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a b s t r a c t

An L(2, 1)-coloring, or λ-coloring, of a graph is an assignment of non-negative integers
to its vertices such that adjacent vertices get numbers at least two apart, and vertices at
distance two get distinct numbers. Given a graph G, λ is the minimum range of colors for
which there exists a λ-coloring of G. A conjecture by Griggs and Yeh [J.R. Griggs, R.K. Yeh,
Labelling graphs with a condition at distance 2, SIAM Journal on Discrete Mathematics 5
(1992) 586–595] states that λ is at most∆2, where∆ is themaximum degree of a vertex in
G.We prove that this conjecture holds forweakly chordal graphs. Furthermore,we improve
the known upper bounds for chordal bipartite graphs, and for split graphs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Radio frequency assignment is the task of assigning radio frequencies to transmitters at different locations without
causing interference. This problem is closely related to coloring the vertices of a graph where the vertices represent the
transmitters and adjacencies indicate possible interferences. To satisfy theλ-coloring constraint, close transmitters (distance
2 apart) must receive different frequencies and very close transmitters (distance 1 apart) must receive frequencies at least
2 apart, that is a more realistic scenario to avoid the interferences.

Fig. 1 shows that if a graph coloring approach is used, then may exist several transmitters sending information to a
central one within the same frequency, and with the λ-coloring approach, all the transmitters with a common neighbor
send information with different frequencies, avoiding this problem.

Let dist(u, v) be the number of edges in a shortest path between the vertices u and v in a graphG = (V , E). A k-λ-coloring
of G is a function c : V → {0, . . . , k} such that if uv ∈ E, then |c(u) − c(v)| ≥ 2 and if dist(u, v) = 2, then c(u) ≠ c(v). The
λ-coloring problem for a graph G is to determine λ, the minimum k for which there exists a k-λ-coloring of G.

Fig. 2 shows examples of optimum λ-coloring of graphs.
As with the chromatic number of a graph G, it is natural to seek a bound on λ in terms of its maximum degree ∆. Griggs

and Yeh [6] proved the general upper bound λ ≤ n + ∆ − 2 for a graph with n vertices and conjectured that λ ≤ ∆2

for every graph with ∆ ≥ 2. This has been a motivating problem for research in this field, and some results are known.
Optimum 4-λ-coloring of graphs with ∆ = 2 are given by Griggs and Yeh [6], so, from now on, we only consider graphs
with ∆ ≥ 3. Moreover, for the purposes of the λ-coloring problem it suffices to consider only connected graphs.

The Griggs and Yeh conjecture was verified for some classes of graphs such as chordal graphs and planar graphs [2,3] but
it is still open for general graphs. An up to date survey on the subject is [3]. In this paper we prove this conjecture for weakly
chordal graphs. Moreover, we show that for chordal bipartite graphs, λ ≤ ∆2

− ∆ + 2, improving the ∆2 upper bound
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Fig. 1. (a) Coloring; and (b) λ-coloring approaches.

Fig. 2. Optimum λ-colorings of graphs.

from [4]. Besides, we also improve the upper bound for split graphs given by Bodlaender et al. [2] and Kral [7], proving that
for split graphs λ ≤

2
√
3

9 ∆1.5
+ O(∆).

A graph is split if its vertex set can be partitioned into a stable set and a complete set. A graph is chordal if it has no induced
cycle of length at least four. A graph isweakly chordal if neither the graph nor its complement has an induced cycle of length
at least five. A bipartite graph is chordal bipartite if it is a weakly chordal graph. For more information on these graph classes
we refer to [5].

2. Weakly chordal graphs and chordal bipartite graphs

A breadth-first search in a graph G defines a rooted spanning tree T , called a BFST (breadth-first search tree), of G. If T is
rooted in r and v is a vertex of G, let depth(v) = dist(v, r) in T . A BFST has the property that for every vertex v, dist(v, r)
in G is exactly depth(v). Moreover, for every edge uv of G, |depth(v) − depth(u)| ≤ 1. A breadth-first search in a graph G
also produces an ordering of V given by the order in which the vertices are visited by the search. This ordering satisfies: if u
precedes v, then depth(u) ≤ depth(v).

Lemma 1. Let T be a BFST of a weakly chordal graph G = (V , E). For vertices u and v, if dist(u, v) = 2 in G and depth(u) ≤

depth(v), then there exists a vertex z such that uz ∈ E, vz ∈ E, and depth(z) ≤ depth(v).

Proof. Assume there is no such vertex z. Hence, since dist(u, v) = 2 in G, there must be a vertex z ′ adjacent to both u and
v such that depth(z ′) > depth(v). As T is a BFST of G, and uz ′

∈ E, depth(u) = depth(v). Let u′ be the vertex adjacent to u
in T with depth(u′) = depth(u) − 1, that is, u′ is the father of u. Analogously, take v′ the father of v.

By supposition u′v ∉ E and uv′
∉ E. Moreover, since dist(u, v) = 2, uv ∉ E. Finally, z ′v′ and z ′u′ are not edges of

G because T is a BFST of G. Then the vertices u′, u, z ′, v and v′ belong to an induced cycle of length at least five in G, a
contradiction. (See Fig. 3.) �

Let G = (V , E) be a graph and T a BFST of G. Throughout this section, for a vertex v ∈ V , Pv denotes the set of vertices u
adjacent to v in G satisfying depth(u) ≤ depth(v). Moreover, Q denotes the set of vertices of Pv with the same depth of v, A
denotes the ones with the depth one unit lower than the depth of v, and A′ is a maximal stable set of A. Note that Pv = Q ∪A,
the father of v in T always belongs to Pv, v ∉ Pv , and the vertex z in the statement of Lemma 1 is in A. As usual,N(v) denotes
the set of all neighbors of v.

Lemma 2. Let T be a BFST of a weakly chordal graph G = (V , E). If v ∈ V with depth(v) ≥ 2, then there is a vertex z with
depth(z) = depth(v) − 2 such that S ⊆ N(z), where S is any stable set of A.
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Fig. 3. Edges in a BFST of a weakly chordal graph.

Fig. 4. There is a vertex w′ with S ⊆ N(w′).

Fig. 5. There is no vertex z such that A ⊆ N(z).

Proof. The proof goes by induction on |S|. If |S| = 1, then take z as the father in T of the vertex in S. Now, let S = S ′
\ {w}

with |S ′
| ≥ 1. By induction, there is a vertex z ′ such that S ′

⊆ N(z ′).
As depth(v) ≥ 2, there is at least one vertex w′ such that depth(w′) = depth(w) − 1 and ww′

∈ E(T ). If z ′w ∈ E we
are done. Otherwise, we have that w′y ∈ E for every y ∈ S ′. In fact, if it is not the case, the vertices z ′, y, v, w and w′ would
belong to an induced cycle of length at least 5. Therefore, S ⊆ N(w′). (See Fig. 4.) �

Lemma 3. Let T be a BFST of a weakly chordal graph G. For a vertex v such that depth(v) ≥ 2, if Pv is a stable set, Q = ∅, and
|A| = ∆, then there is only one vertex z such that depth(z) = depth(v) − 2. Moreover, z is the root of T .

Proof. By Lemma 2, there is a vertex z with depth(z) = depth(v) − 2 such that Pv ⊆ N(z). As |A| = ∆, we have N(z) = A.
Thus, z is the root of T . �

Lemma 4. Let T be a BFST of a weakly chordal graph G. There is no vertex v such that depth(v) ≥ 2, Pv is a stable set, Q ≠ ∅,
and |Pv| = ∆.

Proof. Suppose that there is such a vertex v. Using an argument similar to that used in the proof of Lemma 2, there is a
vertex z ∉ Pv (if z ∈ Pv there would be an edge connecting vertices in Pv) such that depth(z) = depth(v)−1 and Q ⊆ N(z).

Moreover, by supposition, zv ∉ E, and for every w ∈ A, zw ∈ E, otherwise the vertices z, y ∈ Q , v and w would belong
to an induced cycle of length at least 5 (as seen in Fig. 5).

As |Pv| = ∆, there is no vertex u ∈ N(z) such that depth(u) < depth(z), hence z is the root of the tree. However, there
is at least one vertex x ∈ A for which depth(x) = depth(z), a contradiction. �

Lemma 5. Let T be a BFST of a weakly chordal graph G = (V , E). For any vertex v the number of vertices u such that
dist(u, v) = 2 and depth(u) ≤ depth(v) is at most |Pv|(∆ − 2) + 1.

Proof. Let v be a vertex in V and U be the set of vertices u such that dist(u, v) = 2 and depth(u) ≤ depth(v). By Lemma 1,
every u ∈ U has at least one neighbor in Pv . Let R1 be the set of edges having one end in U and the other in Pv and R2 be the
set of edges having both ends in Pv .
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Fig. 6. Contradiction in a BFST of a weakly chordal graph.

An upper bound for the size of set U could be given by the number of paths of length 2 starting in v. Since this is a very
rough estimate it can be decreased by considering the paths that do not contribute by ending in a vertex not in U , and the
pair of paths ending in the same vertex in U . First, observe that an edge xy ∈ R2 implies the existence of two paths of length
two starting in v, one from v to y passing through x and another from v to x passing through y. However, as both x and y
are in the neighborhood of v, these vertices do not have distance two to v. Obviously, |R1| ≥ |U|. Moreover, for every vertex
u ∈ U with more than one edge in R1, only the first edge of R1 where u belongs will increase the number of vertices with
distance two to v.

So, one can give an upper bound for the size of U as follows: |U| ≤ |Pv|(∆ − 1) − (|R1| − |U|) − 2|R2|. Now, we analyze
the values of |R1| and |R2| for the worst case scenario:

(1) vertices in A:

(1.1) vertices in A′ (a maximal stable set in A).
By Lemma 2, there is a vertex z, with depth(z) = depth(v) − 2, such that A′

⊆ N(z). In this case, as z ∈ U, |R1| ≥

|U| + (|A′
| − 1).

(1.2) vertices in A \ A′.

Each vertex in A \ A′ is adjacent to one in A′ (or A′ would not be maximal). Moreover, each edge connecting vertices in A
increases the value of |R2| by one unit.

Hence, in the worst case, all the vertices of A are in Case (1.1), because each vertex in A′ reduces the upper bound for |U|

by one unit and each vertex in (1.2) reduces it by two, i.e., |R1| ≥ |U| + (|A| − 1).
(2) vertices in Q :
If v is the root of T the theorem holds (as there is no vertex u such that dist(u, v) = 2 and depth(u) ≤ depth(v)). Let v

be a vertex different from the root, so A ≠ ∅ and, for every vertex w ∈ Q :

(2.1) If wx ∈ E (for some x ∈ A), then |R2| is increased by one unit. In this case, the edge cannot be the same edge counted
in Case (1.2), because they are connecting vertices in A and Q , and the ones in Case (1.2) are connecting two vertices
in A.

(2.2) Otherwise, wx ∉ E. If there is a vertex z ′ such that z ′w ∈ E, z ′x ∈ E (for some x ∈ A), depth(z ′) = depth(x), and
z ′

∉ Pv (otherwise we would be in Case (2.1)), then |R1| is increased by one unit, because there are two paths of size
two from v to z ′. Moreover, the edge that increases the value of |R1| is not the same as in Case (1.1), because, in this
case, the edges connect the vertex z ′ (with depth(z ′) = depth(v)−1) and a vertex in A orQ and the edges in Case (1.1)
connect a vertex z (with depth(z) = depth(v) − 2) to vertices in A.

(2.3) Otherwise, wx ∉ E, and there is no vertex z ′ such that depth(z ′) = depth(x) where z ′w ∈ E and z ′x ∈ E. Let w′ be the
father of w in T . So, w′v ∉ E (otherwise we would be in Case (2.1)), xw ∉ E (otherwise we would be in Case (2.1)), and
w′x ∉ E (otherwise we would be in Case (2.2)), and the vertices w′, w, x, and v would belong to an induced cycle of
length at least five, a contradiction. (See Fig. 6.)

So, in the worst scenario, |R1| is increased by at least |Q | units, i.e., |R1| ≥ |U| + |A| − 1 + |Q | = |U| + |Pv| − 1, and
|R2| = 0.

Hence, |U| ≤ |Pv|(∆ − 1) − (|R1| − |U|) − 2|R2| ≤ |Pv|(∆ − 1) − |Pv| + 1 = |Pv|(∆ − 2) + 1. �

Theorem 6 ([8]). For any ordering of the vertices of a graph G = (V , E), there exists a λ-coloring such that v receives a color in
{0, . . . , 2a + b + c}, where a is the number of vertices that are adjacent to v and precede v in the ordering, b is the number of
vertices that are adjacent to v and succeed v in the ordering, and c is the number of vertices with distance two to v and precede
v in the ordering. Hence, λ ≤ maxv∈V {2a + b + c}.

Theorem 7. If G is a weakly chordal graph with ∆ ≥ 2, then λ ≤ ∆2.

Proof. When ∆ = 2 we know that λ ≤ 4 = ∆2 [6]. Let G be a weakly chordal graph with ∆ ≥ 3, let T be a BFST of G, and
let σ be the ordering of the vertices produced by it. By Lemma 5, for any vertex v of G, the maximum number of vertices at
distance two to v that precede it in σ will be at most |Pv|(∆ − 2) + 1.
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Fig. 7. A condensed split graph.

By Theorem 6, if |Pv| ≤ ∆ − 1, v receives a color at most 2|Pv| + (∆ − |Pv|) + |Pv|(∆ − 2) + 1 = |Pv|(∆ − 1) + ∆ + 1 ≤

(∆ − 1)(∆ − 1) + ∆ + 1 = ∆2
− ∆ + 2. Otherwise, |Pv| = ∆ and a similar calculation provides an upper bound of

|Pv|∆ + 1 ≤ ∆2
+ 1.

Now the proof of the theorem will be divided into two cases according to Pv being or not a stable set. In each case we
show that the estimation of the maximum number of vertices at distance two to v when |Pv| = ∆ can be reduced by one.

If there exists an edge connecting vertices in Pv , it is straightforward to check that this number can be reduced by one,
applying a reasoning similar to the one used in the proof of Lemma 5.

Otherwise, Pv is a stable set, and by Lemma 4, Q = ∅. By Lemma 3, there is a vertex z such that depth(z) = depth(v)−2,
adjacent to all the vertices in Pv . Additionally, this vertex must be the root of the tree.

Now, let U be the set of vertices u ∈ U such that depth(u) = 2 and |Pu| = ∆. Since there are at most ∆ vertices in
U , rearranging them in σ in a way that they are the first ones in the subordering of vertices x such that depth(x) = 2, by
Theorem 6, they receive a color at most 2∆ + ∆ − 1 = 3∆ − 1 ≤ ∆2. �

If themethod described above is applied to color themore specific class of chordal bipartite graphs, a better upper bound
for λ can be obtained.

Corollary 8. If G is a chordal bipartite graph, then λ ≤ ∆2
− ∆ + 2.

Proof. As in the proof of Theorem 7, the coloring procedure is done in an ordering of vertices produced by a BFST of G. Since
a chordal bipartite graph is a weakly chordal graph, as seen in the proof of Theorem 7, if |Pv| ≤ ∆ − 1 for some vertex v,
then we can use a color of number at most ∆2

−∆+ 2 to v. Otherwise, these vertices must be at distance 2 from the root of
the BFST and changing the ordering of the vertices obtained by BFST by moving all these vertices with |Pv| = ∆ to the first
positions, it will be possible to use a color of number at most 3∆ − 1 ≤ ∆2

− ∆ + 2, for ∆ ≥ 3, producing a λ-coloring of G
as required. �

Conjecture 9. If G is a weakly chordal graph, then λ ≤ ∆2
− ∆ + 2.

By Theorem 7, if for every vertex v we have |Pv| ≤ ∆ − 1 or |Pv| = ∆ and Pv is a stable set, then the upper bound of the
Conjecture 9 holds. The only case that was not verified occurs when |Pv| = ∆ and there is an edge connecting vertices in Pv .

3. Split graphs

A graph Gc is condensed split if it can be obtained from a (connected) split graph G by recursively removing two vertices
u and v with dist(u, v) = 3 in G and adding one new vertex whose neighborhood is the union of the neighborhood of the
removed vertices, until there are no more such pairs of vertices. Fig. 7 shows a condensed split graph. Note that Gc is always
a connected graph.

Lemma 10. If G is a split graph, then Gc is split. Moreover, ∆(Gc) = ∆(G).

Proof. The class of split graphs is hereditary, so the graph obtained removing a vertex from a split graph is also a split graph.
Besides, if we add a vertex to the stable set I without adding edges to vertices in I , the graph obtained still is a split graph.
Thus, if G is a split graph, then Gc is too.

If G is a complete graph, then Gc = G. Otherwise, there is a vertex in the complete set K of Gwith degree at least |K | and
each new vertex added to Gc has as neighbors only vertices in K , so its degree is at most |K |. Hence, ∆(G) = ∆(Gc). �

Lemma 11. If Gc = (Ic, Kc) is a condensed split graph, i = |Ic | and w = |Kc |, then


i
2


≤ w


∆−w+1

2


.

Proof. First observe that each of the


i
2


pairs of vertices in Ic must have at least a common neighbor in Kc . Besides, a vertex

v in Kc can be such a common neighbor only for the pairs whose vertices belong to the neighborhood of v in Ic . Finally,
observe that this set has size at most ∆ − (w − 1). �
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Fig. 8. Extending a λ-coloring of a condensed split graph to the original split graph.

Fig. 9. Function f (w).

Theorem 12. If G is a split graph, then λ ≤
2
√
3

9 ∆1.5
+ 2∆ + ∆0.5

− 2.

Proof. Let Gc = (Ic, Kc) with |Ic | = i and |Kc | = w be a condensed split graph obtained from G. Since any λ-coloring of Gc
can be used to obtain a λ-coloring of G, by definition of condensed split graph, we have λ(G) ≤ λ(Gc). (See Fig. 8.) Moreover,
by Lemma 10, ∆ = ∆(Gc) = ∆(G).

By Lemma 11 we have that


i
2


≤ w


∆−w+1

2


, implying that i2 − i ≤ w(∆ − w + 1)(∆ − w). Now, take the mapping

f (w) = w(∆−w+1)(∆−w). Themaximum value of f (w) for integerw can be obtainedwith an analysis of the derivatives
of f .

As f (w) = w(∆−w+1)(∆−w) = w3
+w2(−2∆−1)+w(∆2

+∆), we have that f (0) = 0 and f (∆) = 0. Nowwe can
find the first and the second derivatives of f (w), given as f ′(w) = 3w2

+w(−4∆−2)+(∆2
+∆) and f ′′(w) = 6w−4∆−2.

When f ′′(w) = 0 we have an inflection point of the function f (w), this happens when w =
2∆+1

3 , and the function f (w)
must looks like one of the two types of Fig. 9.

In order to verify the maximum value of the function f (w), such that w is an integer, let us consider the first derivative

f ′(w) = 0. This happens whenw =
(2∆+1)−

√
∆2+∆+1

3 . So, the possible values forw being an integer are: ∆−2
3 , ∆−1

3 , ∆

3 , ∆+1
3 ,

and ∆+2
3 . The values of f (w) for those w are given in Table 1. The maximum is attained when w =

∆

3 with f (w) =
4∆3

+6∆2

27 .

Assuming i > 2
√
3

9 ∆1.5
+ ∆0.5 we would have


i
2


> w


∆−w+1

2


, contradicting Lemma 11. So, i ≤

2
√
3

9 ∆1.5
+ ∆0.5.

Griggs and Yeh [6] proved the λ ≤ n + ∆ − 2 for a graph with n vertices. Since the number of vertices in Gc is i + ω, we
have n = i + ω ≤

2
√
3

9 ∆1.5
+ ∆0.5

+ ∆, implying λ(Gc) ≤
2
√
3

9 ∆1.5
+ 2∆ + ∆0.5

− 2. �
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Table 1
Function f (w).

w f (w)

∆−2
3

4∆3
+6∆2

−18∆−20
27

∆−1
3

4∆3
+6∆2

−6∆−4
27

∆

3
4∆3

+6∆2

27

∆+1
3

4∆3
+6∆2

−2
27

∆+2
3

4∆3
+6∆2

−6∆−4
27

Theorem 12 establishes a special case of the following conjecture by Kral:

Conjecture 13 ([7]). If G is chordal, then λ ≤
2
√
3

9 ∆1.5
+ O(∆).

For any simplicial vertex v (a simplicial vertex is one whose neighborhood is a complete set) of a chordal graph Gwe can
consider the subgraph induced by v, the vertices adjacent to v, and those which are at distance 2 away from v. Since it is a
split graph, it can be λ-colored according to Theorem 12. As any chordal graph has a perfect elimination scheme, if we could
combine the λ-colorings of these split subgraphs into a λ-coloring of G, we could set Kral’s conjecture by giving that specific
upper bound for λ.

4. Perspectives

It should be interesting to extend the upper bounds for λ from chordal bipartite graphs and split graphs here presented
to weakly chordal graphs and chordal graphs, respectively. Furthermore, to find examples of graphs such that these upper

bounds are sharp is also a matter for further study. We note that a split graph Gwith λ > 1
3


2
3∆

1.5 can be found in [2], and

a chordal graph Gwith λ > 2
√
3

9 ∆1.5 appears in [7].
The λ-coloring problem isN P -complete evenwhen restricted to split (and so to chordal andweakly chordal) graphs [2].

Another interesting question is to settle this problem for chordal bipartite graphs. As a matter of fact the computational
complexity of the problem is open even for bipartite permutation graphs [1], a subclass of chordal bipartite graphs.
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