and only if the black holes exist in dimensions 
(d ≥ 5) with at least one zero rotation parameter.

5. Conclusions and discussions

In this paper, we investigate the angular momentum indepen-
dence of the entropy sum and product for rotating black holes 
based on the first law of thermodynamics and a mathematical 
lemma related to Vandermonde determinant. The advantage of the 
method is that the explicit forms of the spacetime metric, black 
hole mass and charge are not needed but the Hawking tempera-
ture and entropy formula on the horizons are necessary for static 
black holes, while our calculations require the expressions of met-
ric and angular velocity formula. We find that the entropy sum 
is always independent of angular momentum for all dimensions 
and the angular momentum-independence of entropy product only 
holds for the dimensions d > 4 case with at least one rotation pa-
rameter ai = 0, while the mass-independence of entropy sum and 
product for rotating black holes only hold for higher dimensions 
cases (d > 4) and for all dimensions, respectively. On the other 
hand, we find that the introduction of a negative cosmological 
constant does not affect the angular momentum-independence of 
entropy sum and product but the criterion for angular momentum-
independence of entropy product will be affected mathematically. 
From this point, the entropy sum may be more general than en-
tropy product relations.

We have also obtained some new angular momentum indepen-
dent thermodynamic relations which are not listed in this paper, 
though their implying meaning is still waiting for further inves-
tigations. We believe with more information available or coming 
soon the deep meaning for black hole entropy and its application 
to some possible quantum gravity effects as well as other aspects 
for black hole physics related will be elaborated more clearly, with 
the hope that we may get some hints for the possible quantum 
gravity framework to be established.
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