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Excessive ultraviolet radiation (UVR) exposure of the skin is associated with adverse clinical outcomes.
Although both exogenous sunscreens and endogenous tissue components (including melanins and
tryptophan-derived compounds) reduce UVR penetration, the role of endogenous proteins in absorbing
environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which
are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (con-
taining UVA, UVB and UVC wavelengths) here we hypothesised that UV chromophore (Cys, Trp and Tyr)
content can predict the susceptibility of structural proteins in skin and the eye to damage by physiolo-
gically relevant doses (up to 15.4 J/cm2) of solar UVR (95% UVA, 5% UVB). We show that: i) purified
suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and β- and γ-lens crystallins
undergo solar simulated radiation (SSR)-induced aggregation and/or decomposition and ii) exposure to
identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoe-
lastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in
determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich
proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural
proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The
majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin
associated proteins, elastic fibre-associated components and β- and γ-crystallins) are localised and/or
particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically
the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich
proteins are localised in regions of high UVR exposure as a consequence of an evolutionary pressure to
express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage.

& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Chronic exposure to ultraviolet radiation (UVR) produces dose-
dependent changes in skin structure which have a profound
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impact on both its mechanical function and clinical appearance
(see [1,2] for comprehensive reviews of this photoageing process).
In the early stages of photoageing key elastic fibre-associated
components such as fibrillin microfibrils and fibulin-5 are lost
from the papillary dermis [3,4], whilst the latter stages are char-
acterised by the deposition of disorganised elastotic material (solar
elastosis: [5,6], the gain of glycosaminoglycans [7] and the loss of
both fibrillar collagens [8,9] and collagen VII anchoring fibrils [10].
Although the potential role of cell-derived extracellular matrix
(ECM) proteases in mediating dermal remodelling is well estab-
lished [11–14] the substrate specificity of the UVR up-regulated
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Fig. 1. Solar simulated radiation is primarily composed of penetrating, yet low
energy, UVA wavelengths. (a) Normalised spectral outputs of broadband UVB, solar
simulated radiation (SSR) and filtered SSR (UVA) sources. The spectral output of SSR
(WG320 filtered xenon arc lamp) is composed of 5.0% UVB radiation. Further fil-
tration (with WG345) removes the majority of the UVB component (UVA: 99.6%,
UVB: 0.4%). In contrast, the spectral output of a broadband UVB source such as the
Philips TL-12 [15] contains UVA (44.3%), UVB (55.3%) and UVC (0.4%) components
whilst the output of many UVC-rich sources peaks at 254 nm. (b) Although such
254 nm UVC radiation can influence the epidermis, solar UVB and UVA radiations
can penetrate the papillary dermis and subcutaneous tissue respectively (adapted
from [31]).
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matrix metalloproteinases (MMPs-1, �2, �3, �7, �9 and �12) is
low [15]. Collectively, these enzymes are capable of degrading
many key ECM components including fibrillar collagens, elastic
fibre constituents, proteoglycans, adhesive glycoproteins and der-
mal-epidermal junction components [16–18]. Therefore it is diffi-
cult to reconcile the concept of non-specific cell-derived ECM
proteases as the sole mediators of matrix degradation with the
complex spatial, compositional and temporal ECM remodelling
which characterises chronically UV-exposed skin. In common with
other groups [19,20] we have therefore suggested that the direct
photochemical decomposition of ECM proteins may be an impor-
tant factor in mediating differential remodelling of the dermis in
photoaged skin [15,21,22].

Whilst exposure to UVR can profoundly influence collagen
structure and function, such changes have been induced using
sources which emit large doses of UVC (o280 nm) radiation (for
example [23,24]). In contrast, the wavelengths which comprise
sunlight at the Earth’s surface and are capable of penetrating to
the dermis (UVA and UVB: Fig. 1) [25] have a minimal effect on
collagen structure and function [15,20,26,27] even when the doses
employed are more than two orders of magnitude greater than the
minimal erythemal doses (MEDs) of the respective wavebands (see
Watson et al. [22] for a comprehensive review). Although collagen
is largely devoid of sulphur- (cysteine [Cys]) and aromatic ring-
containing (Histidine [His], Phenylalanine [Phe], Tryptophan [Trp]
and Tyrosine [Tyr]) amino acid residues other ECM components
contain a much larger percentage of these UV chromophores [28].
We have previously demonstrated that fibrillin microfibrils
(essential elastic fibre components) and the ubiquitous adhesive
glycoprotein fibronectin (with UV chromophore contents of 21%
and 13% respectively) are susceptible to low doses of broadband
UVB radiation (Philips TL-12 source) which have no effect on the
electrophoretic mobility of collagen I (UV chromophore content
2%) [15]. However, whilst this broadband UVB source is used
extensively in photobiology research, its spectral output is dis-
similar to terrestrial solar UVR having a small UVC content and
crucially a larger UVB:UVA ratio (Fig. 1a) [29]. Studies on skin
optics predict that longer wavelength UVR will penetrate the skin
more deeply and there is a consensus that UVA (as opposed to
UVB) radiation is the key wave band responsible for photoageing
(Fig. 1b) [1,30,31].

In this study we have used a combination of biochemical and
ultrastructural analyses to test the hypothesis that environmen-
tally relevant doses of solar simulated radiation (SSR: 95.0% UVA,
5.0% UVB) and UVA radiation (filtered SSR: 99.6% UVA, 0.4% UVB)
are capable of differentially degrading key dermal ECM compo-
nents (collagen I, tropoelastin, collagen VI, fibrillin microfibrils,
fibronectin) and lens proteins ((α-, β- and γ-crystallins) according
to their terrestrial UV chromophore (Cys, Trp and Tyr) [32–34]
content. As a consequence of their high molecular weight, ECM
proteins such as fibrillin-1 and fibronectin contain many potential
amino acid UV chromophores (fibrillin-1 [Accession number:
P3555] for example contains 362 Cys, 13 Trp and 92 Tyr residues).
This compositional complexity (which in the case of fibrillin
microfibrils is combined with a resistance to dissociation into
component monomers), makes it impractical to characterise the
effects of UVR exposure on individual amino acid residues. Instead
we employed biochemical approaches, including gel electrophor-
esis which has been used extensively by ourselves, and others, to
probe the effects of UVR on the structure of fibronectin, collagen I
and tropoelastin and the lens crystallins (see [24] and our com-
prehensive review of collagen and UVR [22]). For the remaining
assemblies, fibrillin and collagen VI microfibrils we characterised
the effects of UVR on their ultrastructure. It is clear that the beads-
on-a-string morphology of these microfibrils is susceptible to
single amino acid substitutions and also to the local micro-
environment [15,16,35–37]. Finally we have related UV chromo-
phore content to tissue location (within skin and eyes) and for-
mulated a secondary hypothesis that amino acid chromophore-
rich proteins compliment the sunscreen activity of other endo-
genous chromophores including melanins and tryptophan-derived
components such as N′-formylkynurenine and 6-formylindolo[3,2-
b]carbazole [38].
Materials and methods

All chemicals were of analytical grade and obtained from
Sigma-Aldrich Co. Ltd. (Poole, UK) unless otherwise stated.
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Synthesis and purification of ECM proteins

Placental bovine collagen I and human plasma fibronectin were
purchased from Sigma-Aldrich Co. Ltd and recombinant human
tropoelastin (SHELΔ26A [Synthetic Human Elastin without
domain 26A] which contains residues 27–724 and corresponds to
the 60 kDa mature protein following signal peptide removal) was
expressed in bacteria and purified as previously described [39].
Fibrillin and collagen VI microfibrils were extracted and co-pur-
ified from post-confluent cultures of human dermal fibroblasts
(HDFs) by bacterial collagenase digestion and size exclusion
chromatography [15,40]. The HDFs (a gift from Dr Stuart Cain,
University of Manchester UK and originally sourced from Cascade
Biologics, Invitrogen, Paisley, UK) were maintained to 6 weeks
post-confluency at 37 °C and 5% CO2 in DMEM þ GlutaMAX
(supplemented with 10% foetal calf serum and 50 mg/mL penicillin/
streptomycin; Gibco, Paisley, UK). Cell cultures were digested for
2 h with 0.5 mg/mL bacterial collagenase type IA (suspended in
0.4 M NaCl, 0.05 M Tris–HCl, 0.01 M CaCl2 at pH 7.4, and supple-
mented with protease inhibitors: 2 mM phenylmethanesulfonyl
fluoride and 5 mM N-Ethylmaleimide) and subsequently purified
by low pressure chromatography on an AKTA prime plus system
coupled to a Sepharose CL-2B column (GE Healthcare, Little
Chalfont, UK) which was equilibrated in high salt buffer (0.4 M
NaCl, 0.05 M Tris–HCl at pH 7.4). Irradiation experiments were
conducted on two pooled microfibril-rich fractions from the centre
of the excluded volume (V0) peak.

Whilst the susceptibility of isolated proteins to UVR exposure is
commonly investigated using molecules extracted from non-
human sources including rat, chick and cow [22], it is important to
establish the inter-species homology and in particular the relative
chromophore content for each of the target proteins. The primary
amino acid sequences of both the alpha 1 and alpha 2 chains of
bovine collagen I are highly homologous to their human coun-
terparts (col1a1¼98%; col1a2¼93%) and as a consequence the
concentration and relative proportion of UV chromophore and
oxidation sensitive amino acids is identical for the alpha 1 chains
and nearly identical for the alpha 2 chain (human: 0 Cys, 5 Met,
0 Trp, 2 Tyr; bovine: 0 Cys, 4 Met, 0 Trp, 1 Tyr). The situation is
more complicated for plasma and tissue fibronectin. Whilst both
molecular species function as dimers, in plasma fibronectin only
one sub-unit contains a V domain and both sub-units are missing
the EIIIA and EIIIB modules. However it is also the case that tissue
fibronectin is a mixture of alternatively spliced isoforms which
vary in a tissue-, cell-type- and temporal-manor [41]. Therefore
given the heterogeneity of tissue fibronectin isoforms, and com-
mon use of plasma fibronectin as a functional homologue for tis-
sue fibronectin (in experiments designed to promote cell-adhesion
and ECM synthesis [42]) we felt that conclusions concerning the
UVR susceptibility of plasma fibronectin could reasonably be
extrapolated to tissue fibronectin. The lens crystallins are a com-
plex family of related proteins but the amino acid sequence
homology between human and lens crystallins is very high as is
the identity of the putative UVR and ROs-susceptible amino acid
residues (e.g. human and bovine beta B2 crystallins share 97%
homology and identical numbers of Cys, Met, Trp and Tyr resi-
dues). In addition to these proteins we also test the effects of UVR
on recombinant human tropoelastin and fibrillin and collagen VI
microfibrils which were synthesised by human dermal fibroblasts.
Despite the high sequence homology which is evident between
these structural proteins, it is also clear that additional post-
translational modifications (occurring either during synthesis or as
a consequence of ageing) are likely to alter the photochemistry of
these proteins [43].
UV irradiation of isolated proteins and ECM assemblies

Prior to irradiation experiments collagen I was digested with
pepsin in acetic acid and neutralised with 1 M Tris, fibronectin was
solubilised in a neutral high salt buffer (0.4 M NaCl, 0.05 M Tris–
HCl, 0.01 M CaCl2 at pH 7.4: [15]) and recombinant tropoelastin
was reconstituted in phosphate buffered saline. Subsequently,
protein suspensions were irradiated using a Solar Simulator
(Applied Photophysics, Cambridge, UK) consisting of a xenon arc
lamp filtered with Schott (Stafford, UK) WG320 and WG345 filters
for SSR and UVA respectively. The suspensions (diluted to a final
protein concentration of 0.5;mg/mL) and the pooled microfibril-
rich fractions were exposed in triplicate to radiation doses of 0.8,
7.7 and 15.4 J/cm2 (SSR, exposure times: 25 s, 4 min 16 s and 8 min
32 s) and 1, 10 and 20 J/cm2 (UVA, exposure times: 20 s, 3 min 20 s
and 6 min 40 s) in 2�10 mm (height�diameter) polyethylene
lids (total volume 250 mL). These environmentally relevant doses
equated to 0.21–4.16 times the SSR MED and 0.01–0.20 times the
UVA MED respectively (as calculated from skin phototest data
described in 22). All suspensions were incubated at room tem-
perature for the duration of the UVR exposure. Spectral outputs of
the solar simulator were measured using a double grating spec-
troradiometer (Bentham Instruments Ltd., Reading, UK) calibrated
to National Physical Laboratory (Teddington, UK) standards. Rou-
tine irradiance measurements were made using a UVX radiometer
and UVX-31 and UVX-36 detectors (UVR Products; Upland, CA,
USA) calibrated against the spectroradiometer measurements for
the SSR (irradiance¼54.3 mW/cm2) and UVA (irradiance¼
51.4 mW/cm2) spectral outputs. The structural effects of UV irra-
diation on protein structure were characterised by gel electro-
phoresis and atomic force microscopy (AFM).

Gel electrophoresis of isolated proteins

Gel electrophoresis approaches have frequently been used to
identify UVR induced changes in collagen [15,24,44,45] and H2O2

induced changes in fibronectin [46]. In this study we assessed the
effects of exposure to both SSR and UVA radiation on suspensions
of collagen I, tropoelastin, fibronectin and lens crystallins by
reducing SDS-PAGE. Boiled protein suspensions (in Laemmli
sample buffer containing 1.43 M β-mecaptoethanol) were elec-
trophoresed on either 6% resolving / 4% stacking gels (for 4 h at
150 V) or pre-cast 4–12% gradient NuPAGEsNovexs Bis-Tris Mini
Gels with MOPS buffer (Invitrogen, Paisley, UK; for 50 min at
200V). The low Mw lens crystallins were electrophoresed on pre-
cast 4–12% gradient gels (NuPAGEsNovexs Bis-Tris Mini Gels with
MES SDS running buffer (Invitrogen, Paisley, UK) for 35 min at
200 V. Protein bands were visualised by Instant Blue™ staining
(Expedeon Ltd., Cambridge, UK) prior to drying onto blotting paper
(Gel Master dryer, Gardner Denver Ltd., Alton, UK). Gel images
were digitised on a high resolution flat-bed scanner (Epson
expression 1600; Seiko Epson Corp., Hemel Hempstead, UK) at
800 dpi prior to analysis using ImageJ software [47] with the
inbuilt gel analysis tools to measure the optical density (O.D.:
normalised against the optical density of non-UVR exposed α1
(I) and α2(I) collagen and tropoelastin bands or total stained
protein [fibronectin]) and position of protein bands.

Ultrastructural characterisation of fibrillin and collagen VI
microfibrils

In contrast to monomeric and polymeric suspensions of col-
lagen I, tropoelastin, fibronectin and the lens crystallins, which are
readily resolved by gel electrophoresis, fibrillin and collagen VI
microfibrils were extracted from HDF cultures as ultrastructurally
distinct macro-molecular assemblies. As a consequence we



Fig. 2. Key UV chromophore-poor, dermal structural proteins are unaffected by exposure to either solar simulated or UVA radiation. (a) and (b) Following exposure to SSR
radiation suspensions of monomeric collagen I were size fractionated by reducing SDS-PAGE and the constituent α chains identified according to their molecular weights
(α1:130 kDa, α2:107 kD). Even at the highest doses there was no evidence of protein aggregation or decomposition on the gel (i) or derived densitometric line profiles (ii),
whilst the normalised optical density of both α chains remained invariant (iii). (c) and (d) The electrophoretic mobility and optical density of tropoelastin (TE) was similarly
unaffected by exposure to both SSR (c) and UVA (d) radiation (SDS-PAGE [i], densitometric line profile [ii] and normalised optical density [iii]).
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employed intermittent contact mode AFM (Nanoscope IIIa Multi-
mode AFM: Bruker, Corp., Santa Bárbara, CA, USA) to characterise
the effects of UVR exposure on the morphology of microfibril-rich
suspensions as previously described [15,48]. Height images
(2�2 mm, sampled at 512�512 pixels) of fibrillin and collagen VI
microfibrils were captured using OTESPA high aspect ratio etched
silicon probes at scan rates of 1.97 Hz and software determined
cantilever oscillation frequencies and drive amplitudes (Bruker,
Corp.). For each experimental group, fibrillin microfibril periodi-
city (bead to bead distance; n¼500) and flexion angle (a measure
of microfibril flexibility; n¼500) were determined by WSxM
scanning probe microscopy software and bespoke routines written
in Microsoft Visual Basic [15,49,50]. The periodicity of collagen VI
microfibrils was also measured using WSxM software to generate
axial height profiles (n¼150 repeats) [48]. Although we have
previously demonstrated that these techniques (electrophoretic
mobility and ultrastructural analysis) are capable of identifying
UVR-induced changes in protein structure [15] it is also possible
that exposure to SSR and UVA may induce functional changes
(including increased susceptibility to proteases) which cannot be
detected by these techniques. In addition the effects of the buffer
constituents (phosphate based for re-suspended, lyophilised pro-
teins and Tris-based for isolated microfibrils) on protein-radical
transfer reactions remain undefined.
Bioinformatic analyses

The ProtParam tool (Swiss Institute of Bioinformatics: http://
expasy.org/) was used to calculate the UVA chromophore (Cys, Trp and
Tyr) content of 244 human proteins located in the dermis, epidermis,
hair, cornea, lens and vitreous humour. The protein and gene names,
UVA chromophore contents and individual Cys, Trp and Tyr contents
of these proteins are detailed in the Supplementary Table S1A–F.

Statistical analysis

Data are expressed as mean 7 SEM and statistical comparisons
were made by Students t-test (po0.05 considered significant)
Q–Q normality plots. Box plots depict the population median and
the 1st, 25th, 75th and 99th percentiles. All statistical analyses
were conducted using SPSSv20 (IBM, Portsmouth, UK).
Results and discussion

UV chromophore-poor ECM proteins are resistant to environmentally
relevant doses of solar simulated and UVA radiation

Whilst there is evidence that fibrillar collagen I is UVR labile,
UV-mediated changes in collagen structure and function are only

http://expasy.org
http://expasy.org
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induced by exposure to non-physiologically relevant wavelengths
(UVC) and/or doses up to three orders of magnitude greater than
the MED [22]. Having previously shown that exposure to 10 MEDs
of broadband UVB had no observable effect on the quaternary
structure of monomeric collagen I or the electrophoretic mobility
of individual collagen I α chains [15] we now show that UVA-
chromophore-poor collagen I monomers (Table S1: 0.32% Cys, Trp
and Tyr) are similarly unaffected by exposure to environmentally
relevant doses of both SSR (up to 15.4 J/cm2; 4.2�MED) and UVA
radiation (20 J/cm2; 0.2�MED) (Fig. 2a and b). These wavebands
failed to induce aggregation or decomposition in a suspension of
monomeric collagen I and had no effect on electrophoretic
mobility or normalised optical density of either the α1(I) and α2
(I) bands (SSR: α1[I]: r2¼0.016, slope¼�6.0�10� 5, α2(I):
r2¼0.558, slope¼ 2.1�10�3, UVA radiation: α1[I]: r2¼0.445,
slope¼�1.6�10�3, α2(I): r2¼0.310, slope¼�4.0�10�4). As a
consequence, atrophy of dermal fibrillar collagens characteristic of
photoaged skin is unlikely to arise from either direct absorption of
terrestrial solar UVA or UVB radiation or from interaction with the
reactive oxygen species (ROS) that may generated via photo-
sensitisation [51–53]. Instead, UV-upregulation of MMPs-1, �2,
�3, and �9 [11,12] may be the main mediators of fibrillar collagen
(I, III and V) degradation [17].

In addition to the tensile strength conferred by collagen I and III
fibres, skin relies on the mechanical properties of elastic fibres to
impart elastic recoil. Whilst these fibres are complex, macro-
molecular assemblies [54], the most abundant component, elastin,
and its precursor tropoelastin, are also largely devoid of UV
chromophores (Table S1: elastin and tropoelastin: 2.34% and 2.16%
respectively). Compared with the extensive literature on UVR/
collagen interactions, the effects of UVR on the structure of elastin
are poorly defined. Elastin-derived peptides as simple model sys-
tems undergo structural modification following exposure to high
dose UVC radiation (300 � MED) [55,56]. In this study, we
exposed human tropoelastin, to environmentally relevant UVR
doses and wavelengths. As as with collagen I, tropoelastin was
remarkably stable. Neither SSR nor UVA radiation induced any
observable change in the electrophoretic profile of purified
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tropoelastin bands visualised by SDS-PAGE (Fig. 2c and 2d: [iii]
normalised optical density of the tropoelastin monomer following
exposure to SSR: r2¼0.784, slope¼�3.1�10�3 or UVA radiation:
r2¼0.264, slope¼0.5�10�3). It therefore appears likely that likely
that secondary enzymatic mechanisms and/or cell signalling
pathways, are likely to drive the profound remodelling of the
elastic fibre architecture (termed solar elastosis) which char-
acterises chronically photoaged skin enzymatic [1,57].

Although collagen I and elastin are the most abundant cuta-
neous ECM proteins, the dermal matrix is a complex structure
which also relies on glycoproteins, proteoglycans and minor col-
lagens in order to function. One such minor (with regards to
abundance) yet ubiquitous collagen is collagen VI. Three alpha
chains of collagen VI form extracellular tetramers which in turn
assemble into characteristic double-beaded microfibrils which
play important roles in cell-matrix interactions [58,59]. Crucially
the characteristic double-beaded morphology and native periodi-
city (�109 nm) of these microfibrils means that environmentally
induced changes in their structure (by surface charge or [Ca2þ])
can be quantified by AFM [48,50]. Whilst collagen VI monomers
are slightly enriched in UVA chromophores (3.66%) compared with
collagen I (0.32%) and tropoelastin (2.16%), exposure to either SSR
or UVA, at doses of 15.4 and 20 J/cm2 respectively, had no
detectable effect on the morphology or periodicity of isolated
collagen VI microfibrils (Fig. 3: SSR: 0 J/cm2¼107.970.6 nm,
15.4 J/cm2¼107.270.9 nm, p¼0.080; UVA radiation:
0 J/cm2¼108.270.1 nm, 20 J/cm2¼108.370.3 nm, p¼0.744). In
contrast to the fibrillar collagens, the distribution and expression
of network forming collagen VI is unaffected in photoaged skin
[60]. Whilst there is evidence of MMP-2- and �9-mediated col-
lagen VI degradation [61,62] it is unknown if the assembled
microfibril (as opposed to isolated α3[VI] chains or pepsin/acid
extracted full length collagen VI) is susceptible to these proteases.
Therefore the persistence of collagen VI in photoaged skin may be
attributable to the resistance of the microfibrillar form to the
action of both MMPs and exposure to direct SSR or UVA radiation
(Fig. 3). Collectively these data support a model where UV chro-
mophore-poor dermal ECM proteins, elastin and collagen
(Table S1) are resistant to damage following direct exposure to
solar radiation.

Both SSR and UVA radiation readily degrade UV chromophore-rich
fibrillin microfibrils.

In contrast to the low UV chromophore content of collagens
and tropoelastin, many important dermal ECM proteins are rich in
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UV-absorbing amino acid residues [15,22]. In particular, over 16%
of the amino acid residues in fibrillin-1, the main component of
fibrillin microfibrils, are UVA chromophores (Table S1). When
visualised by AFM, fibrillin microfibrils appear as discrete, uniform
and semi-rigid beads on a string (Fig. 4ai and bi) with a mean bead
to bead periodicity of 55–60 nm (Figs. 4aiii and biii) [63,64].
Exposure to SSR or UVA induced a dose dependent increase in
microfibril flexibility (as quantified by a significant decrease in
flexion angle: data not shown) and promoted aggregation at
higher doses (Figs. 4aii and bii). Both UVR radiation wavebands
significantly reduced microfibril periodicity (SSR:
0 J/cm2¼56.770.2 nm, 15.4 J/cm2¼53.370.3 nm, po0.001;
UVA: 0 J/cm2 ¼ 58.070.3nm, 20 J/cm2¼55.770.4 nm, po0.001)
and were similarly effective at inducing changes in microfibril
ultrastructure (Fig. 4aiii, 4biii and 4c: relative slopes of the peri-
odicity dose response curves: SSR ¼ �0.23 and UVA ¼ �0.14).

Our experiments demonstrate that cystine-rich fibrillin
microfibrils are susceptible to UVA radiation which has no effect
on UV chromophore-poor tropoelastin (Fig. 2c, 2 d and Fig. 4) and
hence supports a selective multi-hit model of photoageing[22]. In
this model the susceptibility of these disulphide bonded micro-
fibrils to environmentally relevant doses of SSR or UVA radiation
provides a selective mechanism for: (i) the early photochemical
decomposition of fibrillin microfibril oxytalan fibres in the papil-
lary dermis by the UVA and UVB components of solar radiation
and (ii) the subsequent remodelling of the elastic fibre system in
the reticular dermis as a consequence of microfibril exposure to
penetrating UVA radiation. In this latter case, photochemical
decomposition of fibrillin microfibrils appears to be the triggering
event which leads to aberrant TGFβ signalling, the up-regulation
of both MMP and tropoelastin synthesis, the subsequent dysre-
gulation of elastogenesis and hence the deposition of elastotic
material (solar elastosis)[65–69].

Fibronectin is preferentially degraded by the UVB component of solar
simulated radiation.

Fibronectin is a ubiquitous adhesive glycoprotein which
undergoes aggregation in response to broadband UVB irradiation
[15]. Such structural remodelling (with its attendant risk of
cytotoxic amyloid formation) is a common response of polypep-
tide chains to oxidation and/or UV irradiation [70] both in vitro
[71] and in tissues such as the lens [72]. Here, we show that
fibronectin aggregation is also induced by exposure to physiolo-
gical doses of SSR and UVA radiation (Fig. 5a). Crucially however,
the structure of fibronectin was markedly more sensitive to SSR,
which contains 5% UVB radiation, than to UVA radiation (WG345-
filtered SSR: �0.4% UVB) (Fig. 5b: relative slopes of the fibronectin
aggregation dose response curves: SSR ¼ 5.6�10�3 and
UVA¼0.8�10�3 [normalised optical density of the aggregate
band]). Compared with human fibrillin-1, human fibronectin is
rich in Trp but contains fewer Cys residues. Fibrillin-1 contains
12.7% Cys, 0.5% Trp, 3.3% Tyr; fibronectin: 2.7% Cys, 1.7% Trp, 4.3%
Tyr although, as in fibrillin-1, the majority of these Cys residues, 60
out of 63 in fibronectin, are predicted to be disulphide bonded
(forming Cystines where tail absorption stretches into the UVA
range). Therefore, whilst both fibrillin-1 and fibronectin are rela-
tively Trp and Cystine-rich (in contrast to collagen I which is
devoid of cysteines and hence cystines, tropoelastin which con-
tains only one cysteine and collagen VI which contains two
cystines and 16 free cysteines) these moieties are likely to be the
key mediators of photochemical damage to proteins [32–34] and
hence the differential amino acid content of these proteins may be
the primary cause of their differential sensitivity to UVA radiation.
As the penetration of UVB radiation into the dermis is limited
(Fig. 1) it follows that any biological effects of UVR/fibronectin
interaction (which may include, but are unlikely to be limited to,
the promotion of proteolysis [73]), will be maximal in the papillary
dermis where the early effects of photoageing are observed [4,74].
In commonwith many dermal matrix proteins, proteins within the
eye are also exposed to UVR. As lens crystallins are proposed to
accumulate damage with prolonged UVR exposure [75] we also
characterised the effects of SSR on the electrophoretic mobility of
α-, β-and γ-crystallins.

SSR induces dimerisation and fragmentation of UV chromophore-rich
β- and γ-crystallins.

The formation of age-related nuclear cataracts in the human
lens is associated with a loss of optical transparency [76].
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Crystallins, which are the major protein components of the lens,
are organised into families of molecular chaperones (α-crystallins)
and structural proteins (β- and γ-crystallins) [75]. These proteins
undergo extensive age-related oxidation [77] and have been
shown to be susceptible to UVC (γ), broad-spectrum UVA, B and C
(β) and UVA (α) damage [78–81]. As the amino acid composition
of the crystallins is largely conserved between species [82] we
exposed purified suspensions of bovine lens-derived α-, β- and γ-
crystallins to 15.4 J/cm2 SSR (Fig. 6). Alpha-crystallin underwent
slight dimerisation following SSR exposure. Krivandin and collea-
gues have suggested that the structure of the α-crystallins may
allow these proteins to accumulate UVA induced damage without
undergoing major conformational changes [81]. Whilst our
bioinformatic analyses demonstrate that both αA- and αB-crys-
tallins are relatively rich in UVA chromophores (Table S1: 4.6% and
2.3% respectively) compared with collagen I, both proteins are
chromophore-poor compared with the fibrillin-1, fibronectin and
crucially the β- and γ-crystallins.

The β-crystallins co-purify as a complex mixture of B1, B2, B3,
A2, A3 and A4 forms [83]. Collectively these proteins contain
between 7.8% (B2) and 13.0% (A3) Cys, Trp and Tyr residues
(Table S1). In contrast to the α-crystallins, the β-crystallins
undergo more extensive structural re-organisation as a con-
sequence of SSR exposure (Fig. 6) and the increased staining
intensity of multiple bands 4 40 kDa in Mw indicates that most, if
not all, β-crystallins undergo SSR-mediated dimerisation.
Although we cannot rule out the potential for SSR to induce larger
oligomeric aggregates, the similar staining intensity of the
monomeric bands makes this unlikely. Also the suspension of γ-
crystallins (potentially containing all four UVA chromophore-rich
forms: A�[14.3%], B�[14.8%], C�[16.7%] and D�[14.4%]) under-
went both dimerisation (40 kDa band) and fragmentation (10 kDa
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band). Therefore, in common with dermal ECM proteins, the sus-
ceptibility of lens crystallins to SSR correlated with Cys, Trp and
Tyr content, although cysteine mediated absorption may not be a
factor (bovine β2 lens crystallin, for example, contains nine un-
disulphide bonded cysteines). The β- and γ-crystallins appear to
be well placed to act, alongside other lens components, as pho-
tosensitisers, antioxidants or benign filters [84].

Previous studies have concentrated primarily on characterising
the susceptibility of a few cutaneous proteins to UVR exposure as a
consequence of either their tryptophan residues (in the case of
keratin [85]) or the prevalence of age-related post-translational
modifications (which principally affect collagen and elastin) (see
Wondrak et al. for a comprehensive review [38]). Crucially how-
ever, tissues such as human skin are composed of hundreds of
proteins [86,87] many of which have the potential to absorb UVR
as a consequence of their amino acid composition alone. There-
fore, we propose that the content of amino acid UV chromophores
can predict the relative susceptibility of proteins to UVA exposure
in vitro and that UV exposed human tissues (skin and the eye)
contain both UV-stable and UV labile proteins. If the relative UV-
stability of proteins impacts on biological function then evolution
might be expected to exert a selective pressure on the distribution
of UV-susceptible proteins in these organs.

UV exposed tissues are rich in UV- and potentially oxidation-sus-
ceptible proteins

Having initially identified 244 proteins characteristic of human
epidermis [88–92], dermis [15], hair shaft [93–96], lens [97,98],
lens capsule [99–103], cornea [99,104,105] and vitreous humour
[106,107] (Table S1), we then used the UniProt protein database
(http://www.uniprot.org) to calculate the relative composition of
UV chromophores (Fig. 7a). We found that UV-exposed organs
contain proteins that are highly enriched in UV chromophores and
other proteins which are largely devoid of Cys, Trp and Tyr. In skin,
UVA chromophore-rich proteins are concentrated in the stratum
corneum of the epidermis (the Cys-rich late cornified envelope
proteins and small proline-rich proteins), the papillary dermis (the
structurally related and Cys-rich fibrillins, LTBPS and fibulins) and
the hair shaft (both Cys and Tyr-rich keratin associated proteins)
(Fig. 7a and Table S1). Furthermore, the epidermis also contains
abundant collagen and elastin-cross-linking enzymes (lysyl oxi-
dase and lysyl oxidase-like proteins) which have no known func-
tion in this ECM-lacking tissue [108] yet are rich in Tyr residues.
The significant up-regulation of Cys-rich late cornified envelope
proteins in response to UVB radiation exposure [91] provides
further support for this hypothesis, it remains to be determined if
other potential proteins rich in UV chromophores are similarly UV
inducible. We propose that, in skin, evolution rather than exerting
an adaptive pressure to locate UV susceptible proteins in UV-
shielded anatomical sites, has favoured the expression of said
proteins in tissues and tissue regions which not only receive
maximal UV exposure but will also be exposed to oxidative stress
as a consequence of photodynamic processes (although our cur-
rent experiments cannot establish the relative contribution of
direct and ROS mediated pathways [52,53,109]). Crucially whilst
UV-stable proteins such as collagen I and elastin are distributed
throughout the dermis, fibrillin microfibril bundles are con-
centrated in the outmost (and therefore most UV exposed) layer of
the dermis whilst the late cornified envelope proteins (which are
also chromophore rich) are abundant in the outer stratum
corneum.

This differential localisation of UV chromophore-rich proteins
is also a feature of the eye, where the collagenous cornea is largely
devoid of Cys, Trp and Tyr containing proteins but the lens, which
undergoes profound age-related remodelling, is rich in non-
proteinaceous chromophores [77] and in β- and γ-crystallins
(Fig. 7c). The vitreous humour also contains free ECM molecules,
such as fibrillin-1, fibulin-1, MAGP-1 and fibronectin [106]. It is
currently unknown whether these matrix components perform
any structural function in the vitreous humour but their chromo-
phore content may help to act as an additional sunscreen for
retinal cells.
Conclusion

On the basis of these data we propose that proteins rich in UV
absorbing and oxidation-sensitive amino acid residues may per-
form additional functions (to their structural roles) as sacrificial
sunscreens in UV exposed tissues.
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